
Coin tossing space
Think of a coin toss as a random choice from the two element set {0,1}. Thus the
set {0,1}n represents the set of possible outcomes of n coin tosses, andΩ := {0,1}N,
consisting of all sequences (tn)n∈N, represents the set of possible outcomes of toss-
ing a coin infinitely many times.

If the coin is unbiased and the tosses are independent, each of the 2n outcomes
in {0,1}n is equally probable. So {0,1}n is equipped with a probability measure µn ,
which is 2−n times counting measure on {0,1}n . (All subsets of {0,1}n are measur-
able.)

Compatible probability measures
Assume that m < n. Tossing a coin n times, and then ignoring all but the first

m of them, is represented by a projection map πmn : {0,1}n → {0,1}m :

πmn(t1, . . . , tn) = (t1, . . . , tm).

An event depending on (t1, . . . , tm) is a set E ⊆ {0,1}m . It has probability µm(E).
The “same” event considered as a subset of {0,1}n is π−1

mn(E). It does in fact have
the same probability, in {0,1}n , as E does, in {0,1}m :

µn
(
π−1

mn(E)
)=µm(E), E ⊆ {0,1}m . (1)

Think of this as a compatibility result: All the different probability measures µn

give the same result for those events they can measure.
(Exercise: Show this. Hint: Show that for each s ∈ E there are 2n−m distinct

sequences t ∈π−1
mn(E) with πmn(t ) = s.)

Lots and lots of projections
All these projection maps πnm are compatible in the sense that

πkm ◦πmn =πkn , k < m < n.

It is helpful to picture the finite coin tossing spaces as an infinite sequence:

{0,1} ← {0,1}2 ← {0,1}3 ←···← {0,1}n ← {0,1}n+1 ←···

where the arrows shown are π12, π23, . . . , πn,n+1. At the far right we can put the
infinite coin tossing space Ω. (Category theorists call that the projective limit of
the above diagram, but never mind that.) There is also a projection map πn : Ω→
{0,1}n , given by πn(t1, t2, . . .) = (t1, . . . , tn). Clearly, the compatibility of projections
extends to this one:

πmn ◦πn =πm , m < n. (2)
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Finitely determined events and their probabilities
Some events in Ω depend only on a finite number of coin tosses. (By this I

mean that to determine whether t ∈Ω belongs to some event E , you only need to
look at t1, . . . , tn for some n, and that n is independent of t .) If E ⊆ {0,1}n then

π−1
n (E) = {t ∈Ω : (t1, . . . , tn) ∈ E }

is such an event, and I expect you can convince yourself that every such “finitely
determined” event has this form. (If not, consider that a definition.) Define

An = {π−1
n (E) : E ⊆ {0,1}n}, n ∈N.

Then An is a σ-algebra of subsets of Ω for each n ∈ N, and moreover Am ⊂ An

when m < n (for the equality πmn ◦πn = πm implies π−1
m (E) = π−1

n (π−1
nm(E)) when

E ⊆ {0,1}m).
Let

C= ⋃
n∈N

An .

It is not hard to show that, since (An) is an increasing sequence of algebras, the
union C is also an algebra of sets (do it!). We can define a function ι on C by

ι
(
π−1

n (E)
)=µn(E), E ⊆ {0,1}n .

(Exercise: Show that this is well defined. Hint: Use (1) and (2).)

Extending the measure
The function ι represents the probability of any finitely determined event. But what

about other events? How can we discuss the probability that

lim
n→∞

1

n

n∑
k=1

tk = 1

2
,

for example? The set of t ∈Ω satisfying this equality is clearly not finitely determined.

What is needed is to extend ι to a measure. It is defined on the algebra C, which
is not a σ-algebra. But C is a semialgebra, so in order to show that we can extend
ι to a measure, we need to show that ι(;) = 0, that ι is finitely additive, and the
appropriate subadditivity condition.

For the first property, ι(;) =µn(π−1
n (;)) =µn(;) = 0.

For the second, if F1, . . . ,Fm ∈ C are pairwise disjoint then there is some n so
that Fk ∈An for k = 1, . . . ,m. Write Fk =π−1

n (Ek ). Then the sets Ek must be pairwise
disjoint, and

ι
( m⊔

k=1
Fk

)
=µn

( m⊔
k=1

Ek

)
=

m∑
k=1

µn(Ek ) =
m∑

k=1
ι(Fk ).
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Finally, assume that F,Fk ∈ C with F ⊆⋃
k∈NFk . I claim that a finite number of

the sets Fk will cover F , i.e., F ⊆ F1 ∪·· ·∪Fn for some n. If this is true, then

ι(F ) ≤ ι
( n⋃

k=1
Fk

)
≤

n∑
k=1

ι(Fk ) ≤
∞∑

k=1
ι(Fk ),

which is the subadditivity condition we need to show.
To prove the claim, assume instead it is false. That is, we assume that each

set An , defined by An = F \ (F1 ∪ ·· · ∪ Fn), is nonempty. Note that An ∈ A, and
A1 ⊇ A2 ⊇ A3 ⊇ ·· · . We now define a sequence (uk ) in {0,1} by induction.

First, sinceΩ=π−1
1 {(0)}∪π−1

1 {(1)}, we find An = (
An∩π−1

1 {(0)}
)∪(

An∩π−1
1 {(1)}

)
,

so we can select u1 ∈ {0,1} so that An ∩π−1
1 {(u1)} 6= ; for infinitely many n, and

therefore for all n ∈N, since (An) is a decreasing sequence of sets.
Next, we get An ∩π−1

1 {(u1)} = (
An ∩π−1

2 {(u1,0)}
)∪(

An ∩π−1
1 {(u1,1)}

)
, so we can

select u2 ∈ {0,1} so that An ∩π−1
1 {(u1,u2)} 6= ; for infinitely many n, and therefore

for all n ∈N.
Continuing this procedure, we end up with a sequence u = (uk )k∈N with the

property that, for each k, An ∩π−1
k {(u1, . . . ,uk )} 6= ; for all n ∈N.

I claim that u ∈∩n∈NAn . To see this, merely note that An (for any n) is finititely
determined, i.e., there is some k ∈N so that An = π−1

k E with E ⊆ {0,1}k . But since
An ∩π−1

k {(u1, . . . ,uk )} 6= ;, it follows that (u1, . . . ,uk ) ∈ E , and therefore u ∈ An . We
have proved that ∩n∈NAn 6= ;. This contradicts the assumption that F ⊆ ∪k∈NFk ,
and the claim is therefore proved.

Probability on the coin tossing space
From the general theory, we now have a measure µ on aσ-algebra A extending

C, and hence all the algebras An . Moreover, by construction µ
(
π−1

n (E)
)=µn(E) for

all E ∈ {0,1}n , so our probability measure certainly captures our intuition about
the distribution of n coin tosses.

The nth toss is represented by a function Tn : Ω→ {0,1}, defined by Tn(t ) = tn .
Tn is a stochastic variable, i.e., a measurable function on Ω. It is not difficult to
show that the tosses Tn are stochastically independent: If G1, . . . ,Gn ⊆ R are Borel
sets, then

µ
( n⋂

k=1
T −1

k (Gk )
)
=

n∏
k=1

µ
(
T −1

k (Gk )
)
.

(Note that T −1
k (Gk ) is one of four sets: ;, {t ∈Ω : tk = 0}, {t ∈Ω : tk = 1}, orΩ.)
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