Outer Lebesgue measure

Recall that *outer Lebesgue measure* λ^* has these properties:

- For every interval I, $\lambda^*(I)$ is the length of I, which we also write $\lambda(I)$
- (Subadditivity) For any sequence $(A_n)_{n\in\mathbb{N}}$ of subsets of \mathbb{R} ,

$$\lambda^* \Big(\bigcup_{n \in \mathbb{N}} A_n \Big) \le \sum_{n \in \mathbb{N}} \lambda^* (A_n)$$

Carathéodory's criterion and Lebesgue measurability

We say that a set $E \subseteq \mathbb{R}$ is *Lebesgue measurable* if

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E)$$
 for all $W \subseteq \mathbb{R}$.

The criterion above is known as Carath'eodory's criterion. It can be applied in more abstract settings than the present.

It is useful to observe that the inequality " \leq " holds by subaddivity, so to prove that a set is Lebesgue measurable, we only need to prove

$$\lambda^*(W) \ge \lambda^*(W \cap E) + \lambda^*(W \setminus E)$$
 for all $W \subseteq \mathbb{R}$.

We write M for the set of Lebesgue measurable sets.

Intervals and Lebesgue measurability

Lemma. A set $E \subseteq \mathbb{R}$ is Lebesgue measurable if and only if

$$\lambda^*(I) \ge \lambda^*(I \cap E) + \lambda^*(I \setminus E)$$
 for every open interval I .

To prove the nontrivial direction, assume the above condition holds, and let $W \subseteq \mathbb{R}$. Let $(I_n)_{n \in \mathbb{N}}$ be a cover of W by open intervals. We find

$$\lambda^*(W \cap E) + \lambda^*(W \setminus E) \leq \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E) + \sum_{n \in \mathbb{N}} \lambda^*(I_n \setminus E) \quad \text{by subadditivity}$$

$$= \sum_{n \in \mathbb{N}} \left(\lambda^*(I_n \cap E) + \lambda^*(I_n \setminus E)\right) \quad \text{joining the sums}$$

$$\leq \sum_{n \in \mathbb{N}} \lambda^*(I_n). \quad \text{by the assumption}$$

Since this holds for *every* cover of *W* by intervals, it follows that

$$\lambda^*(W \cap E) + \lambda^*(W \setminus E) \le \lambda^*(W),$$

which shows that *E* is Lebesgue measurable.

Corollary. Every interval is Lebesgue measurable.

A finite additivity result

In this section, we prove finite additivity of outer Lebesgue measure when applied to pairwise disjoint Lebesgue measurable sets $A_1, A_2, ..., A_n$:

$$\lambda^* \Big(\bigsqcup_{k=1}^n A_k \Big) = \sum_{k=1}^n \lambda^* (A_k).$$

We shall, however, need a slightly more general version of this result.

For any pairwise disjoint sets $A_1, A_2, ..., A_n$ with $A_1, A_2, ..., A_{n-1}$ Lebesgue measurable and any $W \subseteq \mathbb{R}$, we have

$$\lambda^* \Big(W \cap \bigsqcup_{k=1}^n A_k \Big) = \sum_{k=1}^n \lambda^* (W \cap A_k).$$

A word on notation: I use the notation \sqcup to indicate a *disjoint union*, i.e., a union of pairwise disjoint sets. We use this symbol, and its binary variant \sqcup , for the union *only* when the sets involved are known (or assumed) to be pairwise disjoint. So $A \sqcup B = A \cup B$ if $A \cap B = \emptyset$, but the notation $A \sqcup B$ should be considered to be meaningless otherwise.

Proof: We prove it first for n = 2: If A, B are pairwise disjoint and A is Lebesgue measurable, then

$$\lambda^*(W \cap (A \sqcup B)) = \lambda^*(W \cap A) + \lambda^*(W \cap B),$$

which follows directly from the measurability of *A* because $(W \cap (A \sqcup B)) \cap A = W \cap A$ and $(W \cap (A \sqcup B)) \setminus A = W \cap B$.

In the general case, using the above with $A = A_1$ and $B = \bigsqcup_{k=2}^n A_k$ yields

$$\lambda^* \Big(W \cap \bigsqcup_{k=1}^n A_k \Big) = \lambda^* (W \cap A_1) + \lambda^* \Big(W \cap \bigsqcup_{k=2}^n A_k \Big),$$

and applying this inductively to the last term yields the desired result.

Claim: The Lebesgue measurable sets form an algebra of sets.

It follows directly from the definition that ${\mathfrak M}$ is closed under complements.

We next show that it is closed under finite unions. So let $A, B \in \mathcal{M}$. For any $W \subseteq \mathbb{R}$ we find

$$\lambda^*(W) = \lambda^*(W \cap A) + \lambda^*(W \cap A^c)$$

$$= \underbrace{\lambda^*(W \cap A \cap B) + \lambda^*(W \cap A \cap B^c)}_{\text{note: } (A \cap B) \cup (A \cap B^c) \cup (A^c \cap B) = A \cup B}$$

$$\geq \lambda^*(W \cap (A \cup B)) + \lambda^*(W \cap (A^c \cap B^c))$$

$$= \lambda^*(W \cap (A \cup B)) + \lambda^*(W \setminus (A \cup B))$$

(using subadditivity in the third line), which shows that $A \cup B \in \mathcal{M}$. Our claim follows from this.

A countable additivity result

For any sequence $(A_k)_{k\in\mathbb{N}}$ of pairwise disjoint Lebesgue measurable sets and any $W\subseteq\mathbb{R}$, we have

$$\lambda^* \Big(W \cap \bigsqcup_{k \in \mathbb{N}} A_k \Big) = \sum_{k \in \mathbb{N}} \lambda^* (W \cap A_k).$$

Proof: We use our finite additivity result, noting that we do not yet know, nor do we need to know, that $\bigsqcup_{k=n+1}^{\infty} A_k$ is measurable:

$$\lambda^* \Big(W \cap \bigsqcup_{k \in \mathbb{N}} A_k \Big) = \lambda^* \Big(\Big(W \cap \bigsqcup_{k=1}^n A_k \Big) \sqcup \Big(W \cap \bigsqcup_{k=n+1}^\infty A_k \Big) \Big)$$
$$= \sum_{k=1}^n \lambda^* (W \cap A_k) + \lambda^* \Big(\Big(W \cap \bigsqcup_{k=n+1}^\infty A_k \Big) \Big)$$
$$\geq \sum_{k=1}^n \lambda^* (W \cap A_k),$$

and letting $n \to \infty$ we conclude that

$$\lambda^* \Big(W \cap \bigsqcup_{k=1}^n A_k \Big) \ge \lambda^* (W \cap A_1) + \lambda^* \Big(W \cap \bigsqcup_{k=2}^n A_k \Big).$$

Since the opposite inequality holds by countable subadditivity, the proof is complete.

Claim: The Lebesgue measurable sets form a σ -algebra.

To prove this, it only remains to show that a countable union of Lebesgue measurable sets is Lebesgue measurable.

So let $(E_n)_{n\in\mathbb{N}}$ be a sequence of sets, $E_n\in\mathcal{M}$, and write

$$E = \bigcup_{k \in \mathbb{N}} E_k.$$

Furthermore, let

$$B_n = \bigcup_{k=1}^n E_k$$
, $B_0 = \emptyset$, $A_n = B_n \setminus B_{n-1}$, so that $B_n = \bigcup_{k=1}^n A_k$ and $E = \bigcup_{k=1}^\infty A_k$

and note that all the sets A_n , B_n are Lebesgue measurable.

Now let $W \subseteq \mathbb{R}$ be any set. Then

$$\lambda^*(W) = \lambda^*(W \cap B_n) + \lambda^*(W \setminus B_n)$$

$$\geq \lambda^*(W \cap B_n) + \lambda^*(W \setminus E)$$

$$B_n \text{ is measurable}$$

$$B_n \subseteq E, \text{ so } W \setminus B_n \supseteq W \setminus E$$

Now let $n \to \infty$:

$$\lambda^*(W) \ge \lim_{n \to \infty} \lambda^*(W \cap B_n) + \lambda^*(W \setminus E)$$

$$= \lim_{n \to \infty} \sum_{k=1}^n \lambda^*(W \cap A_n) + \lambda^*(W \setminus E) \qquad \text{by finite additivity}$$

$$= \sum_{k=1}^\infty \lambda^*(W \cap A_n) + \lambda^*(W \setminus E)$$

$$= \lambda^*(W \cap E) + \lambda^*(W \setminus E) \qquad \text{by countable additivity,}$$

showing that $E \in \mathcal{M}$ as claimed.

We *really* only needed countable *sub* additivity in the last line to obtain the needed inequality.

Corollary. Every open or closed set is Lebesgue measurable, and so is every Borel set.

Proof. Any open set is a countable union of open intervals, and hence measurable. Any closed set is the complement of an open set, and hence measurable. And the set of Borel sets is the σ -algebra generated by the open subsets of $\mathbb R$. Since $\mathbb M$ is a σ -algebra containing the open subsets of $\mathbb R$, it contains all Borel sets.

Summary - Lebesgue measure

We define *Lebesgue measure* λ to be the restriction of Lebesgue outer measure λ^* to the Lebesgue measurable sets:

$$\lambda(E) = \lambda^*(E), \qquad E \in \mathcal{M}.$$

It is countably additive:

$$\lambda \Big(\bigcup_{k \in \mathbb{N}} A_k \Big) = \sum_{k \in \mathbb{N}} \lambda (A_k)$$

where $(A_k)_{k\in\mathbb{N}}$ is a sequence of pairwise disjoint Lebesgue measurable sets.