Coin tossing space

Think of a *coin toss* as a random choice from the two element set $\{0,1\}$. Thus the set $\{0,1\}^n$ represents the set of possible outcomes of n coin tosses, and $\Omega := \{0,1\}^{\mathbb{N}}$, consisting of all sequences $(t_n)_{n \in \mathbb{N}}$, represents the set of possible outcomes of tossing a coin infinitely many times.

If the coin is unbiased and the tosses are independent, each of the 2^n outcomes in $\{0,1\}^n$ is equally probable. So $\{0,1\}^n$ is equipped with a probability measure μ_n , which is 2^{-n} times counting measure on $\{0,1\}^n$. (All subsets of $\{0,1\}^n$ are measurable.)

Compatible probability measures

Assume that m < n. Tossing a coin n times, and then ignoring all but the first m of them, is represented by a *projection map* π_{mn} : $\{0,1\}^n \to \{0,1\}^m$:

$$\pi_{mn}(t_1,...,t_n)=(t_1,...,t_m).$$

An event depending on $(t_1, ..., t_m)$ is a set $E \subseteq \{0, 1\}^m$. It has probability $\mu_m(E)$. The "same" event considered as a subset of $\{0, 1\}^n$ is $\pi_{mn}^{-1}(E)$. It does in fact have the same probability, in $\{0, 1\}^n$, as E does, in $\{0, 1\}^m$:

$$\mu_n(\pi_{mn}^{-1}(E)) = \mu_m(E), \qquad E \subseteq \{0, 1\}^m.$$
 (1)

Think of this as a compatibility result: All the different probability measures μ_n give the same result for those events they can measure.

(*Exercise*: Show this. *Hint*: Show that for each $s \in E$ there are 2^{n-m} distinct sequences $t \in \pi_{mn}^{-1}(E)$ with $\pi_{mn}(t) = s$.)

Lots and lots of projections

All these projection maps π_{nm} are compatible in the sense that

$$\pi_{km} \circ \pi_{mn} = \pi_{kn}, \qquad k < m < n.$$

It is helpful to picture the finite coin tossing spaces as an infinite sequence:

$$\{0,1\} \leftarrow \{0,1\}^2 \leftarrow \{0,1\}^3 \leftarrow \cdots \leftarrow \{0,1\}^n \leftarrow \{0,1\}^{n+1} \leftarrow \cdots$$

where the arrows shown are $\pi_{12}, \pi_{23}, \ldots, \pi_{n,n+1}$. At the far right we can put the infinite coin tossing space Ω . (Category theorists call that the *projective limit* of the above diagram, but never mind that.) There is also a projection map $\pi_n \colon \Omega \to \{0,1\}^n$, given by $\pi_n(t_1,t_2,\ldots) = (t_1,\ldots,t_n)$. Clearly, the compatibility of projections extends to this one:

$$\pi_{mn} \circ \pi_n = \pi_m, \qquad m < n. \tag{2}$$

Finitely determined events and their probabilities

Some events in Ω depend only on a finite number of coin tosses. (By this I mean that to determine whether $t \in \Omega$ belongs to some event E, you only need to look at t_1, \ldots, t_n for some n, and that n is independent of t.) If $E \subseteq \{0,1\}^n$ then

$$\pi_n^{-1}(E) = \{ t \in \Omega : (t_1, \dots, t_n) \in E \}$$

is such an event, and I expect you can convince yourself that every such "finitely determined" event has this form. (If not, consider that a *definition*.) Define

$$A_n = {\pi_n^{-1}(E) : E \subseteq {0,1}^n}, n \in \mathbb{N}.$$

Then \mathcal{A}_n is a σ -algebra of subsets of Ω for each $n \in \mathbb{N}$, and moreover $\mathcal{A}_m \subset \mathcal{A}_n$ when m < n (for the equality $\pi_{mn} \circ \pi_n = \pi_m$ implies $\pi_m^{-1}(E) = \pi_n^{-1}(\pi_{nm}^{-1}(E))$ when $E \subseteq \{0,1\}^m$).

Let

$$\mathcal{C} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n.$$

It is not hard to show that, since (A_n) is an increasing sequence of algebras, the union \mathbb{C} is also an algebra of sets (do it!). We can define a function ι on \mathbb{C} by

$$\iota(\pi_n^{-1}(E)) = \mu_n(E), \qquad E \subseteq \{0, 1\}^n.$$

(Exercise: Show that this is well defined. Hint: Use (1) and (2).)

Extending the measure

The function ι represents the probability of *any* finitely determined event. But what about other events? How can we discuss the probability that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n t_k = \frac{1}{2},$$

for example? The set of $t \in \Omega$ satisfying this equality is clearly not finitely determined.

What is needed is to extend ι to a measure. It is defined on the algebra \mathcal{C} , which is *not* a σ -algebra. But \mathcal{C} is a semialgebra, so in order to show that we can extend ι to a measure, we need to show that $\iota(\emptyset) = 0$, that ι is finitely additive, and the appropriate subadditivity condition.

For the first property, $\iota(\emptyset) = \mu_n(\pi_n^{-1}(\emptyset)) = \mu_n(\emptyset) = 0$.

For the second, if $F_1, ..., F_m \in \mathcal{C}$ are pairwise disjoint then there is some n so that $F_k \in \mathcal{A}_n$ for k = 1, ..., m. Write $F_k = \pi_n^{-1}(E_k)$. Then the sets E_k must be pairwise disjoint, and

$$\iota\Bigl(\bigsqcup_{k=1}^m F_k\Bigr) = \mu_n\Bigl(\bigsqcup_{k=1}^m E_k\Bigr) = \sum_{k=1}^m \mu_n(E_k) = \sum_{k=1}^m \iota(F_k).$$

Finally, assume that $F, F_k \in \mathcal{C}$ with $F \subseteq \bigcup_{k \in \mathbb{N}} F_k$. I *claim* that a finite number of the sets F_k will cover F, i.e., $F \subseteq F_1 \cup \cdots \cup F_n$ for some n. If this is true, then

$$\iota(F) \le \iota\left(\bigcup_{k=1}^{n} F_k\right) \le \sum_{k=1}^{n} \iota(F_k) \le \sum_{k=1}^{\infty} \iota(F_k),$$

which is the subadditivity condition we need to show.

To prove the claim, assume instead it is false. That is, we assume that each set A_n , defined by $A_n = F \setminus (F_1 \cup \cdots \cup F_n)$, is nonempty. Note that $A_n \in \mathcal{A}$, and $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$. We now define a sequence (u_k) in $\{0,1\}$ by induction.

First, since $\Omega = \pi_1^{-1}\{(0)\} \cup \pi_1^{-1}\{(1)\}$, we find $A_n = (A_n \cap \pi_1^{-1}\{(0)\}) \cup (A_n \cap \pi_1^{-1}\{(1)\})$, so we can select $u_1 \in \{0,1\}$ so that $A_n \cap \pi_1^{-1}\{(u_1)\} \neq \emptyset$ for infinitely many n, and therefore for all $n \in \mathbb{N}$, since (A_n) is a decreasing sequence of sets.

Next, we get $A_n \cap \pi_1^{-1}\{(u_1)\} = (A_n \cap \pi_2^{-1}\{(u_1, 0)\}) \cup (A_n \cap \pi_1^{-1}\{(u_1, 1)\})$, so we can select $u_2 \in \{0, 1\}$ so that $A_n \cap \pi_1^{-1}\{(u_1, u_2)\} \neq \emptyset$ for infinitely many n, and therefore for all $n \in \mathbb{N}$.

Continuing this procedure, we end up with a sequence $u = (u_k)_{k \in \mathbb{N}}$ with the property that, for each k, $A_n \cap \pi_k^{-1}\{(u_1, ..., u_k)\} \neq \emptyset$ for all $n \in \mathbb{N}$.

I claim that $u \in \cap_{n \in \mathbb{N}} A_n$. To see this, merely note that A_n (for any n) is finititely determined, i.e., there is some $k \in \mathbb{N}$ so that $A_n = \pi_k^{-1} E$ with $E \subseteq \{0,1\}^k$. But since $A_n \cap \pi_k^{-1} \{(u_1, \ldots, u_k)\} \neq \emptyset$, it follows that $(u_1, \ldots, u_k) \in E$, and therefore $u \in A_n$. We have proved that $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$. This contradicts the assumption that $F \subseteq \bigcup_{k \in \mathbb{N}} F_k$, and the claim is therefore proved.

Probability on the coin tossing space

From the general theory, we now have a measure μ on a σ -algebra \mathcal{A} extending \mathcal{C} , and hence all the algebras \mathcal{A}_n . Moreover, by construction $\mu(\pi_n^{-1}(E)) = \mu_n(E)$ for all $E \in \{0,1\}^n$, so our probability measure certainly captures our intuition about the distribution of n coin tosses.

The nth toss is represented by a function $T_n: \Omega \to \{0, 1\}$, defined by $T_n(t) = t_n$. T_n is a *stochastic variable*, i.e., a measurable function on Ω . It is not difficult to show that the tosses T_n are stochastically independent: If $G_1, \ldots, G_n \subseteq \mathbb{R}$ are Borel sets, then

$$\mu\Big(\bigcap_{k=1}^n T_k^{-1}(G_k)\Big) = \prod_{k=1}^n \mu\Big(T_k^{-1}(G_k)\Big).$$

(Note that $T_k^{-1}(G_k)$ is one of four sets: \emptyset , $\{t \in \Omega: t_k = 0\}$, $\{t \in \Omega: t_k = 1\}$, or Ω .)