Outer Lebesgue measure

Recall that *outer Lebesgue measure* λ^* has these properties:

- For every interval *I*, $\lambda^*(I)$ is the length of *I*, which we also write $\lambda(I)$
- (Subadditivity) For any sequence $(A_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{R} ,

$$\lambda^* \Big(\bigcup_{n \in \mathbb{N}} A_n\Big) \le \sum_{n \in \mathbb{N}} \lambda^* (A_n)$$

Carathéodory's criterion and Lebesgue measurability

We say that a set $E \subseteq \mathbb{R}$ is *Lebesgue measurable* if

 $\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \setminus E) \quad \text{for all } W \subseteq \mathbb{R}.$

The criterion above is known as *Carathéodory's criterion*. It can be applied in more abstract settings than the present.

It is useful to observe that the inequality " \leq " holds by subaddivity, so to prove that a set is Lebesgue measurable, we only need to prove

 $\lambda^*(W) \ge \lambda^*(W \cap E) + \lambda^*(W \setminus E)$ for all $W \subseteq \mathbb{R}$.

We write \mathcal{M} for the set of Lebesgue measurable sets.

Intervals and Lebesgue measurability

Lemma. A set $E \subseteq \mathbb{R}$ is Lebesgue measurable if and only if

 $\lambda^*(I) \ge \lambda^*(I \cap E) + \lambda^*(I \setminus E)$ for every open interval I.

To prove the nontrivial direction, assume the above condition holds, and let $W \subseteq \mathbb{R}$. Let $(I_n)_{n \in \mathbb{N}}$ be a cover of *W* by open intervals. We find

$$\begin{split} \lambda^*(W \cap E) + \lambda^*(W \setminus E) &\leq \sum_{n \in \mathbb{N}} \lambda^*(I_n \cap E) + \sum_{n \in \mathbb{N}} \lambda^*(I_n \setminus E) & \text{by subadditivity} \\ &= \sum_{n \in \mathbb{N}} \left(\lambda^*(I_n \cap E) + \lambda^*(I_n \setminus E) \right) & \text{joining the sums} \\ &\leq \sum_{n \in \mathbb{N}} \lambda^*(I_n). & \text{by the assumption} \end{split}$$

Since this holds for *every* cover of W by intervals, it follows that

 $\lambda^*(W \cap E) + \lambda^*(W \setminus E) \le \lambda^*(W),$

which shows that *E* is Lebesgue measurable.

Corollary. Every interval is Lebesgue measurable.

A finite additivity result

In this section, we prove finite additivity of outer Lebesgue measure when applied to pairwise disjoint Lebesgue measurable sets $A_1, A_2, ..., A_n$:

$$\lambda^* \Big(\bigsqcup_{k=1}^n A_k \Big) = \sum_{k=1}^n \lambda^* (A_k).$$

We shall, however, need a slightly more general version of this result.

For any pairwise disjoint Lebesgue measurable sets $A_1, A_2, ..., A_n$ and any $W \subseteq \mathbb{R}$, we have

$$\lambda^* \Big(W \cap \bigsqcup_{k=1}^n A_k \Big) = \sum_{k=1}^n \lambda^* (W \cap A_k).$$

A word on notation: I use the notation \sqcup to indicate a *disjoint union*, i.e., a union of pairwise disjoint sets. We use this symbol, and its binary variant \sqcup , for the union *only* when the sets involved are known (or assumed) to be pairwise disjoint. So $A \sqcup B = A \cup B$ if $A \cap B = \emptyset$, but the notation $A \sqcup B$ should be considered to be meaningless otherwise.

Proof: We note first a slightly stronger statement for n = 2: If *A*, *B* are pairwise disjoint and *A* is Lebesgue measurable, then

$$\lambda^*(W \cap (A \sqcup B)) = \lambda^*(W \cap A) + \lambda^*(W \cap B),$$

which follows directly from the measurability of *A* because $(W \cap (A \sqcup B)) \cap A = W \cap A$ and $(W \cap (A \sqcup B)) \setminus A = W \cap B$.

In the general case, using the above with $A = A_1$ and $B = \bigsqcup_{k=2}^n A_k$ yields

$$\lambda^* \Big(W \cap \bigsqcup_{k=1}^n A_k \Big) = \lambda^* (W \cap A_1) + \lambda^* \Big(W \cap \bigsqcup_{k=2}^n A_k \Big),$$

and applying this inductively to the last term yields the desired result.

Claim: The Lebesgue measurable sets form an algebra of sets.

It follows directly from the definition that $\ensuremath{\mathcal{M}}$ is closed under complements.

We next show that it is closed under finite unions. So let $A, B \in \mathcal{M}$. For any $W \subseteq \mathbb{R}$ we find

 $\lambda^{*}(W) = \lambda^{*}(W \cap A) + \lambda^{*}(W \cap A^{c})$ $= \underbrace{\lambda^{*}(W \cap A \cap B) + \lambda^{*}(W \cap A \cap B^{c})}_{\text{note: } (A \cap B) \cup (A \cap B^{c}) \cup (A^{c} \cap B) = A \cup B}$ $\geq \lambda^{*}(W \cap (A \cup B)) + \lambda^{*}(W \cap (A^{c} \cap B^{c}))$ $= \lambda^{*}(W \cap (A \cup B)) + \lambda^{*}(W \setminus (A \cup B))$

(using subadditivity in the third line), which shows that $A \cup B \in \mathcal{M}$. Our claim follows from this.

Claim: The Lebesgue measurable sets form a σ -algebra.

To prove this, it only remains to show that a countable union of Lebesgue measurable sets is Lebesgue measurable. So let $(E_n)_{n \in \mathbb{N}}$ be a sequence of sets, $E_n \in \mathcal{M}$, and write

$$E = \bigcup_{k \in \mathbb{N}} E_k$$

Furthermore, let

$$B_n = \bigcup_{k=1}^n E_k$$
, $B_0 = \emptyset$, $A_n = B_n \setminus B_{n-1}$, so that $B_n = \bigsqcup_{k=1}^n A_k$ and $E = \bigsqcup_{k=1}^\infty A_k$

and note that all the sets A_n , B_n are Lebesgue measurable.

Now let $W \subseteq \mathbb{R}$ be any set. I *claim*:

$$\underbrace{\lambda^* \Big(W \cap E \Big)}_{a} = \underbrace{\sum_{k=1}^{\infty} \lambda^* (W \cap A_k)}_{b} = \underbrace{\lim_{n \to \infty} \lambda^* (W \cap B_n)}_{c}.$$

The second equality (b = c) follows direct from the finite additivity results shown earlier, i.e.,

$$\lambda^*(W \cap B_n) = \sum_{k=1}^n \lambda^*(W \cap A_k),$$

and then taking the limit as $n \to \infty$. The inequality $a \le b$ is just the countable subadditivity of λ^* . The inequality $c \le a$ follows from $B_n \subseteq E$, so that $\lambda^*(W \cap B_n) \le \lambda^*(W \cap E)$. Thus the claim is proved.

Now we use the measurability of B_n :

$$\lambda^*(W) = \lambda^*(W \cap B_n) + \lambda^*(W \setminus B_n) \ge \lambda^*(W \cap B_n) + \lambda^*(W \setminus E)$$

because $B_n \subseteq E$, so $W \setminus B_n \supseteq W \setminus E$. Therefore, taking the limit and using the above claim we get

$$\lambda^*(W) \ge \lim_{M \to \infty} \lambda^*(W \cap B_n) + \lambda^*(W \setminus E) = \lambda^*(W \cap E) + \lambda^*(W \setminus E),$$

showing that $E \in \mathcal{M}$ as claimed.

Corollary. Every open or closed set is Lebesgue measurable, and so is every Borel set.

Proof. Any open set is a countable union of open intervals, and hence measurable. Any closed set is the complement of an open set, and hence measurable. And the set of Borel sets is the σ -algebra generated by the open subsets of \mathbb{R} . Since \mathcal{M} is a σ -algebra containing the open subsets of \mathbb{R} , it contains all Borel sets.

Countable additivity of the Lebesgue measure

As a bonus from the above proof that ${\mathcal M}$ is a $\sigma\text{-algebra},$ we have

$$\lambda^* \Big(W \cap \bigsqcup_{n \in \mathbb{N}} A_n \Big) = \sum_{n \in \mathbb{N}} \lambda^* (W \cap A_n)$$

whenever $(A_n)_{n \in \mathbb{N}}$ is a sequence of pairwise disjoint Lebesgue measurable sets.

We define *Lebesgue measure* λ to be the restriction of Lebesgue outer measure λ^* to the Lebesgue measurable sets:

$$\lambda(E) = \lambda^*(E), \qquad E \in \mathcal{M}.$$

The countable additivity of λ is an immediate special case of the equality above, with $W = \mathbb{R}$.