
Vitali covers

1 Definition. A Vitali cover of a set E ⊆R is a set V of closed intervals with positive
length so that, for every δ> 0 and every x ∈ E , there is some I ∈V with λ(I ) < δ and
x ∈ I .

2 Lemma (Vitali covering) Given a set E ⊆Rwith λ∗(E) <∞, a Vitali cover V of E ,
and some ε> 0, there are disjoint I1, . . . , In ∈V with λ∗(

E \ (I1 t·· ·t In)
)< ε.

Proof:
Start by picking an open set O ⊇ E with λ(O) <∞, and let W= {I ∈V : I ⊆O}. It

is easy to check that W is a Vitali cover of E .
We now forget about E for a while, and pick pairwise disjoint intervals I1, I2,

. . . in W. We shall do so one by one, starting with I1, and we shall do it greedily,
trying to make each interval as large as possible. Now there may not be any largest
size available, so we settle for getting within a constant factor:

λ(Ik+1) > 1
2 sup

{
λ(J ) : J ∈W and J ∩ I j =; for j = 1, . . . ,k

}
. (1)

In ordinary prose: At each step, pick the next interval disjoint from the other inter-
vals picked this far, so that any other interval we could have picked is less than twice
as long. It is conceivable that this process cannot go on forever. But if so, we have
already covered all of E with a finite, pairwise disjoint set of intervals from W, so
we’re done.

If x ∈ E \ (I1 t·· ·t Ik ), then since I1 t·· ·t Ik is closed, there is some δ-neighbourhood
of x that does not meet I1t·· ·t Ik , and so we can continue with the selection for one more
step.

If the process continues forever, then we find

∞∑
k=1

λ(Ik ) =λ
( ∞⊔

k=1
Ik

)
≤λ(O) <∞,

so the sum converges. Pick n large enough so that

∞∑
k=n+1

λ(Ik ) < ε,

and let Jk be the interval with the same center as Ik , but five times the length.
I claim

E \
n⊔

k=1
Ik ⊆

∞⋃
k=n+1

Jk ,

which in turn implies

λ∗
(
E \

n⊔
k=1

Ik

)
≤

∞∑
k=n+1

λ(Jk ) = 5
∞∑

k=n+1
λ(Ik ) < 5ε,
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and that is enough to finish the proof.
To prove the claim, let x ∈ E \ (I1 t ·· ·t In). Since W is a Vitali cover for E , we

can find some I ∈W with x ∈ I and I ∩ Ik =; for k = 1, . . . , n.
Let m be the smallest natural number with I ∩ Im 6= ;.
Such an m must exist, for otherwise, I would always be one of the intervals we

could have picked, and therefore λ(Ik+1) > 1
2λ(I ) for all k. But this is impossible,

since
∑
λ(Ik ) <∞. There is more – when k = m −1, I is still one of the J ’s, so we

must have λ(Im) > 1
2λ(I ).

I Im

Jm

This drawing illustrates the fact that, when Im ∩ I 6= ; and λ(Im) > 1
2λ(I ), then

Jm ⊇ I . In particular, x ∈ Jm , and the proof is finally complete.

Dini derivatives
These are defined by

D+ f (x) = lim
y↘x

f (y)− f (x)

y −x
, D+ f (x) = lim

y↘x

f (y)− f (x)

y −x
,

D− f (x) = lim
y↗x

f (y)− f (x)

y −x
, D− f (x) = lim

y↗x

f (y)− f (x)

y −x
,

and called the upper right, lower right, upper left, andn lower left Dini derivatives,
respectively.

The Dini derivatives have these simple properties:

−∞≤ D± f ≤ D± f ≤∞,

D±(− f ) =−D± f ,

D±g = D∓ f where g (x) = f (−x).

Note that any of the Dini derivatives can take on either of the values ±∞.

Our interest in the Dini derivatives stems from the fact that they always ex-
ists, and moreover f has a left derivative x if and only if D− f (x) = D− f (x), a right
derivative if and only if D+ f (x) = D+ f (x), and a (two-sided) derivative if and only
if all four Dini derivatives are the same.
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Limits to growth for a monotone function
From now on, a < b are real numbers, and f : (a,b) → R is an increasing func-

tion.

3 Lemma D+ f (x) <∞ and D− f (x) <∞ for λ-a.e. x ∈ (a,b).

Proof: Let E = {
x ∈ (a,b) : D+ f (x) =∞}

. The idea of the proof is that f must have
unbounded growth on this set, if it has positive measure. To get this to work, we
will first assume that | f | ≤ M on (a,b).

Pick any (large) number m. It follows from the definition that the set of inter-
vals [x, y] where

x ∈ E , y ∈ (x,b), and
f (y)− f (x)

y −x
> m

is a Vitali cover for E . Pick any ε> 0, and let [xk , yk ] be pairwise disjoint intervals
of this type for k = 1, . . . , n with λ∗(E \ ([x1, y1]t·· ·t [xn , yn])) < ε. It follows that
(y1 −x1)+·· ·+ (yn −xn) >λ∗(E)−ε, and therefore(

f (y1)− f (x1)
)+·· ·+ (

f (yn)− f (xn)
)> m(λ∗(E)−ε).

But because f is increasing, the intervals ( f (xk ), f (yk )) are pairwise non-overlapping
in [−M , M ], so we must finally have 2M > m(λ∗(E)−ε). Ifλ∗(E) > 0, we can choose
ε<λ∗(E) and m large enough for this to be a contradiction.

If f is unbounded, we apply the above to the restriction of f to slightly smaller
intervals (a +n−1,b −n−1) instead, and use the fact that a countable union of sets
of measure zero still has measure zero.

We have proved that D+ f <∞ a.e. To show the same for D− f , apply the first
result to the function x 7→ − f (−x) on (−b,−a).
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Limits to wiggliness for a monotone function

4 Lemma D+ f (x) = D+ f (x) and D− f (x) = D− f (x) for λ-a.e. x ∈ (a,b).

Proof: As in the previous lemma, the second a.e. equality follows from the first by
applying it to x 7→ − f (−x). So we only prove the first one. Note that D+ f (x) ≥
D+ f (x) always, so we need to show that the set of x where D+ f (x) > D+ f (x) has
measure zero. But for any such x, we can always find two rational numbers r and
s with D+ f (x) > s > r > D+ f (x). Since the number of rational pairs (r, s) with r < s
is countable, we only need to show that the set

E = {
x ∈ (a,b) : D+ f (x) > s > r > D+ f (x)

}
(r, s ∈Q fixed)

has measure zero.
The proof idea is like that for the previous lemma, only done twice: Use one inequality

to show that the average growth rate of f on a set of intervals nearly covering E is less than
r , then use the other to find subintervals, still nearly covering E , where the average growth
rate is greater than s. Then combine the two to get a contradiction, if λ∗(E) > 0.

To get started, then, we first pick some ε> 0, and an open set O ⊃ E withλ(O) <
λ∗(E)+ε. Consider the Vitali cover for E consisting of those intervals [x, y] where

x ∈ E , x < y, y ∈O, and
f (y)− f (x)

y −x
< r.

Then let ε> 0, and use the Vitali covering lemma to pick pairwise disjoint intervals
[xk , yk ] of this type, with with λ∗(E \ ([x1, y1]t·· ·t [xn , yn])) < ε.

It follows that
n∑

k=1

(
f (yk )− f (xk )

)< r
n∑

k=1
(yk −xk ).

Now let U = (x1, yn)t·· ·t (xn , yn), and create yet another Vitali cover, this time of
E ∩U , consisting of those intervals (u, v) where

u ∈ E ∩U , u < v, (u, v) ⊆U , and
f (v)− f (u)

v −u
> s.

Use the Vitali lemma to almost cover E ∩U with pairwise disjoint intervals [u j , v j ]
of this type, with λ∗(E ∩U \ ([u1, v1]t ·· · t [um , vm])) < ε. Using reasoning that
should be familiar by now, we get

n∑
j=1

(
f (v j )− f (u j )

)> s
n∑

j=1
(v j −u j ).

But since f is increasing, the intervals [ f (u j ), f (v j )] are non-overlapping. They
are also each contained in some [ f (xk ), f (yk )], so

n∑
j=1

(
f (v j )− f (u j )

)≤ n∑
k=1

(
f (yk )− f (xk )

)
.
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From the inequalities shown we get

s
m∑

j=1
(v j −u j ) < r

n∑
k=1

(yk −xk ).

To estimate the right hand side, note
n⊔

k=1
[xk , yk ] ⊆O, so

r
n∑

k=1
(yk −xk ) ≤ rλ(O) < r

(
λ∗(E)+ε).

And for the left hand side,

s
m∑

k=1
(v j −u j ) = sλ

( m⊔
j=1

[u j , v j ]
)
> s

(
λ∗(E ∩U )−ε)> s

(
λ∗(E)−2ε

)
,

so now we have
s
(
λ∗(E)−2ε

)< r
(
λ∗(E)+ε).

Recall that r < s. So if λ∗(E) > 0, we can pick ε > 0 small enough that the above
inequality becomes a contradiction.
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Limited number of corners
From now on, a < b are real numbers, and f : (a,b) → R is an arbitrary func-

tion.

5 Definition. Call u ∈ (a,b) a strict local maximum point for f if there is some
δ> 0 so that f (x) < f (u) whenever x ∈ (a,b) is such that |x −u| < δ.

6 Lemma The set of strict local maximum points for f is countable.

Proof: Any two u values satisfying the definition above for some δ> 0 must be at
least a distance δ apart, so there is only room for a finite number of them in (a,b).
But any strict local maximum must satisfy the definition for some δ ∈ {1/n : n ∈N},
so their total number is countable.

7 Definition. A corner point for f is a u ∈ (a,b) so that either D− f (u) > D+ f (u) or
D− f (u) < D+ f (u).

To understand the meaning of this definition, consult the illustration of Dini derivatives
above, which shows a corner of the first kind. Turn the picture upside down to see a corner
of the second kind.

8 Lemma Any real valued function f has only a countable number of corner points.

Proof: We only show that the set of u satisfying the first inequality is countable.
The same result for the second inequality will then follow by replacing f by − f .

If the first inequality holds, there is some q ∈Q with D− f (u) > q > D+ f (u). If
this holds, then x is a strict local maximum for the function g (x) = f (x)−qx, since
then D−g (u) > 0 > D+g (u).

By Lemma 6 only a countable number of such u exist for any q , and since Q is
countable, we are done.
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Almost everywhere differentiability

9 Theorem Any monotone function is differentiable almost everywhere.

Proof: We only need to consider an increasing function f : (a,b) → R. By Lemma
3 and 4, f has finite one-sided derivatives almost everywhere. If f has one-sided
derivatives at some point, and they are different, then f has a corner point there.
But Lemma 8 implies that the corner points have measure zero.

10 Example. Let f : [0,1] → [0,1] be the Cantor function, and C ⊂ [0,1] the (standard) Can-
tor set. Then f is locally constant on the open set (0,1) \C , so f ′ = 0 there. But λ(C ) = 0, so
f ′ = 0 almost everywhere. In particular,∫ 1

0
f ′ dλ= 0, and yet f (1)− f (0) = 1.

This shows that we cannot expect the fundamental theorem of calculus to hold for arbitrary
monotone functions – more is needed. What is happening here is that all of the growth
happens within a set of measure zero.
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An integral (in)equality

11 Proposition Let f : [a,b] →R be an increasing function. Then f ′ is integrable,
and ∫ b

a
f ′(x)d x ≤ f (b)− f (a).

If there is some constant L so that f satisfies

f (y) ≤ f (x)+L(y −x) whenever a ≤ x < y ≤ b,

then equality holds instead:∫ b

a
f ′(x)d x = f (b)− f (a).

By increasing, I mean what some prefer to call non-decreasing.

Proof: For simplicity, extend f by setting f (x) = f (b) when x > b. Define fn : [a,b] →
R by

fn(x) = n · ( f (x +n−1)− f (x)
)
.

Then fn ≥ 0, and fn → f ′ a.e. Therefore Fatou’s lemma gives us∫ b

a
f ′(x)d x ≤ lim

n→∞

∫ b

a
fn(x)d x

= lim
n→∞

n
∫ b

a

(
f (x +n−1)− f (x)

)
d x

= lim
n→∞

n
(∫ b+n−1

a+n−1
f (x)d x −

∫ b

a
f (x)d x

)
= lim

n→∞

(
n

∫ b+n−1

b
f (x)d x −n

∫ a+n−1

a
f (x)d x

)
≤ f (b)− f (a).

If the stated linear growth condition holds, then fn ≤ L, so instead of using Fa-
tou’s lemma, we can use the bounded convergence theorem (BCT), and the first
inequality in the calculation above becomes equality. Also, lim can be replace by
an ordinary limit. The final inequality also becomes an equality, since f is now
continuous.
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