
Outer Lebesgue measure

Recall that outer Lebesgue measure λ∗ has these properties:

• For every interval I , λ∗(I ) is the length of I , which we also write λ(I )

• (Subadditivity) For any sequence (An)n∈N of subsets of R,

λ∗
( ⋃

n∈N
An

)
≤ ∑

n∈N
λ∗(An)



Carathéodory’s criterion and Lebesgue measurability

We say that a set E ⊆R is Lebesgue measurable if

λ∗(W ) =λ∗(W ∩E)+λ∗(W \ E) for all W ⊆R.

The criterion above is known as Carathéodory’s criterion. It can be applied in more abstract
settings than the present.

It is useful to observe that the inequality “≤” holds by subaddtivity, so to prove that
a set is Lebesgue measurable, we only need to prove

λ∗(W ) ≥λ∗(W ∩E)+λ∗(W \ E) for all W ⊆R.

We write M for the set of Lebesgue measurable sets.



Intervals and Lebesgue measurability

Lemma. A set E ⊆R is Lebesgue measurable if and only if

λ∗(I ) ≥λ∗(I ∩E)+λ∗(I \ E) for every open interval I .

To prove the nontrivial direction, assume the above condition holds, and let W ⊆ R. Let
(In )n∈N be a cover of W by open intervals. We find

λ∗(W ∩E)+λ∗(W \ E) ≤ ∑
n∈N

λ∗(In ∩E)+ ∑
n∈N

λ∗(In \ E) by subadditivity

= ∑
n∈N

(
λ∗(In ∩E)+λ∗(In \ E)

)
joining the sums

≤ ∑
n∈N

λ∗(In ). by the assumption

Since this holds for every cover of W by intervals, it follows that

λ∗(W ∩E)+λ∗(W \ E) ≤λ∗(W ),

which shows that E is Lebesgue measurable.

Corollary. Every interval is Lebesgue measurable.



A finite additivity result

In this section, we prove finite additivity of outer Lebesgue measure when applied
to pairwise disjoint Lebesgue measurable sets A1, A2, . . . , An :

λ∗
( n⊔

k=1
Ak

)
=

n∑
k=1

λ∗(Ak ).

We shall, however, need a slightly more general version of this result.

For any pairwise disjoint sets A1, A2, . . . , An with A1, A2, . . . , An−1 Lebesgue measur-
able and any W ⊆R, we have

λ∗
(
W ∩

n⊔
k=1

Ak

)
=

n∑
k=1

λ∗(W ∩ Ak ).

A word on notation: I use the notation
⊔

to indicate a disjoint union, i.e., a union of pairwise disjoint
sets. We use this symbol, and its binary variant t, for the union only when the sets involved are known
(or assumed) to be pairwise disjoint. So A tB = A ∪B if A ∩B = ;, but the notation A tB should be
considered to be meaningless otherwise.

Proof: We prove it first for n = 2: If A, B are pairwise disjoint and A is Lebesgue
measurable, then

λ∗(W ∩ (AtB)) =λ∗(W ∩ A)+λ∗(W ∩B),

which follows directly from the measurability of A because (W ∩(AtB))∩A =W ∩A
and (W ∩ (AtB)) \ A =W ∩B .

In the general case, using the above with A = A1 and B =⊔n
k=2 Ak yields

λ∗
(
W ∩

n⊔
k=1

Ak

)
=λ∗(W ∩ A1)+λ∗

(
W ∩

n⊔
k=2

Ak

)
,

and applying this inductively to the last term yields the desired result.



Claim: The Lebesgue measurable sets form an algebra of sets.

It follows directly from the definition that M is closed under complements.

We next show that it is closed under finite unions. So let A,B ∈M. For any W ⊆R we find

λ∗(W ) =λ∗(W ∩ A)+λ∗(W ∩ Ac )

=
︷ ︸︸ ︷ ︷ ︸︸ ︷
λ∗(W ∩ A∩B)+λ∗(W ∩ A∩Bc )+λ∗(W ∩ Ac ∩B)+λ∗(W ∩ Ac ∩Bc )︸ ︷︷ ︸

note: (A∩B)∪(A∩B c )∪(Ac∩B)=A∪B

≥λ∗(W ∩ (A∪B))+λ∗(W ∩ (Ac ∩Bc ))

=λ∗(W ∩ (A∪B))+λ∗(W \ (A∪B))

(using subadditivity in the third line), which shows that A ∪B ∈M. Our claim follows from
this.



A countable additivity result

For any sequence (Ak )k∈N of pairwise disjoint Lebesgue measurable sets and any W ⊆
R, we have

λ∗
(
W ∩ ⊔

k∈N
Ak

)
= ∑

k∈N
λ∗(W ∩ Ak ).

Proof: We use our finite additivity result, noting that we do not yet know, nor do we
need to know, that

⊔∞
k=n+1 Ak is measurable:

λ∗
(
W ∩ ⊔

k∈N
Ak

)
=λ∗

((
W ∩

n⊔
k=1

Ak

)
t

(
W ∩

∞⊔
k=n+1

Ak

))
=

n∑
k=1

λ∗(W ∩ Ak )+λ∗
((

W ∩
∞⊔

k=n+1
Ak

))
≥

n∑
k=1

λ∗(W ∩ Ak ),

and letting n →∞ we conclude that

λ∗
(
W ∩

n⊔
k=1

Ak

)
≥λ∗(W ∩ A1)+λ∗

(
W ∩

n⊔
k=2

Ak

)
.

Since the opposite inequality holds by countable subadditivity, the proof is com-
plete.



Claim: The Lebesgue measurable sets form a σ-algebra.

To prove this, it only remains to show that a countable union of Lebesgue measur-
able sets is Lebesgue measurable.

So let (En)n∈N be a sequence of sets, En ∈M, and write

E = ⋃
k∈N

Ek .

Furthermore, let

Bn =
n⋃

k=1
Ek , B0 =;, An = Bn \ Bn−1, so that Bn =

n⊔
k=1

Ak and E =
∞⊔

k=1
Ak

and note that all the sets An , Bn are Lebesgue measurable.

Now let W ⊆R be any set. Then

λ∗(W ) =λ∗(W ∩Bn)+λ∗(W \ Bn) Bn is measurable

≥λ∗(W ∩Bn)+λ∗(W \ E) Bn ⊆ E , so W \ Bn ⊇W \ E

Now let n →∞:

λ∗(W ) ≥ lim
n→∞λ∗(W ∩Bn)+λ∗(W \ E)

= lim
n→∞

n∑
k=1

λ∗(W ∩ An)+λ∗(W \ E) by finite additivity

=
∞∑

k=1
λ∗(W ∩ An)+λ∗(W \ E)

=λ∗(W ∩E)+λ∗(W \ E) by countable additivity,

showing that E ∈M as claimed.

We really only needed countable subadditivity in the last line to obtain the needed inequality.

Corollary. Every open or closed set is Lebesgue measurable, and so is every Borel set.

Proof. Any open set is a countable union of open intervals, and hence measurable. Any
closed set is the complement of an open set, and hence measurable. And the set of Borel sets
is the σ-algebra generated by the open subsets of R. Since M is a σ-algebra containing the
open subsets of R, it contains all Borel sets.



Summary – Lebesgue measure

We define Lebesgue measure λ to be the restriction of Lebesgue outer measure λ∗
to the Lebesgue measurable sets:

λ(E) =λ∗(E), E ∈M.

It is countably additive:

λ
( ⋃

k∈N
Ak

)
= ∑

k∈N
λ(Ak )

where (Ak )k∈N is a sequence of pairwise disjoint Lebesgue measurable sets.


