Coin tossing space
Think of a coin toss as a random choice from the two element set {0, 1}. Thus the
set {0, 1}" represents the set of possible outcomes of n coin tosses, and Q := {0, 1N
consisting of all sequences () ,en, represents the set of possible outcomes of toss-
ing a coin infinitely many times.

If the coin is unbiased and the tosses are independent, each of the 2" outcomes
in {0,1}" is equally probable. So {0, 1}" is equipped with a probability measure (,,,
which is 27" times counting measure on {0, 1}". (All subsets of {0, 1}" are measur-
able.)

Compatible probability measures
Assume that m < n. Tossing a coin n times, and then ignoring all but the first
m of them, is represented by a projection map 7,5, : {0,1}" — {0, 1}'":

ﬂmﬂ(tl)--w t}’l) = (tl)-'-r tm)-

An event depending on (ty,..., t,;) is a set E < {0,1}". It has probability y,,(E).
The “same” event considered as a subset of {0,1}" is 7}, (E). It does in fact have
the same probability, in {0,1}", as E does, in {0, 1}

tn(Tmn(B)) = pm(E),  E<{0, 1. e)

Think of this as a compatibility result: All the different probability measures p,
give the same result for those events they can measure.

(Exercise: Show this. Hint: Show that for each s € E there are 2"~ distinct
sequences t € 7, (E) with 77, (1) = s.)

Lots and lots of projections
All these projection maps 7, are compatible in the sense that

Tkem © Tmn = T kn» k<m<n.
It is helpful to picture the finite coin tossing spaces as an infinite sequence:
0,1} = (0,12 = {0,1}° =+ = {0,1}" = {0, 1} — -

where the arrows shown are w1, 723, ..., Ty, +1. At the far right we can put the
infinite coin tossing space Q. (Category theorists call that the projective limit of
the above diagram, but never mind that.) There is also a projection map 7, : Q —
{0,1}", given by 7, (#1, t2,...) = (f1,..., ty). Clearly, the compatibility of projections
extends to this one:

Tmn Oy =T m, m<n. (2)



Finitely determined events and their probabilities
Some events in Q2 depend only on a finite number of coin tosses. (By this I
mean that to determine whether ¢ € Q belongs to some event E, you only need to
look at #y,..., t; for some n, and that n is independent of ¢.) If E < {0, 1}" then

M (B)=1{teQ: (f1,...,tn) € E}

is such an event, and I expect you can convince yourself that every such “finitely
determined” event has this form. (If not, consider that a definition.) Define

Ap=1{m,"(E): ES{0,1}"}, neN.

Then A, is a o-algebra of subsets of Q for each n € N, and moreover A,, c A,
when m < n (for the equality 7, o 7, = 7, implies 7,,} (E) = 7,,} (7, (E)) when
E<{0,1}').
Let
C= U An.
neN

It is not hard to show that, since (A}) is an increasing sequence of algebras, the
union C is also an algebra of sets (do it!]). We can define a function ¢ on C by

U, (B) = un(B),  Eci{o,1}™.

(Exercise: Show that this is well defined. Hint: Use (1) and (2).)

Extending the measure
The function ¢ represents the probability of any finitely determined event. But what
about other events? How can we discuss the probability that

lim l i Iy = l,
nmeongs 2
for example? The set of 1 € Q satisfying this equality is clearly not finitely determined.
What is needed is to extend ¢ to a measure. It is defined on the algebra C, which
is not a o-algebra. But C is a semialgebra, so in order to show that we can extend
¢ to a measure, we need to show that (@) = 0, that ¢ is finitely additive, and the
appropriate subadditivity condition.
For the first property, 1(®) = i, (1, (8)) = pn(®) = 0.
For the second, if Fy,..., F, € C are pairwise disjoint then there is some 7 so
that Fy. € A, for k= 1,..., m. Write F;, = 7, (Ex). Then the sets E; must be pairwise
disjoint, and

m m m m
(L Fe) = a( L) Be) = Y- pntBR) = Y- u(F.
k=1 k=1 k=1 k=1



Finally, assume that F, F € C with F € Ugen Fk- I claim that a finite number of
the sets Fj will cover F, i.e., F € F, U---U F, for some n. If this is true, then

n n (e ¢]
W(F) SL(U Fk) <Y uFY < Y u(F),
k=1 k=1 k=1

which is the subadditivity condition we need to show.

To prove the claim, assume instead it is false. That is, we assume that each
set A,, defined by A, = F\ (F) U---UF,), is nonempty. Note that A, € A, and
A; 2 A2 A3 2---. We now define a sequence (ug) in {0, 1} by induction.

First, since Q = 771 {(0)}uz; H{(1)}, we find Ay, = (AN 1O} U (AN HDY),
so we can select u; € {0,1} so that A, n nl’l{(ul)} # ¢ for infinitely many n, and
therefore for all n € N, since (A,,) is a decreasing sequence of sets.

Next, we get A, Ny {(u1)} = (A N7y {(ur,00}) U (An Ny H(ua, 1D}), so we can
select uy € {0,1} so that A, N nl‘l{(ul, up)} # @ for infinitely many n, and therefore
forall neN.

Continuing this procedure, we end up with a sequence u = (ug) ey With the
property that, for each k, A, N n;l{(ul, wou)t#ZoforallneN.

I claim that u € Nn,en Ay, To see this, merely note that A, (for any n) is finititely
determined, i.e., there is some k € N so that A,, = n;lE with E < {0, 1}*. But since
Ap N My, up)} # @, it follows that (uy, ..., ux) € E, and therefore 1 € A,,. We
have proved that N,enA, # @. This contradicts the assumption that F S Ugen Fy,
and the claim is therefore proved.

Probability on the coin tossing space

From the general theory, we now have a measure p on a o-algebra A extending
€, and hence all the algebras A,,. Moreover, by construction u(r,,' (E)) = p, (E) for
all E € {0,1}", so our probability measure certainly captures our intuition about
the distribution of n coin tosses.

The nth toss is represented by a function T},: Q — {0, 1}, defined by T},(f) = .
Ty, is a stochastic variable, i.e., a measurable function on Q. It is not difficult to
show that the tosses T, are stochastically independent: If G,...,G, <R are Borel
sets, then

n n
i N TG = [T (1" )

(Note that Tk’l(Gk) is one of four sets: @, {t € Q: 1, =0}, {t€ Q: 1, =1}, or Q.)



