Semialgebras

A semialgebra on a set Ω is a set $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ so that

- $\varnothing \in \mathcal{C}$,
- $A \cap B \in \mathcal{C}$ if $A, B \in \mathcal{C}$,
- If $\varnothing \neq A \in \mathcal{C}$ then $A^{c}=\bigsqcup_{k=1}^{n} B_{k}$ for a finite sequence B_{1}, \ldots, B_{n} in \mathcal{C}.

The textbook doesn't include the first axiom ($\varnothing \in \mathcal{C}$), and for its troubles doesn't get any more generality except for the possibility that $\mathcal{C}=\{\Omega\}$. I don't want to bother with that possibility.

Premeasures

A premeasure on a semialgebra \mathcal{C} is a function $\iota: \mathcal{C} \rightarrow[0, \infty]$ so that

- $\iota(\varnothing)=0$,
- $\iota\left(\bigsqcup_{k=1}^{m} A_{k}\right)=\sum_{k=1}^{m} \iota\left(A_{k}\right)$ if A_{1}, \ldots, A_{m}, and $\bigsqcup_{k=1}^{m} A_{k}$ all belong to $s C$,
- $\iota(A) \leq \sum_{n=1}^{\infty} \iota\left(C_{n}\right)$ if $A \in \mathcal{C}$, each $C_{n} \in \mathcal{C}$, and $A \subseteq \bigcup_{n=1}^{\infty} C_{n}$.

Recall that \sqcup is used for a union of pairwise disjoint sets only.

Outer measure

If ι is a premeasure on a semialgebra \mathcal{C}, we can define an outer measure μ^{*} on Ω by

$$
\mu^{*}(A)=\inf \sum_{n=1}^{\infty} \iota\left(C_{n}\right),
$$

with the infimum taken over all sequences $\left(C_{n}\right)$ in \mathcal{C} with $A \subseteq \bigcup_{n=1}^{\infty} C_{n}$.
To see that it is an outer measure, note that $\mu^{*}(\varnothing)=0$ is trivial, and so is monotonicity $\left(\mu^{*}(A) \leq \mu^{*}(B)\right.$ if $\left.A \subseteq B\right)$.

For countable subadditivity, let $\left(A_{k}\right)$ be a sequence of subsets of Ω, assume $\mu^{*}\left(A_{k}\right)<\infty$, let $\varepsilon>0$, and select $C_{k n} \in \mathcal{C}$ with $A_{k} \subseteq \cup_{n} C_{k n}$ and $\sum_{n} \iota\left(C_{k n}\right)<\mu^{*}\left(A_{n}\right)+2^{-n} \varepsilon$. Then $\cup_{k} A_{k} \subseteq$ $\cup_{k} \cup_{n} C_{k n}$, and so

$$
\mu^{*}\left(\bigcup_{k} A_{k}\right) \leq \sum_{k} \sum_{n} \iota\left(C_{k n}\right)<\sum_{k}\left(\mu^{*}\left(A_{k}\right)+2^{-k} \varepsilon\right) \leq \sum_{k} \mu^{*}\left(A_{k}\right)+\varepsilon
$$

and therefore

$$
\mu^{*}\left(\bigcup_{k} A_{k}\right) \leq \sum_{k} \mu^{*}\left(A_{k}\right)
$$

since $\varepsilon>0$ was arbitrary.
We also note that

$$
\mu^{*}(A)=\iota(A) \quad \text { for } A \in \mathcal{C} .
$$

This follows from the third axiom of premeasures, which simply states that $\iota(A) \leq \mu^{*}(A)$; the opposite inequality following from the definition of μ^{*} and $A=A \cup \varnothing \cup \varnothing \cup \cdots$.

Measurability and extension

We find that every $E \in \mathcal{C}$ is μ^{*}-measurable.
Proof. For write $E^{c}=F_{1} \sqcup \cdots \sqcup F_{m}$ where $F_{k} \in \mathcal{C}$ are pairwise disjoint. Write also $F_{0}=E$, so that $\Omega=F_{0} \sqcup F_{1} \sqcup \cdots \sqcup F_{m}$. I claim that

$$
\mu^{*}(W) \geq \sum_{k=0}^{m} \mu^{*}\left(W \cap F_{k}\right)
$$

for any $W \subseteq \Omega$. If this is true, then we get

$$
\mu^{*}(W) \geq \mu^{*}(W \cap E)+\sum_{k=1}^{m} \mu^{*}\left(W \cap F_{k}\right) \geq \mu^{*}(W \cap E)+\mu^{*}(W \backslash E)
$$

by subadditivity, since $W \backslash E=\left(W \cap F_{1}\right) \cup \cdots \cup\left(W \cap F_{m}\right)$.
To prove the claim, then, assume $C_{n} \in \mathcal{C}$ and $W \subseteq \cup_{n=1}^{\infty} C_{n}$, and note that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \iota\left(C_{n}\right) & =\sum_{n=1}^{\infty} \sum_{k=0}^{m} \iota\left(C_{n} \cap F_{k}\right) & C_{n}=\bigsqcup_{k=0}^{m}\left(C_{n} \cap F_{k}\right) \\
& =\sum_{k=0}^{m} \sum_{n=1}^{\infty} \iota\left(C_{n} \cap F_{k}\right) & \\
& \geq \sum_{k=0}^{m} \mu^{*}\left(W \cap F_{k}\right) & W \cap F_{k} \subseteq \bigcup_{n=1}^{\infty} C_{n} \cap F_{k}
\end{aligned}
$$

and since this applies to any such sequence $\left(C_{n}\right)$, the desired conclusion follows.

