
Outer Lebesgue measure

Recall that outer Lebesgue measure λ∗ has these properties:

• For every interval I , λ∗(I ) is the length of I , which we also write λ(I )

• (Subadditivity) For any sequence (An)n∈N of subsets of R,

λ∗
( ⋃

n∈N
An

)
≤ ∑

n∈N
λ∗(An)



Carathéodory’s criterion and Lebesgue measurability

We say that a set E ⊆R is Lebesgue measurable if

λ∗(W ) =λ∗(W ∩E)+λ∗(W \ E) for all W ⊆R.

The criterion above is known as Carathéodory’s criterion. It can be applied in more abstract
settings than the present.

It is useful to observe that the inequality “≤” holds by subaddtivity, so to prove that
a set is Lebesgue measurable, we only need to prove

λ∗(W ) ≥λ∗(W ∩E)+λ∗(W \ E) for all W ⊆R.

We write M for the set of Lebesgue measurable sets.



Intervals and Lebesgue measurability

Lemma. A set E ⊆R is Lebesgue measurable if and only if

λ∗(I ) ≥λ∗(I ∩E)+λ∗(I \ E) for every open interval I .

To prove the nontrivial direction, assume the above condition holds, and let W ⊆ R. Let
(In )n∈N be a cover of W by open intervals. We find

λ∗(W ∩E)+λ∗(W \ E) ≤ ∑
n∈N

λ∗(In ∩E)+ ∑
n∈N

λ∗(In \ E) by subadditivity

= ∑
n∈N

(
λ∗(In ∩E)+λ∗(In \ E)

)
joining the sums

≤ ∑
n∈N

λ∗(In ). by the assumption

Since this holds for every cover of W by intervals, it follows that

λ∗(W ∩E)+λ∗(W \ E) ≤λ∗(W ),

which shows that E is Lebesgue measurable.

Corollary. Every interval is Lebesgue measurable.



A finite additivity result

In this section, we prove finite additivity of outer Lebesgue measure when applied
to pairwise disjoint Lebesgue measurable sets A1, A2, . . . , An :

λ∗
( n⊔

k=1
Ak

)
=

n∑
k=1

λ∗(Ak ).

We shall, however, need a slightly more general version of this result.

For any pairwise disjoint Lebesgue measurable sets A1, A2, . . . , An and any W ⊆R,
we have

λ∗
(
W ∩

n⊔
k=1

Ak

)
=

n∑
k=1

λ∗(W ∩ Ak ).

A word on notation: I use the notation
⊔

to indicate a disjoint union, i.e., a union of pairwise disjoint
sets. We use this symbol, and its binary variant t, for the union only when the sets involved are known
(or assumed) to be pairwise disjoint. So A tB = A ∪B if A ∩B = ;, but the notation A tB should be
considered to be meaningless otherwise.

Proof: We note first a slightly stronger statement for n = 2: If A, B are pairwise disjoint and A
is Lebesgue measurable, then

λ∗(W ∩ (AtB)) =λ∗(W ∩ A)+λ∗(W ∩B),

which follows directly from the measurability of A because (W ∩ (A tB))∩ A = W ∩ A and
(W ∩ (AtB)) \ A =W ∩B .

In the general case, using the above with A = A1 and B =⊔n
k=2 Ak yields

λ∗
(
W ∩

n⊔
k=1

Ak

)
=λ∗(W ∩ A1)+λ∗

(
W ∩

n⊔
k=2

Ak

)
,

and applying this inductively to the last term yields the desired result.



Claim: The Lebesgue measurable sets form an algebra of sets.

It follows directly from the definition that M is closed under complements.

We next show that it is closed under finite unions. So let A,B ∈M. For any W ⊆R we find

λ∗(W ) =λ∗(W ∩ A)+λ∗(W ∩ Ac )

=
︷ ︸︸ ︷ ︷ ︸︸ ︷
λ∗(W ∩ A∩B)+λ∗(W ∩ A∩Bc )+λ∗(W ∩ Ac ∩B)+λ∗(W ∩ Ac ∩Bc )︸ ︷︷ ︸

note: (A∩B)∪(A∩B c )∪(Ac∩B)=A∪B

≥λ∗(W ∩ (A∪B))+λ∗(W ∩ (Ac ∩Bc ))

=λ∗(W ∩ (A∪B))+λ∗(W \ (A∪B))

(using subadditivity in the third line), which shows that A ∪B ∈M. Our claim follows from
this.



Claim: The Lebesgue measurable sets form a σ-algebra.

To prove this, it only remains to show that a countable union of Lebesgue measur-
able sets is Lebesgue measurable. So let (En)n∈N be a sequence of sets, En ∈M, and
write

E = ⋃
k∈N

Ek .

Furthermore, let

Bn =
n⋃

k=1
Ek , B0 =;, An = Bn \ Bn−1, so that Bn =

n⊔
k=1

Ak and E =
∞⊔

k=1
Ak

and note that all the sets An , Bn are Lebesgue measurable.

Now let W ⊆R be any set. I claim:

λ∗
(
W ∩E

)
︸ ︷︷ ︸

a

=
∞∑

k=1
λ∗(W ∩ Ak )︸ ︷︷ ︸

b

= lim
n→∞λ∗(W ∩Bn)︸ ︷︷ ︸

c

.

The second equality (b = c) follows direct from the finite additivity results shown
earlier, i.e.,

λ∗(W ∩Bn) =
n∑

k=1
λ∗(W ∩ Ak ),

and then taking the limit as n → ∞. The inequality a ≤ b is just the countable
subadditivity of λ∗. The inequality c ≤ a follows from Bn ⊆ E , so that λ∗(W ∩Bn) ≤
λ∗(W ∩E). Thus the claim is proved.

Now we use the measurability of Bn :

λ∗(W ) =λ∗(W ∩Bn)+λ∗(W \ Bn) ≥λ∗(W ∩Bn)+λ∗(W \ E)

because Bn ⊆ E , so W \ Bn ⊇W \ E . Therefore, taking the limit and using the above
claim we get

λ∗(W ) ≥ lim
n→∞λ∗(W ∩Bn)+λ∗(W \ E) =λ∗(W ∩E)+λ∗(W \ E),

showing that E ∈M as claimed.

Corollary. Every open or closed set is Lebesgue measurable, and so is every Borel set.

Proof. Any open set is a countable union of open intervals, and hence measurable. Any
closed set is the complement of an open set, and hence measurable. And the set of Borel sets
is the σ-algebra generated by the open subsets of R. Since M is a σ-algebra containing the
open subsets of R, it contains all Borel sets.



Countable additivity of the Lebesgue measure

As a bonus from the above proof that M is a σ-algebra, we have

λ∗
(
W ∩ ⊔

n∈N
An

)
= ∑

n∈N
λ∗(W ∩ An)

whenever (An)n∈N is a sequence of pairwise disjoint Lebesgue measurable sets.

We define Lebesgue measure λ to be the restriction of Lebesgue outer measure λ∗
to the Lebesgue measurable sets:

λ(E) =λ∗(E), E ∈M.

The countable additivity of λ is an immediate special case of the equality above,
with W =R.


