Semialgebras

A *semialgebra* on a set Ω is a set $\mathcal{C} \subseteq \mathcal{P}(\Omega)$ so that

• Ø ∈ Ĉ,

• $A \cap B \in \mathcal{C}$ if $A, B \in \mathcal{C}$,

• If $\phi \neq A \in \mathbb{C}$ then $A^c = \bigsqcup_{k=1}^n B_k$ for a finite sequence B_1, \ldots, B_n in \mathbb{C} .

The textbook doesn't include the first axiom ($\emptyset \in \mathbb{C}$), and for its troubles doesn't get any more generality except for the possibility that $\mathbb{C} = \{\Omega\}$. I don't want to bother with that possibility.

Premeasures

A *premeasure* on a semialgebra \mathbb{C} is a function $\iota \colon \mathbb{C} \to [0,\infty]$ so that

•
$$\iota(\emptyset) = 0$$
,

•
$$\iota\left(\bigsqcup_{k=1}^{m} A_k\right) = \sum_{k=1}^{m} \iota(A_k)$$
 if A_1, \dots, A_m , and $\bigsqcup_{k=1}^{m} A_k$ all belong to sC
• $\iota(A) \le \sum_{n=1}^{\infty} \iota(C_n)$ if $A \in \mathcal{C}$, each $C_n \in \mathcal{C}$, and $A \subseteq \bigcup_{n=1}^{\infty} C_n$.

Recall that ∐ is used for a union of *pairwise disjoint* sets only.

Outer measure

If ι is a premeasure on a semialgebra \mathcal{C} , we can define an *outer measure* μ^* on Ω by

$$\mu^*(A) = \inf \sum_{n=1}^{\infty} \iota(C_n),$$

with the infimum taken over all sequences (C_n) in \mathcal{C} with $A \subseteq \bigcup_{n=1}^{\infty} C_n$.

To see that it is an outer measure, note that $\mu^*(\emptyset) = 0$ is trivial, and so is monotonicity $(\mu^*(A) \le \mu^*(B) \text{ if } A \subseteq B)$.

For countable subadditivity, let (A_k) be a sequence of subsets of Ω , assume $\mu^*(A_k) < \infty$, let $\varepsilon > 0$, and select $C_{kn} \in \mathbb{C}$ with $A_k \subseteq \bigcup_n C_{kn}$ and $\sum_n \iota(C_{kn}) < \mu^*(A_n) + 2^{-n}\varepsilon$. Then $\bigcup_k A_k \subseteq \bigcup_k \bigcup_n C_{kn}$, and so

$$\mu^* \Big(\bigcup_k A_k\Big) \le \sum_k \sum_n \iota(C_{kn}) < \sum_k \left(\mu^*(A_k) + 2^{-k}\varepsilon\right) \le \sum_k \mu^*(A_k) + \varepsilon,$$

and therefore

$$\mu^*\left(\bigcup_k A_k\right) \le \sum_k \mu^*(A_k)$$

since $\varepsilon > 0$ was arbitrary.

We also note that

$$\mu^*(A) = \iota(A) \qquad \text{for } A \in \mathcal{C}.$$

This follows from the third axiom of premeasures, which simply states that $\iota(A) \le \mu^*(A)$; the opposite inequality following from the definition of μ^* and $A = A \cup \emptyset \cup \emptyset \cup \cdots$.

Measurability and extension

We find that every $E \in \mathcal{C}$ is μ^* -measurable.

Proof. For write $E^c = F_1 \sqcup \cdots \sqcup F_m$ where $F_k \in \mathbb{C}$ are pairwise disjoint. Write also $F_0 = E$, so that $\Omega = F_0 \sqcup F_1 \sqcup \cdots \sqcup F_m$. I *claim* that

$$\mu^*(W) \ge \sum_{k=0}^m \mu^*(W \cap F_k)$$

for any $W \subseteq \Omega$. If this is true, then we get

$$\mu^{*}(W) \ge \mu^{*}(W \cap E) + \sum_{k=1}^{m} \mu^{*}(W \cap F_{k}) \ge \mu^{*}(W \cap E) + \mu^{*}(W \setminus E)$$

by subadditivity, since $W \setminus E = (W \cap F_1) \cup \cdots \cup (W \cap F_m)$.

To prove the claim, then, assume $C_n \in \mathbb{C}$ and $W \subseteq \bigcup_{n=1}^{\infty} C_n$, and note that

$$\sum_{n=1}^{\infty} \iota(C_n) = \sum_{n=1}^{\infty} \sum_{k=0}^{m} \iota(C_n \cap F_k) \qquad C_n = \bigsqcup_{k=0}^{m} (C_n \cap F_k)$$
$$= \sum_{k=0}^{m} \sum_{n=1}^{\infty} \iota(C_n \cap F_k)$$
$$\ge \sum_{k=0}^{m} \mu^* (W \cap F_k) \qquad W \cap F_k \subseteq \bigcup_{n=1}^{\infty} C_n \cap F_k$$

and since this applies to any such sequence (C_n) , the desired conclusion follows.