THIRD WEEK HOMEWORK ASSIGNMENT

Problem 1. Prove that the elementary measure is sub-additive. In other words, show that the map $m: \mathcal{E}(\mathbb{R}^d) \to \mathbb{R}$ satisfies

$$m(E \cup F) \le m(E) + m(F)$$

for all elementary sets E and F.

Problem 2. Prove that the Cantor set is Jordan measurable and that its Jordan measure is 0.

Problem 3. Let $E \subset \mathbb{R}^d$ be any bounded set. Prove the following:

- (a) $m^{*,J}(\overline{E}) = m^{*,J}(E)$, where \overline{E} denotes the closure of E.
- (b) $m_{*,J}(\mathring{E}) = m_{*,J}(E)$, where \mathring{E} denotes the interior of E.
- (c) E is Jordan measurable if and only if $m^{*,J}(\partial E) = 0$, where ∂E denotes the boundary of E.

Problem 4. Let $E := \mathbb{Q} \cap [0, 1]$. Prove the following

- (a) $m_{*,J}(E) = 0.$
- (b) $m^{*,J}(E) = 1.$

Conclude that E is not Jordan measurable.

More problems to be added later ...