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General Introduction

In this treatise I aim to give a comprehensive description of modern abstract measure theory, with some indication
of its principal applications. The first two volumes are set at an introductory level; they are intended for students with
a solid grounding in the concepts of real analysis, but possibly with rather limited detailed knowledge. The emphasis
throughout is on the mathematical ideas involved, which in this subject are mostly to be found in the details of the
proofs.

My intention is that the book should be usable both as a first introduction to the subject and as a reference work.
For the sake of the first aim, I try to limit the ideas of the early volumes to those which are really essential to the
development of the basic theorems. For the sake of the second aim, I try to express these ideas in their full natural
generality, and in particular I take care to avoid suggesting any unnecessary restrictions in their applicability. Of course
these principles are to to some extent contradictory. Nevertheless, I find that most of the time they are very nearly
reconcilable, provided that I indulge in a certain degree of repetition. For instance, right at the beginning, the puzzle
arises: should one develop Lebesgue measure first on the real line, and then in spaces of higher dimension, or should
one go straight to the multidimensional case? I believe that there is no single correct answer to this question. Most
students will find the one-dimensional case easier, and it therefore seems more appropriate for a first introduction, since
even in that case the technical problems can be daunting. But certainly every student of measure theory must at a
fairly early stage come to terms with Lebesgue area and volume as well as length; and with the correct formulations,
the multidimensional case differs from the one-dimensional case only in a definition and a (substantial) lemma. So
what I have done is to write them both out (in §§114-115), so that you can pass over the higher dimensions at first
reading (by omitting §115) and at the same time have a complete and uncluttered argument for them (if you omit
section §114). In the same spirit, I have been uninhibited, when setting out exercises, by the fact that many of the
results I invite students to look for will appear in later chapters; I believe that throughout mathematics one has a
better chance of understanding a theorem if one has previously attempted something similar alone.

The plan of the work is as follows:

Volume 1: The Irreducible Minimum
Volume 2: Broad Foundations

Volume 3: Measure Algebras

Volume 4: Topological Measure Spaces
Volume 5: Set-theoretic Measure Theory.

Volume 1 is intended for those with no prior knowledge of measure theory, but competent in the elementary techniques
of real analysis. I hope that it will be found useful by undergraduates meeting Lebesgue measure for the first time.
Volume 2 aims to lay out some of the fundamental results of pure measure theory (the Radon-Nikodym theorem,
Fubini’s theorem), but also gives short introductions to some of the most important applications of measure theory
(probability theory, Fourier analysis). While I should like to believe that most of it is written at a level accessible
to anyone who has mastered the contents of Volume 1, I should not myself have the courage to try to cover it in an
undergraduate course, though I would certainly attempt to include some parts of it. Volumes 3 and 4 are set at a
rather higher level, suitable to postgraduate courses; while Volume 5 will assume a wide-ranging competence over large
parts of analysis and set theory.

There is a disclaimer which I ought to make in a place where you might see it in time to avoid paying for this book.
I make no attempt to describe the history of the subject. This is not because I think the history uninteresting or
unimportant; rather, it is because I have no confidence of saying anything which would not be seriously misleading.
Indeed I have very little confidence in anything I have ever read concerning the history of ideas. So while I am happy to
honour the names of Lebesgue and Kolmogorov and Maharam in more or less appropriate places, and I try to include
in the bibliographies the works which I have myself consulted, I leave any consideration of the details to those bolder
and better qualified than myself.



Introduction to Volume 1 7

For the time being, at least, printing will be in short runs. I hope that readers will be energetic in commenting on
errors and omissions, since it should be possible to correct these relatively promptly. An inevitable consequence of this
is that paragraph references may go out of date rather quickly. I shall be most flattered if anyone chooses to rely on
this book as a source for basic material; and I am willing to attempt to maintain a concordance to such references,
indicating where migratory results have come to rest for the moment, if authors will supply me with copies of papers
which use them. In the concordance to the present volume you will find notes on the items which have been referred
to in other published volumes of this work.

I mention some minor points concerning the layout of the material. Most sections conclude with lists of ‘basic
exercises’ and ‘further exercises’, which I hope will be generally instructive and occasionally entertaining. How many
of these you should attempt must be for you and your teacher, if any, to decide, as no two students will have quite
the same needs. I mark with a > those which seem to me to be particularly important. But while you may not need
to write out solutions to all the ‘basic exercises’, if you are in any doubt as to your capacity to do so you should take
this as a warning to slow down a bit. The ‘further exercises’ are unbounded in difficulty, and are unified only by a
presumption that each has at least one solution based on ideas already introduced.

The impulse to write this treatise is in large part a desire to present a unified account of the subject. Cross-references
are correspondingly abundant and wide-ranging. In order to be able to refer freely across the whole text, I have chosen
a reference system which gives the same code name to a paragraph wherever it is being called from. Thus 132E is the
fifth paragraph in the second section of Chapter 13, which is itself the third chapter of this volume, and is referred to
by that name throughout. Let me emphasize that cross-references are supposed to help the reader, not distract him.
Do not take the interpolation ‘(121A)’ as an instruction, or even a recommendation, to turn back to §121. If you are
happy with an argument as it stands, independently of the reference, then carry on. If, however, I seem to have made
rather a large jump, or the notation has suddenly become opaque, local cross-references may help you to fill in the
gaps.

Each volume will have an appendix of ‘useful facts’, in which I set out material which is called on somewhere in that
volume, and which I do not feel I can take for granted. Typically the arrangement of material in these appendices is
directed very narrowly at the particular applications I have in mind, and is unlikely to be a satisfactory substitute for
conventional treatments of the topics touched on. Moreover, the ideas may well be needed only on rare and isolated
occasions. So as a rule I recommend you to ignore the appendices until you have some direct reason to suppose that a
fragment may be useful to you.

During the extended gestation of this project I have been helped by many people, and I hope that my friends and
colleagues will be pleased when they recognise their ideas scattered through the pages below. But I am especially
grateful to those who have taken the trouble to read through earlier drafts and comment on obscurities and errors.
In particular, I should like to single out F.Nazarov and P.Wallace Thompson, whose thorough reading of the present
volume corrected many faults.

Introduction to Volume 1

In this introductory volume I set out, at a level which I hope will be suitable for students with no prior knowledge
of the Lebesgue (or even Riemann) integral and with only a basic (but thorough) preparation in the techniques of
e-0 analysis, the theory of measure and integration up to the convergence theorems (§123). I add a third chapter
(Chapter 13) of miscellaneous additional results, mostly chosen as being relatively elementary material necessary for
topics treated in Volume 2 which does not have a natural place there.

The title of this volume is a little more emphatic than I should care to try to justify au pied de la lettre. 1 would
certainly characterise the construction of Lebesgue measure on R (§114), the definition of the integral on an abstract
measure space (§122) and the convergence theorems (§123) as indispensable. But a teacher who wishes to press on
to further topics will find that much of Chapter 13 can be set aside for a while. I say ‘teacher’ rather than ‘student’
here, because if you are studying on your own I think you should aim to go slower than the text requires rather than
faster; in my view, these ideas are genuinely difficult, and I think you should take the time to get as much practice at
relatively elementary levels as you can.

Perhaps this is a suitable moment at which to set down some general thoughts on the teaching of measure theory. I
have been teaching analysis for over thirty years now, and one of the few constants over that period has been the feeling,
almost universal among teachers of analysis, that we are not serving most of our students well. We have all encountered
students who are not stupid — who are indeed quite good at mathematics — but who seem to have a disproportionate
difficulty with rigorous analysis. They are so exhausted and demoralised by the technical problems that they cannot
make sense or use even of the knowledge they achieve. The natural reaction to this is to try to make courses shorter and
easier. But I think that this makes it even more likely that at the end of the semester your students will be stranded
in thorn-bushes half way up the mountain. Specifically, with Lebesgue measure, you are in danger of spending twenty
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hours teaching them how to integrate the characteristic function of the rationals. This is not what the subject is for.
Lebesgue’s own presentations of the subject (LEBESGUE 1904, LEBESGUE 1918) emphasize the convergence theorems
and the Fundamental Theorem of Calculus. I have put the former in Volume 1 and the latter in Volume 2, but it does
seem to me that unless your students themselves want to know when one can expect to be able to interchange a limit
and an integral, or which functions are indefinite integrals, or what the completions of C([0,1]) under the norms || ||1,
ll2 look like, then it is going to be very difficult for them to make anything of this material; and if you really cannot
reach the point of explaining at least a couple of these matters in terms which they can appreciate, then it may not be
worth starting. I would myself choose rather to omit a good many proofs than to come to the theorems for which the
subject was created so late in the course that two thirds of my class have already given up before they are covered.

Of course I and others have followed that road too, with no better results (though usually with happier students) than
we obtain by dotting every ¢ and crossing every t in the proofs. Nearly every time I am consulted by a non-specialist
who wants to be told a theorem which will solve his problem, I am reminded that pure mathematics in general, and
analysis in particular, does not lie in the theorems but in the proofs. In so far as I have been successful in answering
such questions, it has usually been by making a trifling adjustment to a standard argument to produce a non-standard
theorem. The ideas are in the details. You have not understood Carathéodory’s construction (§113) until you can, at
the very least, reliably reproduce the argument which shows that it works. In the end, there is no alternative to going
over every step of the ground, and while I have occasionally been ruthless in cutting out topics which seem to me to be
marginal, I have tried to make sure — at the expense, frequently, of pedantry — that every necessary idea is signalled.

Faced, therefore, with any particular class, I believe that a teacher must compromise between scope and completeness.
Exactly which compromises are most appropriate will depend on factors which it would be a waste of time for me to
guess at. This volume is supposed to be a possible text on which to base a course; but I hope that no lecturer will
set her class to read it at so many pages a week. My primary aim is to provide a concise and coherent basis on which
to erect the structure of the later volumes. This involves me in pursuing, at more than one point, approaches which
take slightly more difficult paths for the sake of developing a more refined technique. (Perhaps the most salient of
these is my insistence that an integrable function need not be defined everywhere on the underlying measure space;
see §§121-122.) It is the responsibility of the individual teacher to decide for herself whether such refinements are
appropriate to the needs of her students, and, if not, to show them what translations are needed.

The above paragraphs are directed at teachers who are, supposedly, competent in the subject — certainly past the
level treated in this volume — and who have access to some of the many excellent books already available, so that if
they take the trouble to think out their aims, they should be able to choose which elements of my presentation are
suitable. But I must also consider the position of a student who is setting out to learn this material on his own. I trust
that you have understood from what I have already written that you should not be afraid to look ahead. You could,
indeed, do worse than go to Volume 2, and take one of the wonderful theorems there — the Fundamental Theorem of
Calculus (§222), for instance, or, if you are very ambitious, the strong law of large numbers (§273) — and use the index
and the cross-references to try to extract a proof from first principles. If you are successful you will have every right
to congratulate yourself. In the periods in which success seems elusive, however, you should be working systematically
through the ‘basic exercises’ in the sections which seem to be relevant; and if all else fails, start again at the beginning.
Mathematics is a difficult subject, that is why it is worth doing, and almost every section here contains some essential
idea which you could not expect to find alone.

Note on second and third printings

For the second printing of this volume I made a few corrections, with a handful of new exercises. For the third
printing I have done the same; in addition, I have given an elementary extra result and formal definitions of some
almost standard terms. I have also allowed myself, in a couple of cases, to rearrange a set of exercises into what now
seems to me a more natural order.

Note on second edition, 2011

For the new (‘Lulu’) edition of this volume, I have eliminated a number of further errors; no doubt many remain.
There are some further exercises, and a little more material on upper and lower integrals (§133).
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Chapter 11
Measure spaces

In this chapter I set out the fundamental concept of ‘measure space’, that is, a set in which some (not, as a rule,
all) subsets may be assigned a ‘measure’, which you may wish to interpret as area, or mass, or volume, or thermal
capacity, or indeed almost anything which you would expect to be additive — I mean, that the measure of the union
of two disjoint sets should be the sum of their measures. The actual definition (in 112A) is not obvious, and depends
essentially on certain technical features which make a preparatory section (§111) advisable. Furthermore, even with
the definition well in hand, the original and most important examples of measures, Lebesgue measure on Euclidean
space, remain elusive. I therefore devote a section (§113) to a method of constructing measures, before turning to the
details of the arguments needed for Lebesgue measure in §§114-115. Thus the structure of the chapter is three sections
of general theory followed by two (which are closely similar) on particular examples. I should say that the general
theory is essentially easier; but it does rely on facility with certain manipulations of families of sets which may be new
to you.

At some point I ought to comment on my arrangement of the material, and it may be helpful if T do so before you
start work on this chapter. One of the many fundamental questions which any author on the subject must decide, is
whether to begin with ‘general’ measure theory or with ‘Lebesgue’ measure and integration. The point is that Lebesgue
measure is rather more than just the most important example of a measure space. It is so close to the heart of the
subject that the great majority of the ideas of the elementary theory can be fully realised in theorems about Lebesgue
measure. Looking ahead to Volume 2, I find that, with the exception of Chapter 21 — which is specifically devoted
to extending your ideas of what measure spaces can be — only Chapter 27 and the second half of Chapter 25 really
need the general theory to make sense, while Chapters 22, 26 and 28 are specifically about Lebesgue measure. Volume
3 is another matter, but even there more than half the mathematical content can be expressed in terms of Lebesgue
measure. If you take the view, as I certainly do when it suits my argument, that the business of pure mathematics is to
express and extend the logical capacity of the human mind, and that the actual theorems we work through are merely
vehicles for the ideas, then you can correctly point out that all the really important things in the present volume can be
done without going to the trouble of formulating a general theory of abstract measure spaces; and that by studying the
relatively concrete example of Lebesgue measure on r-dimensional Euclidean space you can avoid a variety of irrelevant
distractions.

If you are quite sure, as a teacher, that none of your pupils will wish to go beyond the elementary theory, there
is something to be said for this view. I believe, however, that it becomes untenable if you wish to prepare any of
your students for more advanced ideas. The difficulty is that, with the best will in the world, anyone who has worked
through the full theory of Lebesgue measure, and then comes to the theory of abstract measure spaces, is likely to go
through it too fast, and at the end find himself uncertain about just which ninety per cent of the facts he knows are
generally applicable. I believe it is safer to keep the special properties of Lebesgue measure clearly labelled as such
from the beginning.

It is of course the besetting sin of mathematics teachers at this level, to teach a class of twenty in a manner appropriate
to perhaps two of them. But in the present case my own judgement is that very few students who are ready for the
course at all will have any difficulty with the extra level of abstraction involved in ‘Let (X, X, 1) be a measure space,
...7. I do assume knowledge of elementary linear algebra, and the grammar, at least, of arbitrary measure spaces is
no worse than the grammar of arbitrary linear spaces. Moreover, the Lebesgue theory already involves statements of
the form ‘if F is a Lebesgue measurable set, ...’ and in my experience students who can cope with quantification over
subsets of the reals are not deterred by quantification over sets of sets (which anyway is necessary for any elementary
description of the o-algebra of Borel sets). So I believe that here, at least, the extra generality of the ‘professional’
approach is not an obstacle to the amateur.

I have written all this here, rather than later in the chapter, because I do wish to give you the choice. And if your
choice is to learn the Lebesgue theory first, and leave the general theory to later, this is how to do it. You should read

paragraphs 114A-114C

114D, with 113A-113B and 112Ba, 112Bc

114E, with 113C-113D, 111A, 112A, 112Bb

114F

114G, with 111G and 111C-111F,
and then continue with Chapter 12. At some point, of course, you should look at the exercises for §§112-113; but, as
in Chapters 12-13, you will do so by translating ‘Let (X, 3, i) be a measure space’ into ‘Let p be Lebesgue measure
on R, and Y the o-algebra of Lebesgue measurable sets’. Similarly, when you look at 111X-111Y, you will take ¥ to
be either the o-algebra of Lebesgue measurable sets or the o-algebra of Borel subsets of R.
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111 o-algebras

In the introduction to this chapter I remarked that a measure space is ‘a set in which some (not, as a rule, all)
subsets may be assigned a measure’. All ordinary concepts of ‘length’ or ‘area’ or ‘volume’ apply only to reasonably
regular sets. Modern measure theory is remarkably powerful in that an extraordinary variety of sets are regular enough
to be measured; but we must still expect some limitation, and when studying any measure a proper understanding of
the class of sets which it measures will be central to our work. The basic definition here is that of ‘c-algebra of sets’; all
measures in the standard theory are defined on such collections. I therefore begin with a statement of the definition,
and a brief discussion of the properties, of these classes.

111 A Definition Let X be a set. A o-algebra of subsets of X (sometimes called a o-field) is a family ¥ of
subsets of X such that
(i) Pex;
(ii) for every E € %, its complement X \ E in X belongs to %;
(iii) for every sequence (E,)nen in 3, its union (J,,cyy £ belongs to .
111B Remarks (a) Almost any new subject in pure mathematics is likely to begin with definitions. At this point
there is no substitute for rote learning. These definitions encapsulate years, sometimes centuries, of thought by many
people; you cannot expect that they will always correspond to familiar ideas.

(b) Nevertheless, you should always seek immediately to find ways of making new definitions more concrete by finding
examples within your previous mathematical experience. In the case of ‘o-algebra’, the really important examples, to
be described below, are going to be essentially new — supposing, that is, that you need to read this chapter at all.
However, two examples should be immediately accessible to you, and you should bear these in mind henceforth:

(i) for any X, ¥ = {0, X} is a o-algebra of subsets of X;

(ii) for any X, PX, the set of all subsets of X, is a o-algebra of subsets of X.
These are of course the smallest and largest o-algebras of subsets of X, and while we shall spend little time with them,
both are in fact significant.

*(c) The phrase measurable space is often used to mean a pair (X, ), where X is a set and X is a o-algebra of
subsets of X; but I myself prefer to avoid this terminology, unless greatly pressed for time, as in fact many of the most
interesting examples of such objects have no useful measures associated with them.

111C Infinite unions and intersections If you have not seen infinite unions before, it is worth pausing over the
formula | J,, . Ern. This is the set of points belonging to one or more of the sets E,; we may write it as

UE={z:3neN zecE,}
neN
=FUFELUFEU....

(I write N for the set of natural numbers {0,1,2,3,...}.) In the same way,

nEn:{x:ernVneN}
neN
:E(]mElﬂEQQ....

It is characteristic of the elementary theory of measure spaces that it demands greater facility with the set-operations
U, N, \ (‘set difference’> E\F = {z : 2 € E,z ¢ F}), A (‘symmetric difference’ EAF = (E\ F)U(F\E) =
(EUF)\(ENF)) than you have probably needed before, with the added complication of infinite unions and intersections.
I strongly advise spending at least a little time with Exercise 111Xa at some point.

111D Elementary properties of o-algebras If X is a o-algebra of subsets of X, then it has the following
properties.

(a) FUF eXforal E, FeX. PForif E,FeX, set Eg=FE, E, =F for n > 1; then (E,),en is a sequence in
Yand FUF =, cnEn €2. Q

(b) ENF e X forall E, F € X. P By (ii) of the definition in 111A, X\ E and X \ F' € ¥; by (a) of this paragraph,
(X\E)U(X\F)eX; by 111A(ii) again, X \ (X \ E)U (X \ F)) € &; but this is just ENF. Q
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(c) E\FeSforall E, FeX. PE\F=EN(X\F). Q
(d) Now suppose that (F,)nen is a sequence in X, and consider

nEn:{x:ernVneN}
neN
:EomElﬂEQQ...

=X\ [J X\ B

neN

this also belongs to .

111E More on infinite unions and intersections (a) So far I have considered infinite unions and intersections
only in the context of sequences (E,),en indexed by the set N of natural numbers itself. Many others will arise more
or less naturally in the pages ahead. Consider, for instance, sets of the form

Un24En:E4UE5UE6U...,
UnEZEn:{x:H nEZ,xEEn}:...UE_2UE_1UE0UE1UEQU...,

Ujeg Ba=1{z:3 ¢€Q, z € E;},

where I write Z for the set of all integers and Q for the set of rational numbers. If every E,,, E, belongs to a o-algebra
3], so will these unions. On the other hand,

UtG[U,l] Et = {.’L’ : El te [O, 1], S Et}

may fail to belong to a o-algebra containing every E;, and it is of the greatest importance to develop an intuition for
those index sets, like N, Z and Q, which are ‘safe’ in this context, and those which are not.

(b) I rather hope that you have seen enough of Cantor’s theory of infinite sets to make the following remarks a
restatement of familiar material; but if not, I hope that they can stand as a first, and very partial, introduction to these
ideas. The point about the first three examples is that we can re-index the families of sets involved as simple sequences
of sets. For the first one, this is elementary; write E], = E, 4 for n € N, and see that {J,~, En = U,en Er, € 2.
For the other two, we need to know something about the sets Z and Q. We can find sequences (kn)nen of integers,
and (gn)nen of rational numbers, such that every integer appears (at least once) as a k,, and every rational number
appears (at least once) as a ¢,; that is, the functions n — k, : N — Z and n — ¢, : N — Q are surjective. I There
are many ways of doing this; one is to set

n
k, = 5 for even n,

= 7717—&-1 for odd n,

n—m?3—m?

Gn = if m € Nand m® <n < (m+1)>%.

m+1

(You should check carefully that these formulae do indeed do what I claim they do.) Q Now, to deal with (., En,
we can set
E =FE;, €%
for n € N, so that
Unez En = Unen Bk, = Upen £ € %,
while for the other case we have

qu(@ Eq = UTLEN EQn ex.

Note that the first case | J,,», En can be thought of as an application of the same principle; the map n+— n+4is a
surjection from N onto {4,5,6,7,...}.
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111F Countable sets (a) The common feature of the sets {n : n > 4}, Z and Q which makes this procedure
possible is that they are ‘countable’. For our purposes here, the most natural definition of countability is the following:
a set K is countable if either it is empty or there is a surjection from N onto K. In this case, if ¥ is a o-algebra of
sets and (Ey)rer is a family in ¥ indexed by K, then J,cx Fr € X. P For if n +— k, : N — K is a surjection, then
E, = Ey, € ¥ for every n € N, and U, cx Ex = U, ey Er, € X. This leaves out the case K = ; but in this case the
natural interpretation of (J, ¢ Fk is

neN

{x:3 ke, zecE}

which is itself (), and therefore belongs to X by clause (i) of 111A. Q (In a sense this treatment of (J is a conventional
matter; but there are various contexts in which we shall wish to discuss J,,c c £ without checking whether K actually
has any members, and we need to be clear about what we will do in such cases.)

(b) There is an extensive, and enormously important, theory concerning countable sets. The only fragments which
I think we must have explicit at this point are the following. (In §1A1 I add a few words to link this presentation to
conventional approaches.)

(i) If K is countable and L C K, then L is countable. P If L = (), this is immediate. Otherwise, take any [* € L,
and a surjection n — ky, : N — K (of course K also is not empty, as I* € K); set l,, = k,, if k,, € L, I* otherwise; then
nw+l, : N — L is a surjection. Q

(ii) The Cartesian product N x N = {(m,n) : m, n € N} is countable. B For each n € N, let k,,, l,, € N be such
that n+1 = 2%~ (2l,, 4+ 1); that is, k,, is the power of 2 in the prime factorisation of n+ 1, and 2I,, + 1 is the (necessarily
odd) number (n + 1)/2%». Now n + (ky,l,) is a surjection from N to N x N. Q It will be important to us later to
know that n +— (kn,l,) is actually a bijection, as is readily checked.

(iii) It follows that if K and L are countable sets, so is K x L. I If either K or L is empty, so is K x L, so in this
case K x L is certainly countable. Otherwise, let ¢ : N — K and ¢ : N — L be surjections; then we have a surjection
0 :Nx N — K x L defined by setting §(m,n) = (¢(m),1(n)) for all m, n € N. Now we know from (ii) just above that
there is also a surjection y : N — N x N, so that 0y : N — K x L is a surjection, and K X L must be countable. Q

(iv) An induction on r now shows us that if K, Ks,... , K, are countable sets, so is K7 X ... x K,.. In particular,
such sets as Q" x Q" will be countable, for any integer r > 1.

(c) Putting 111Dd above together with these ideas, we see that if ¥ is a o-algebra of sets, K is a non-empty countable
set, and (F)kek is a family in ¥, then
Miex Ex ={z:2 € ExVkec K}
belongs to X. B Let n + k,, : N — K be a surjection; then (), o Ex = (), ey Er, € %, as in 111Dd. Q
Note that there is a difficulty with the notion of [, o, Ey if K = (; the natural interpretation of this formula is to

read it as the universal class. So ordinarily, when there is any possibility that K might be empty, one needs some such
formulation as X N, cx Ek.

(d) As an example of the way in which these ideas will be used, consider the following. Suppose that X is a set, &
is a o-algebra of subsets of X, and (Ey,)4cq,nen is a family in ¥. Then

E= quQ,q<\/§ UmeN ﬂnzm Eqn = ﬂqe(@,q<\/§(UmeN(mn2m Eqn)) €.
P Set Fym = psm Eon = Nyen Bgmtn for ¢ € Q and m € N; then every Fy,, belongs to ¥, by 111Dd or (c) above.

Set Gy = U,nen Fgm for ¢ € Q; then every G, belongs to ¥, by 111A(iii). Set K = {q:q € Q, ¢ < Vv2}; then K is
countable, by 111E and (b-i) of this paragraph. So (,cx G4 belongs to X, by (c). But £ =, cx G4 Q

(e) And one final remark, which I give without proof here — though many proofs will be implicit in the work below,
and I spell one out in 1A1Ha —
The set R of real numbers is not countable.
So you must resist any temptation to look for a list ag, a1,... running over the whole set of real numbers.
111G Borel sets I can describe here one type of non-trivial o-algebra; the formulation is rather abstract, but the
technique is important and the terminology is part of the basic vocabulary of measure theory.

(a) Let X be a set, and let & be any non-empty family of o-algebras of subsets of X. (Thus a member of & is itself
a family of sets; & C P(PX).) Then
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N6 ={FE:FE€Xfor every ¥ € &},

the intersection of all the o-algebras belonging to &, is a o-algebra of subsets of X. P (i) By hypothesis, & is not
empty; take Xg € &; then (G C 3y C PX, so every member of (& is a subset of X. (i) ) € X for every ¥ € &,
sod e NG. (iii) If F € (S then F € ¥ for every ¥ € 6,80 X \ E € X for every ¥ € G and X \ E € 6. (iv)
Let (E,)nen be any sequence in (S. Then for every ¥ € &, (E,)nen is a sequence in X, so | E, €X;as X is
arbitrary, (J,cn En € 6. Q

(b) Now let A be any family of subsets of X. Consider
S ={X: X is a g-algebra of subsets of X, A C X}.

neN

By definition, & is a family of o-algebras of subsets of X; also, it is not empty, because PX € 6. So X4 =16 is a
o-algebra of subsets of X. Because A C ¥ for every X € &, A C X 4; thus X 4 itself belongs to &; it is the smallest
o-algebra of subsets of X including A.

We say that 3 4 is the o-algebra of subsets of X generated by A.

Examples (i) For any X, the o-algebra of subsets of X generated by 0 is {0, X}.
(ii) The o-algebra of subsets of N generated by {{n} : n € N} is PN.

(c)(i) We say that a set G C R is open if for every = € G there is a 6 > 0 such that the open interval |x — §,z + [
is included in G.

(ii) Similarly, for any r > 1, we say that a set G C R" is open in R" if for every « € G there is a é > 0 such that

{y:|ly—=z| <&} C G, where for z = (¢1,...,¢) € R” Twrite ||z]] = />, |G]? thus ||y — z|| is just the ordinary
Euclidean distance from y to x.

(d) Now the Borel sets of R, or of R", are just the members of the o-algebra of subsets of R or R” generated by
the family of open sets of R or R"; the o-algebra itself is called the Borel o-algebra in each case.

(e) Some readers will rightly feel that the development here gives very little idea of what a Borel set is ‘really’ like.
(Open sets are much easier; see 111Ye.) In fact the importance of the concept derives largely from the fact that there
are alternative, more explicit, and in a sense more concrete, ways of describing Borel sets. I shall return to this topic
in Chapter 42 in Volume 4.

111X Basic exercises >(a) Practise the algebra of infinite unions and intersections until you can confidently
interpret such formulae as

EN(UnenFn) Unen(BEn\F),  EU(Nen Fa),
UnenBNF), BN (Unen Fr)s Maen(En \ F),
EN(Mpen o)y MaenBUE),  (Upen En) \ F,
Unen(ENE),  (Muen E)\NE, Npen(BE\ Fa),

Unen Ba) VUnen Fn)s - Mopnen(En \ Fr)s - (Maen Ba) U (Npen Fn),

nm,nGN(Em UFn)’ (ﬂnGN En) \ (UnEN Fn)’ UmﬂzGN(Em an),
and, in particular, can identify the nine pairs into which these formulae naturally fall.

>(b) In R, show that all ‘open intervals’ ]a,b[, |—00,b], |a,00[ are open sets, and that all intervals (bounded or
unbounded, open, closed or half-open) are Borel sets.

>(c) Let X and Y be sets and ¥ a o-algebra of subsets of X. Let ¢ : X — Y be a function. Show that
{F:F CY, ¢ '[F] € £} is a o-algebra of subsets of Y. (See 1A1B for the notation here.)

>(d) Let X and Y be sets and T a o-algebra of subsets of Y. Let ¢ : X — Y be a function. Show that
{¢71[F]: F € T} is a o-algebra of subsets of X.

(e) Let X be a set, A a family of subsets of X, and ¥ the o-algebra of subsets of X generated by .A. Suppose that
Y is another set and ¢ : Y — X a function. Show that {¢p~1[E]: E € ¥} is the o-algebra of subsets of Y generated by
{¢p71A]: A A}.
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(f) Let X be a set, A a family of subsets of X, and ¥ the o-algebra of subsets of X generated by A. Suppose that
Y C X. Show that {ENY : E € ¥} is the o-algebra of subsets of Y generated by {ANY : A € A}.

111Y Further exercises (a) In R", where r > 1, show that G+ a = {z + a : € G} is open whenever G C R" is
open and a € R". Hence show that F + a is a Borel set whenever E C R" is a Borel set and a € R”. (Hint: show that
{E: E + ais a Borel set} is a o-algebra containing all open sets.)

(b) Let X be a set, ¥ a o-algebra of subsets of X and A any subset of X. Show that {(ENA)U(F\A): E, F e X}
is a o-algebra of subsets of X, the o-algebra generated by ¥ U {A}.

(c) Let G C R? be an open set. Show that all the horizontal and vertical sections

{£:(&m el {€: (¢ €G}

of G are open subsets of R.
(d) Let E C R? be a Borel set. Show that all the horizontal and vertical sections
{€:(&m ek}, {¢:(n¢ ek}

of E are Borel subsets of R. (Hint: show that the family of subsets of R? whose sections are all Borel sets is a o-algebra
of subsets of R? containing all the open sets.)

(e) Let G C R be an open set. Show that G is uniquely expressible as the union of a countable (possibly empty)
family Z of open intervals (the ‘components’ of G) no two of which have any point in common. (Hint: for z, y € G
say that x ~ y if every point between z and y belongs to G. Show that ~ is an equivalence relation. Let Z be the set
of equivalence classes.)

111 Notes and comments I suppose that the most important concept in this section is the one introduced tangentially
in 111E-111F, the idea of ‘countable’ set. While it is possible to avoid much of the formal theory of infinite sets for the
time being, I do not think it is possible to make sense of this chapter without a firm notion of the difference between
‘finite’ and ‘infinite’, and some intuitions concerning ‘countability’. In particular, you must remember that infinite sets
are not, in general, countable, and that o-algebras are not, in general, closed under arbitrary unions.

The next thing to be sure of is that you can cope with the set-theoretic manipulations here, so that such formulae
as ey Bn = X \U,en(X \ Er) (111Dd) are, if not yet transparent, at least not alarming. A large proportion of the
volume will be expressed in this language, and reasonable fluency is essential.

Finally, for those who are looking for an actual idea to work on straight away, I offer the concept of o-algebra
‘generated’ by a collection A (111G). The point of the definition here is that it involves consideration of a family
S € P(P(PX)), even though both A and X 4 are subsets of PX; we need to work a layer or two up in the hierarchy
of power sets. You may have seen, for instance, the concept of ‘linear subspace U generated by vectors ui,... ,u,’.
This can be defined as the intersection of all the linear subspaces containing the vectors ui,... ,u,, which is the
method corresponding to that of 111Ga-b; but it also has an ‘internal’ definition, as the set of vectors expressible as
aquy + . ..+ apuy, for scalars ;. For o-algebras, however, there is no such simple ‘internal’ definition available (though
there is a great deal to be said in this direction which I think we are not yet ready for; some ideas may be found in
§136). This is primarily because of (iii) in the definition 111A; a o-algebra must be closed under an infinitary operation,
that is, the operation of union applied to infinite sequences of sets. By contrast, a linear subspace of a vector space
need be closed only under the finitary operations of scalar multiplication and addition, each involving at most two
vectors at a time.

112 Measure spaces

We are now, I hope, ready for the second major definition, the definition on which all the work of this treatise is
based.

112A Definition A measure space is a triple (X, ¥, ) where
(i) X is a set;
(ii) ¥ is a o-algebra of subsets of X;
(iii) p : ¥ — [0, 00] is a function such that
(a) pb = 0;
(B) if (Ep)nen is a disjoint sequence in X, then pu({J, ey En) = Y opeg i
In this context, members of ¥ are called measurable sets, and p is called a measure on X.



112C Measure spaces 15

112B Remarks (a) The use of oo In (iii) of the definition above, I declare that p is to be a function taking
values in ‘[0, co]’, that is, the set comprising the non-negative real numbers with ‘co’ adjoined. I expect that you have
already encountered various uses of the symbol co in analysis; I hope you have realised that it means rather different
things in different contexts, and that it is necessary to establish clear conventions for its use each time. The ‘co of
measure’ corresponds to the notion of infinite length or area or volume. The basic operation we need to perform on
it is addition: co 4+ a = a + 0o = oo for every a € [0,00[ (that is, every real number a > 0), and oo + 0o = oo. This
renders [0, c0] a semigroup under addition. It will be reasonably safe to declare oo — a = oo for every a € R; but we
must absolutely decline to interpret the formula co — oco. As for multiplication, it turns out that it is usually right to
interpret 0o - 00, a - 0o and oo - a as oo for a > 0, while 0 - co = 0o - 0 can generally be taken as 0.

We also have a natural total ordering of [0, co], writing a < oo for every a € [0, 00[. This gives an idea of supremum
and infimum of an arbitrary (non-empty) subset of [0, c0]; and it will often be right to interpret inf } as oo, but I will
try to signal this particular convention each time it is relevant. We also have a notion of limit; if (u,)nen is a sequence
in [0, 00], then it converges to u € [0, 0o if

for every v < u there is an ng € N such that v < u,, for every n > ny,
for every v > u there is an ng € N such that v > u,, for every n > ng.
Of course if u = 0 or u = oo then one of these clauses will be vacuously satisfied.

(See also §135.)

(b) I should say plainly what I mean by a ‘disjoint’ sequence: a sequence (FE,,),¢n is disjoint if no point belongs to
more than one E,, that is, if F,,, N E, = @ for all distinct m, n € N. Note that there is no bar here on one, or many,
of the F,, being the empty set.

Similarly, if (E;);cr is a family of sets indexed by an arbitrary set I, it is disjoint if £; N E; = () for all distinct i,
jel.

(c) In interpreting clause (iii-3) of the definition above, we need to assign values to sums > - ,u, for arbitrary
sequences (Un)nen in [0,00]. The natural way to do this is to say that Y oo ju, = lim,_yoo D 1o Um, using the
definitions sketched in (a). If one of the u,, is itself infinite, say uy = oo, then Y ' _ u,, = oo for every n > k, so of
course Y~ u, = oc. If all the u,, are finite, then, because they are all non-negative, the sequence (Y " _ Um)nen of
partial sums is monotonic non-decreasing, and either has a finite limit »_  u, € R, or diverges to co; in which case
we again interpret > u, as co.

(d) Once again, the important examples of measure spaces will have to wait until §§114 and 115 below. However, I can
describe immediately one particular class of measure space, which should always be borne in mind, though it does not
give a good picture of the most important and interesting parts of the subject. Let X be any set, and let h : X — [0, o0]
be any function. For every E C X write uFf = ) _ph(z). To interpret this sum, note that there is no difficulty
for finite sets E (taking > ., h(z) = 0), while for infinite sets £/ we can take > _ph(z) = sup{d_ ., h(z) : [ CE
is finite}, because every h(z) is non-negative. (You may well prefer to think about this at first with X = N, so that
Yoner h(n) =limp 00 32, c <, P(m); but I hope that a little thought will show you that the general case, in which
X may even be uncountable, is not really more difficult.) Now (X, PX, i) is a measure space.

We are very far from being ready for the specialized vocabulary needed to describe different kinds of measure space,
but when the time comes I will call measures of this kind point-supported.

Two particular cases recur often enough to be worth giving names to. If h(z) = 1 for every z, then pFE is just the
number of points of E if F is finite, and is oo if E is infinite. I will call this counting measure on X. If zg € X,
we can set h(zg) = 1 and h(z) = 0 for z € X \ {x0}; then puF is 1 if 2o € E, and 0 for other E. T will call this the
Dirac measure on X concentrated at xy. Another simple example is with X = N, h(n) = 27"~! for every n; then
pX =4+5+... =1L

(e) If (X,X, ) is a measure space, then ¥ is the domain of the function u, and X is the largest member of ¥.. We
can therefore recover the whole triplet (X, 3, ) from its final component u. This is not a game which is worth playing
at this stage. However, it is convenient on occasion to introduce a measure without immediately giving a name to its
domain, and when I do this I may say that ‘u measures E’ or ‘E is measured by u’ to mean that puFE is defined,
that is, that E belongs to the o-algebra dom u. Warning! Many authors use the phrase ‘p-measurable set’ to mean
something a little different from what I am discussing here.

112C Elementary properties of measure spaces Let (X, Y, 1) be a measure space.
(a) HE, FeXand ENF =0 then up(EUF) = pE + pF.

(b)If E, F € ¥ and E C F then uE < uF.

(¢) W(EUF) < uE + uF for any E, F € ¥.
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(d) If (Ey)nen is any sequence in 3, then u(U, ey En) < Doprg 1En-
(e) If (Ep,)nen is a non-decreasing sequence in ¥ (that is, E,, C E, 1 for every n € N) then

H(UneN En) = limy, oo By = SUp,eN wly,.

(f) If (Ep)nen is a non-increasing sequence in ¥ (that is, E, 1 C E, for every n € N), and if some pF,, is finite,
then

u(ﬂnEN E") = hmn—>oo ,UEn = infneN ,LLEn
proof (a) Set By = E, E; = F, E,, = () for n > 2; then (FE,,)nen is a disjoint sequence in ¥ and | J
WEUF) =% uE, = pE + pF

nen En = EUF, s0
(because pd = 0).
(b) F\ E € ¥ (111Dc) and u(F \ E) > 0 (because all values of u are in [0, 00]); so (using (a))
pF = pE+ p(F\ E) > pE.

() (EUF) =pE + pu(F \ E), by (a), and u(F \ E) < uF, by (b).
(d) Set Fy = Ey, F,, = Ep, \ Ui<n

F,, C E,, for every n. By (b) just above, uF,, < uF, for each n; so
N(UneN E,) = /‘(UneN F,) = Zf:o puky, < Zf:o uEn.

(e) Set Fy = Ey, F, = E,, \ Ey—q for n > 1; then (F,)nen is a disjoint sequence in ¥ and U, ey Frn = U, en En-
Consequently (1(U,en En) = Yopeo #Fn. But an easy induction on n, using (a) for the inductive step, shows that

pE, = > _ wFy, for every n. So

E; for n > 1; then (F,)nen is a disjoint sequence in ¥, (J,, .y Frn = U,,eny En and

S o Fy = limy, oo >0 o p1Fy = limy, o0 pEy,.
Finally, lim, o pE, = sup, ey pErn because (by (b)) (#FEn)nen is non-decreasing.

(f) Suppose that pEy < oo. Set F,, = Ei \ Epyp for n € N, F' = |J, o Fn; then (F,)nen is a non-decreasing
sequence in X, so uF = lim,,_, o uFy, by (e) just above. Also, uF, + uEy+n = pEx; because uE) < 0o, we may safely
write pF,, = uEy — uExin, so that

pF =lim, oo (uE; — pFkyn) = pEr —limy, o0 nEy.
Next, F' C Ey, so uF + u(Ey \ F) = pFE), and (again because uFE}, is finite) uF = pEy — u(Ex \ F). Thus we must
have p(Ey \ F) = lim,, 00 pBp. But Ey \ Fis just (), oy En-

Finally, lim,,—, oo puE,, = inf,en pE,, because (uFE,)nen is non-increasing.

Remark Observe that in (f) above it is essential to have inf, ey pE, < co. The construction in 112Bd is already

enough to show this. Take X = N and let p be counting measure on X. Set E,, = {i : i € N, i > n} for each n. Then
FEn+1 C E, for each n, but

'u(mnEN En) = :LLQ] =0<o0= hmn—)oo NEn

112D Negligible sets Let (X, X, ) be any measure space.

(a) A set A C X is negligible (or null) if there is a set F C ¥ such that A C F and pE = 0. (If there seems to be
a possibility of doubt about which measure is involved, I will write y-negligible.)

(b) Let AV be the family of negligible subsets of X. Then (i) # € N (ii) if A C B € N then A € N (iii) if (A))nen
is any sequence in N, ey An € N. P (i) (@) = 0. (ii) There is an £ € ¥ such that p£ = 0 and B C E; now
A C E. (iii) For each n € N choose an F,, € ¥ such that A, C E, and uE, = 0. Now F = |J E, € ¥ and
Unen 4n € Upen Ens and w(U,en Bn) < Xopro iEn, by 112Cd, so u(U,,cy En) =0. Q

I will call ' the null ideal of the measure pu. (A family of sets satisfying the conditions (i)-(iii) here is called a
o-ideal of sets.)

neN

(c) A set A C X is conegligible if X\ A is negligible; that is, there is a measurable set E C A such that u(X\E) = 0.
Note that (i) X is conegligible (ii) if A C B C X and A is conegligible then B is conegligible (iii) if (A4, )nen is a
sequence of conegligible sets, then [, .y A, is conegligible.
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(d) Tt is convenient, and customary, to use some relatively informal language concerning negligible sets. If P(x) is
some assertion applicable to members x of the set X, we say that

‘P(z) for almost every z € X’
or
‘P(z) a.e. (x)
or
‘P almost everywhere’, ‘P a.e.’
or, if it seems necessary to specify the measure involved,
‘P(x) for p-almost every a’, ‘P(z)p-a.e.(x)’, ‘P p-a.e’,
to mean that
{r:ze X, P(x)}
is conegligible in X, that is, that
{z:2 € X, P(x) is false}
is negligible. Thus, for instance, if f : X — R is a function, ‘f > 0 a.e.” means that {z : f(x) < 0} is negligible.

(e) The phrases ‘almost surely’ (a.s.), ‘presque partout’ (p.p.) are also used for ‘almost everywhere’.

() I should call your attention to the fact that, on my definitions, a negligible set need not itself be measurable,
though it must be included in some negligible measurable set. (Measure spaces in which all negligible sets are measurable
are called complete. I will return to this question in §211.)

(g) When f and g are real-valued functions defined on conegligible subsets of a measure space, I will write f =, ¢ g,
f <ae gor f>.. gtomean, respectively,

f =g ae., that is, {z : € dom(f) Ndom(g), f(z) = g(x)} is conegligible,
f < g ae., that is, {z : € dom(f) Ndom(g), f(z) < g(x)} is conegligible,

f > g a.e., that is, {z : € dom(f) Ndom(g), f(z) > g(x)} is conegligible.

112X Basic exercises >(a) Let (X, 3, ) be a measure space. Show that (i) w/(EUF)+ u(ENF) = puE + pF (i)
WEUFUG)+u(ENF)+u(ENG)+u(FNG) = pE+ pF +puG+pw(ENFNG) for all E, F, G € 3. Generalize these
results to longer sequences of sets. (You may prefer to begin with the case in which uE, pF and uG are all finite. But
I hope you will be able to find arguments which deal with the general case.)

>(b) Let (X, 3>, 1) be a measure space and (E,)nen a sequence in X. Show that
(Unen ﬂmzn E,) <liminf,, . puFy,.

(c) Let (X,3, ) be a measure space, and E, F' € 3; suppose that pE < oco. Show that u(FAE) = uF — uE +
2u(E\ F).

(d) Let (X, %, ) be a measure space and (Ej,)nen a sequence of measurable sets such that pu(U,, ey En) < 00. (i)

Show that limsup,, . uFEn < p(N,en Upspn Bm). (i) Show that if (M, cxUpsn BEm = £ = UpenNim>n Em then
lim,, o pE, exists and is equal to uF. a - -

>(e) Let (X, X, 1) be a measure space, and J the set of real-valued functions whose domains are conegligible subsets
of X. (i) Show that {(f,9): f, 9 € TF, f <ae g} and {(f,9) : f, 9 €F, f >ae. g} are reflexive transitive relations on
F, each the inverse of the other. (i) Show that {(f,g): f, ¢ € F, f =a.. g} is their intersection, and is an equivalence
relation on J.

(f) Let (X,3, ) be a measure space, Y a set, and ¢ : X — Y a function. Set T = {F : F CY, ¢ ![F] € £} and
vF = pu¢~t[F] for F € T. Show that v is a measure on Y. (v is called the image measure on Y, and I will generally
denote it ug=1t.)
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112Y Further exercises (a) Let X be a set and ¥ a o-algebra of subsets of X. Let 3 and ps be two measures
on X, both with domain X. Set

pE =inf{in(ENF)+p(E\F): F e X}

for each £ € 3. Show that p is a measure on X, and that it is the greatest measure, with domain X, such that
pE < min(u E, uoE) for every E € 3.

(b) Let X be a set and ¥ a o-algebra of subsets of X. Let p; and ps be two measures on X, both with domain X.
Set

pE =sup{u(ENF) 4+ p2(E\ F): F € £}

for each £ € Y. Show that p is a measure on X, and that it is the least measure, with domain ¥, such that
pE > max(u E, poF) for every E € X.

(c) Let X be a set and ¥ a o-algebra of subsets of X.
(i) Suppose that v, ... , v, are measures on X, all with domain . Set

,LLE = inf{Z?:O I/7Fl . Fo, e 7Fn € E, E Q Ui<n Fz}

for £ € 3. Show that p is a measure on X.
(ii) Let N be a non-empty family of measures on X, all with domain . Set

wkE = inf{z UnFy :(Vn)nen s a sequence in N,
n=0

(F)nen is a sequence in X, E C U F,}
neN
for £ € ¥. Show that u is a measure on X.

(iii) Let N be a non-empty family of measures on X, all with domain ¥, and suppose that there is some v’ € N
such that v'X < oco. Set

pE =inf{>" jv;F;:neN, v,... v, €N, Fy,... ,FnEZ,EQUiSHFi}

for £ € ¥. Show that p is a measure on X.

(iv) Suppose, in (iii), that N is downwards-directed, that is, for any v, vo € N there is a v € N such that
vE < min(11 E, 1 E) for every E € 3. Show that uFE = inf,cn vE for every E € 3.

(v) Show that in all the cases (i)-(iii) the measure constructed is the greatest measure p with domain ¥ such that
uE <inf,envE for every E € X.

(d) Let X be a set and ¥ a o-algebra of subsets of X. Let N be a non-empty family of measures on X, all with
domain 3. Set

n
uwE :sup{ZuiFi neN,vy,..., v, €N,
i=0
Fy, ..., F, are disjoint subsets of E belonging to X}

for £ € . (i) Show that

o0
uwE = sup{z UnFy :{(Vn)nen 1Is a sequence in N,
n=0
(F)nen is a disjoint sequence in ¥, U F, CE}
neN

for every E € 3. (ii) Show that p is a measure on X, and that it is the least measure, with domain X, such that
pE > sup,cn VE for every E € 3. (iii) Now suppose that N is upwards-directed, that is, for any 11, vo € N there is a
v € N such that vE > max (11 E,1»E) for every E € ¥. Show that uFE = sup,cy VE for every E € ¥.

(e) Let (X,X,u) be a measure space and (E,),en a sequence of measurable sets. For each k € N set Hy =
{z:z e X, #({n : z € E,}) > k}, the set of points belonging to E, for k or more values of n. (i) Show that
each Hy, is measurable. (ii) Show that >~ , uHy = Yo" pE,. (Hint: start with the case in which E, =  for
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n > ng.) (iii) Show that if > 2 , pF,, is finite, then almost every point of X belongs to only finitely many E,,, and
Yoo o En = > re o kG, where

Gy =Hpg\Hgy1 ={z:#{n:z € E,}) =k}.

(f) Let X be a set and u, v two measures on X, with domains 3, T respectively. Set A = ¥ N T and define
A: A — [0,00] by setting AE = uE + vE for every E € A. Show that (X, A, \) is a measure space.

112 Notes and comments The calculations in such results as 112Ca-112Cc, 112Xa and 112Xc, involving only
finitely many sets, are common to any additive concept of measure; you may have encountered them in elementary
probability theory, but of course I am now asking you to consider also the possibility that one or more of the sets
has measure co. I hope you will find that these results are entirely natural and unsurprisinllg. I recommend Venn
diagrams in this context; a result of this kind involving only finitely many measurable sets and only addition, with no
subtraction, will be valid in general if and only if it is valid for the area of simple geometric shapes in the plane. The
requirement ‘uF < oo’ in 112Xc is necessary only because we are subtracting pF; the corresponding additive result
w(FAE) + pE = pF + 2u(E \ F) is true for all measurable E and F. Of course when sequences of sets enter the
picture, we need to take a bit more care; the results 112Cd-112Cf are the basic ones to learn. I think however that the
only trap is in the condition ‘some pF, is finite’ in 112Cf. As noted in the remark at the end of 112C, this is essential,
and for a decreasing sequence of measurable sets it is possible for the measure of the limit to be strictly less than the
limit of the measures, though only when the latter is infinite.

113 Outer measures and Carathéodory’s construction

I introduce the most important method of constructing measures.

113A Outer measures I come now to the third basic definition of this chapter.

Definition Let X be a set. An outer measure on X is a function 6 : PX — [0, oo] such that
(i) 00 = 0,
(i) if A C B C X then §A < 0B,
(iii) for every sequence (A, )nen of subsets of X, (U, cy An) < D opeo 0An.

113B Remarks (a) For comments on the use of ‘c0’, see 112B.

(b) Yet again, the most important outer measures must wait until §§114-115. The idea of the ‘outer’ measure of a
set A is that it should be some kind of upper bound for the possible measure of A. If we are lucky, it may actually be
the measure of A; but this is likely to be true only for sets with adequately smooth boundaries.

(c) Putting (i) and (iii) of the definition together, we see that if # is an outer measure on X, and A, B are two
subsets of X, then §(AU B) < A + 0B; compare 112Ca and 112Cc.

113C Carathéodory’s Method: Theorem Let X be a set and € an outer measure on X. Set
Y={FE:ECX,0A=0(ANE)+0(A\E) for every A C X}.

Then ¥ is a o-algebra of subsets of X. Define u : ¥ — [0,00] by writing uF = 0F for E € %; then (X,X,u) is a
measure space.

proof (a) The first step is to note that for any £, A C X we have (AN E) + 0(A\ E) > 6A, by 113Bc; so that
YS={E:ECX,0A>0(ANE)+0(A\E) for every A C X}.

(b) Evidently 0 € 3, because
O(AND)+0(A\D) =600+0A=0A
for every AC X. If E € ¥, then X \ F € ¥, because
OAN(X\E))+0(A\(X\E)=60(A\E)+0(ANE)=0A
for every A C X.
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(c) Now suppose that E, FF € ¥ and A C X. Then

A A A A
E F E F E F E F
0] (i) (iii) (iv)

O(AN(EUF))+60(A\ (EUF)) diagram (i)

=0(AN(EUF)NE)+0(AN(EUF)\E)+0(A\ (EUF)) diag. (ii)
(because E € ¥ and AN (FUF) CX)

=0(ANE)+0((A\E)NF)+0((A\E)\F)
=0(ANE)+0(A\E) diag. (iii)

(because F € %)
=0A diag. (iv)

(again because E € ¥). Because A is arbitrary, EU F € X.

(d) Thus X is closed under simple unions and complements, and contains (). Now suppose that (E,),cn is a sequence
in 3, with E' = {J,,cy En- Set

G, = Umgn E,.;
then G,, € ¥ for each n, by induction on n. Set
Fh=Gy=FEy, F,=Gy\Gn_1=E,\Gy_ forn>1;
then E =, ey Frn = Upen G-
Take any n > 1 and any A C X. Then
0(ANG,) =0ANG,NGp_1) +0(ANGL \ Gro1)
=0(ANG,_1)+0(ANF,).

An induction on n shows that (ANG,) =>" _ 0(ANFE,) for every n > 0.
Suppose that A C X. Then ANE = J,, .y AN Fy, so

O(ANE) < ie(Aan)

n=0

= lim Z:OH(AHFW) = lim 0(ANG,).

On the other hand,

0(AN\E) =0(A\ | Gn)

neN
< oy
< Inf (A\Gn) = lim 6(A\Gn),
using 113A(ii) to see that (§(A \ Gp))nen is non-increasing and that (A \ E) < 0(A\ G,,) for every n. Accordingly
O(ANE)+0(A\E) < lim O(ANGy) + lim 0(A\ G,)
= lim (0(ANG,) +0(A\G,)) =0A

because every G, belongs to X, so 0(ANG,) + 0(A\ G,,) = 0A for every n. But A is arbitrary, so F € X, by the
remark in (a) above.
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Because (E,)nen is arbitrary, condition (iii) of 111A is satisfied, and ¥ is a o-algebra of subsets of X.

(e) Now let us turn to pu, the restriction of § to 3, and Definition 112A. Of course puf) = 60 = 0. So let (E,)nen be
any disjoint sequence in . Set G,, = E,, for each n, as in (d), and

E= UneN En = UneN G”

m<n

As in (d),

1Grt1 = 0Gny1 = 0(Gny1 N Epg1) + 0(Gnyr \ Ent)
= HEn-l-l + 060G, = /-LEn-‘rl + HGn

for each n, so puG, = > _, pE,, for every n.
Now

WE = 0B < Y55 ) 0F, = Y55 4w,
But also
pE =0E > 0G,, = uG, =Y. _ pnEn
for each n, so pE > >0 uE,.
Accordingly puE = >  uE,. As (E,)nen is arbitrary, 112A(iii-3) is satisfied and (X, X, y) is a measure space.
113D Remark Note from (a) in the proof above that in this construction
S={E:ECX,0(ANE)+6(A\ E) <0A for every A C X}.
Since (AN E) 4+ 0(A\ E) is necessarily less than or equal to §A when 6A = oo,
Y={E:ECX,0(ANE)+0(A\ E) < 0A whenever A C X and A < oo}.

113X Basic exercises >(a) Let X be a set and 6 an outer measure on X, and let 1 be the measure on X defined
from 6 by Carathéodory’s method. Show that if #A = 0, then y measures A, so that a set A C X is p-negligible iff
0A =0, and p is ‘complete’ in the sense of 112Df.

(b) Let X be a set. (i) Show that if 8;, 02 are outer measures on X, so is 6, + 05, setting (61 + 62)(A) = 1A+ 0, A
for every A C X. (ii) Show that if (0;);cr is any non-empty family of outer measures on X, so is # = sup;¢; 0;, setting
0A = sup,c; 0;A for every A C X. (iii) Show that if 61, 05 are outer measures on X so is 6, A 0, setting

(01 N63)(A) =inf{0;B+6,(A\ B): BC A}
for every A C X.

>(c) Let X and Y be sets, § an outer measure on X, and f : X — Y a function. Show that the functional
B 0(f~[B]): PY — [0,00] is an outer measure on Y.

>(d) Let X be a set and € an outer measure on X; let Y be any subset of X. (i) Show that 8] PY, the restriction
of 0 to subsets of Y, is an outer measure on Y. (ii) Show that if E C X is measured by the measure on X defined from
0 by Carathéodory’s method, then £ NY is measured by the measure on Y defined from 6] PY .

>(e) Let X and Y be sets, 6 an outer measure on Y, and f : X — Y a function. Show that the functional
A~ 0(f[A]) : PX — [0,00] is an outer measure.

(f) Let X and Y be sets, 6 an outer measure on X, and R C X x Y a relation. Show that the map B — 0(R™![B]) :
PY — [0,00] is an outer measure on Y, where R7![B] = {z : 3y € B, (z,y) € R} (1A1Bc). Explain how this is a
common generalization of (c¢), (d-i) and (e) above, and how it can be proved by putting them together.

(g) Let X be a set and 6 an outer measure on X. Suppose that E C X is measured by the measure on X defined
from 6 by Carathéodory’s method. Show that 0(E N A) +6(EUA) =0FE + 0A for every A C X.

(h) Let X be a set and 0 : PX — [0,00] a functional such that 80 = 0, A < B whenever A C B C X, and
(AU B) <A+ 0B whenever A, B C X. Set

S={E:ECX,0A=0(ANE)+0(A\E) for every A C X}.

Show that (), X \ £ and EU F belong to X for all £, F € 3, so that E\ F, ENF € ¥ for all E, F € ¥.. Show that
O(EUF)=0FE + 0F whenever E, F € ¥ and ENF = ().
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113Y Further exercises (a) Let (X,X, 1) be a measure space. For A C X set p*A =inf{uE : E €%, AC E}.
Show that for every A C X the infimum is attained, that is, there is an E € ¥ such that A C F and uFE = p*A. Show
that p* is an outer measure on X.

(b) Let (X, X, 1) be a measure space and D any subset of X. Show that ¥p = {END: E € ¥} is a o-algebra of
subsets of D. Set up = p*[¥p, the function with domain ¥p such that upB = p*B for every B € ¥ p, where p* is
defined as in (a) above; show that (D,Xp, up) is a measure space. (up is the subspace measure on D.)

(c) Let (X,X, 1) be a measure space and let u* be the associated outer measure on X, as in 113Ya. Let i be the
measure on X constructed by Carathéodory’s method from p*, and ¥ its domain. Show that ¥ C ¥ and that fi extends

73
(d) Let X be aset and 7 : PX — [0, 00] any function such that 70 = 0. For A C X set

A = inf{z 7C; : (C})jen is a sequence of subsets of X
=0
such that A C U C;}.
jEN

Show that € is an outer measure on X. (Hint: you will need 111F(b-ii) or something equivalent.)

(e) Let X be a set and 61, 02 two outer measures on X. Show that 61 A 63, as described in 113Xb(iii), is the outer
measure derived by the process of 113Yd from the functional 7C' = min(6,C, 65C).

(f) Let X be a set and (6;);c; any non-empty family of outer measures on X. Set 7C = inf;c; 6;C for each C' C X.
Show that the outer measure derived from 7 by the process of 113Yd is the largest outer measure 6 such that A < 6, A
whenever A C X and ¢ € I.

(g) Let X be aset and ¢ : PX — [0, 00] a functional such that
Pl = 0;
?(AUB) > ¢A + ¢B for all disjoint A, B C X;
if (A,)nen is a non-increasing sequence of subsets of X and ¢Ay < oo then ¢((, ey An) = limy 500 9AR;
if pA = 0o and a € R there is a B C A such that a < ¢B < co.
Set

YS={E:ECX, ¢(ANE)+ ¢(A\ E) = ¢pA for every A C X}.
Show that (X,X,¢|X) is a measure space.

(h) Let (X,X, ) be a measure space and for A C X set u. A = sup{uF : E € ¥, E C A, uF < oo}. Show that
tx : PX — [0, 00] satisfies the conditions of 113Yg, and that if 4X < oo then the measure defined from p. by the
method of 113Yg extends u.

(i) Let X be a set and A an algebra of subsets of X, that is, a family of subsets of X such that
heA,
X\ E € Aforevery E € A,
EUF € Awhenever E, F € A.
Let ¢ : A — [0, 00] be a function such that
o =0,
d(FEUF)=¢FE+ ¢F whenever E, F € Aand ENF = {),
¢F =lim,,_, o ¢F,, whenever (E,),en is a non-decreasing sequence in A with union F.
Show that there is a measure p on X extending ¢. (Hint: set A = oo for A € PX \ A; define 0 from ¢ as in 113Yd,
and y from 6.)

(j) (T.de Pauw) Let X be a set, T a o-algebra of subsets of X, and # an outer measure on X. Set ¥ = {E : E €
T, 0A=0(ANE)+0(A\ E) for every A € T}. Show that ¥ is a o-algebra of subsets of X and that 0] is a measure.

(k) Let X, 7: PX — [0,00] and 6 be as in 113Yd; let x be the measure defined by Carathéodory’s method from 6,
and ¥ the domain of p. Suppose that £ C X is such that 6(C' N E) + 6(C \ E) < 7C whenever C C X is such that
0 < 7C < 0o0. Show that E € X.
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113 Notes and comments We are proceeding by the easiest stages I can devise to the construction of a non-trivial
measure space, that is, Lebesgue measure on R. There are many constructions of Lebesgue measure, but in my view
Carathéodory’s method (113C) is the right one to begin with, because it is the most powerful and versatile single
technique for constructing measures. It is, of course, abstract — it deals with arbitrary outer measures on arbitrary
sets; but I really think that the Lebesgue theory, intertwined as it is with the rich structure of Euclidean space, is
harder than the abstract theory of measure. We do at least have here a serious theorem for you to get your teeth into,
mastery of which should be both satisfying and useful. I must say that I think it very remarkable that such a direct
construction should be effective. Looking at the proof, it is perhaps worth while distinguishing between the ‘algebraic’
or ‘finite’ parts ((a)-(c)) and the parts involving sequences of sets ((d)-(e)); the former amount to a proof of 113Xh.
Outer measures of various kinds appear throughout measure theory, and I sketch a few of the relevant constructions
in 113X-113Y.

114 Lebesgue measure on R

Following the very abstract ideas of §§111-113, we have an urgent need for a non-trivial example of a measure space.
By far the most important example is the real line with Lebesgue measure, and I now proceed to a description of this
measure (114A-114E), with a few of its basic properties.

The principal ideas of this section are repeated in §115, and if you have encountered Lebesgue measure before, or
feel confident in your ability to deal with two- and three-dimensional spaces at the same time as doing some difficult
analysis, you could go directly to that section, turning back to this one only when a specific reference is given.

114A Definitions (a) For the purposes of this section, a half-open interval in R is a set of the form [a,b] = {« :
a <z < b}, where a, b € R.
Observe that I allow b < a in this formula; in this case [a,b[ = () (see 1A1A).

(b) If I C R is a half-open interval, then either I = () or I = [inf I, sup I[, so that its endpoints are well defined. We

may therefore define the length AI of a half-open interval I by setting
M =0, Aab[=b—aifa<hb.

114B Lemma If I C R is a half-open interval and (I;);en is a sequence of half-open intervals covering I, then
A< ST
= j=0

proof (a) If I = () then of course A\I =0 < 3772 Al;. Otherwise, take I = [a,b[, where a < b. For each z € R let H,
be the half-line |—oo, [, and consider the set

A={r:a<o<bar—a< 32 NI NH,)}

(Note that if I; = [¢;,d;[ then I; N H, = [¢;, min(d;, z)[, so A([; N H,) is always defined.) We have a € A (because
a—a=0< Z "~ o AIj N H,)) and of course A C [a,b], so ¢ = sup A is defined, and belongs to [a, b].

(b) We find now that ¢ € A.

Pc—a=supzr—a

€A
<supZ)\I NH,) <Y AI;NH,)
T€A G0 =0

(c) ? Suppose, if possible, that ¢ < b. Then ¢ € [a,b], so there is some k € N such that ¢ € I;. Express Ij as
[ck, di[; then x = min(dg,b) > ¢. For each j, A(I; N H;) > A(I; N H,.), while

)\(Ik n Hf) = )\(Ik n Hc) +x —c.
So

o

SO NHL) =Y M NH) +a—c
7=0 7=0

>c—a+x—c=2x—a,
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sor € A;but z >cand c=supA. X

(d) We conclude that ¢ = b, so that b € A and
b—a <Y 20NN Hy) <3770 A,

as claimed.

114C Definition Now, and for the rest of this section, define § : PR — [0, oo] by writing

0A = inf{z A ¢ (I;) en is a sequence of half-open intervals
7=0

such that A C U I}
JEN

Observe that every A can be covered by some sequence of half-open intervals — e.g., A € UJ,,cy [-7,n[; so that if we
interpret the sums in [0, 00], as in 112Bc above, we always have a non-empty set to take the infimum of, and A is
always defined in [0, 00]. This function 6 is called Lebesgue outer measure on R; the phrase is justified by (a) of
the next proposition.

114D Proposition (a) 6 is an outer measure on R.
(b) I = \I for every half-open interval I C R.

proof (a)(i) 0 takes values in [0, co] because every A is the infimum of a non-empty subset of [0, co].

(ii) 00 = 0 because (for instance) if we set I; = () for every j, then every I; is a half-open interval (on the
convention I am using) and () C UjeN I;, Z?io A =0.

(iii) If A C B then whenever B C |J;cy I; we have A C |J;y I, so 0A is the infimum of a set at least as large
as that involved in the definition of §B, and #A < 6B.

(iv) Now suppose that (A, ),en is a sequence of subsets of R, with union A. For any € > 0, we can choose, for each
n € N, a sequence (I,;)jen of half-open intervals such that A, C UjEN I,,; and Z(;io A, < 0A, +2 "¢ (You should
perhaps check that this formulation is valid whether #A,, is finite or infinite.) Now by 111F(b-ii) there is a bijection
from N to N x Nj express this in the form m — (kn,, Ly). Then (I, ;. )men is a sequence of half-open intervals, and

mybm

A g UmEN Ik’mwle'

PIfz e A=J,cyAn there must be an n € N such that » € A4, C UjeN I, so there is a j € N such that x € I,;.
Now m + (km, L) is surjective, so there is an m € N such that k,, = n and [,, = j, in which case z € Iy, ;... Q
Next,

Zi:o Myl < ZZO:O Z;io Alpj.

P If M €N, then N = max(ko, k1,...,knm,lo,l1,... ,In) is finite; because every A, ; is greater than or equal to 0,
and any pair (n,j) can appear at most once as a (K, L),

M N N N o] o) )
Zm:O M b < ano ijo Alpj < ano ijo Alnj < ano ijo Alpj.
So
Zf:;:o AIkam = hmM‘)OO ij\ndzo )\Ikmvlm S Z;.LO=0 Z;)io )\In] Q

Accordingly
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n=0
= i A, + i 27 "¢
n=0 n=0
[eS)
= A, +2€
n=0

Because e is arbitrary, 04 < Y A, (again, you should check that this is valid whether or not Y.~ A, is finite).
As (A, )nen is arbitrary, 6 is an outer measure.

(b) Because we can always take Iy = I, I; = () for j > 1, to obtain a sequence of half-open intervals covering I with
Z;io AM; = A, we surely have 81 < AI. For the reverse inequality, use 114B: if I C UjEN I;, then A\ < Z;io Alj; as
(I)jen is arbitrary, 01 > AI and 01 = AI, as required.

Remark There is an ungainly shift in the argument of (a-iv) above, in the stage

DA < 3 o Mt < D00 2 geg Mg

I dare say you would have believed me if I had suppressed the k,,, [,, altogether and simply written ‘because A C
Un jen Ings 0A < Yol Z;Oio Al,;’. T hope that you will not find it too demoralizing if T suggest that such a jump is
not quite safe. My reasons for interpolating a name for a bijection between N and N x N, and taking a couple of lines
to say explicitly that Y 0" Ay, 1., < 202 > ;29 AMnj, are the following. To start with, there is the formal point
that the definition 114C demands a simple sequence, not a double sequence. Is it really obvious that it doesn’t matter
here? If so, why? There can be no way to justify the shift which does not rely on the facts that N x N is countable
and every AI,; is non-negative. If either of those were untrue, the method would be in grave danger of failing.

At some point we shall certainly need to discuss sums over infinite index sets other than N, including uncountable
index sets. I have already touched on these in 112Bd, and I will return to them in 226A in Volume 2. For the moment,
I feel that we have quite enough new ideas to cope with, and that what we need here is a reasonably honest expedient
to deal with the question immediately before us.

You may have noticed, or guessed, that some of the inequalities ‘<’ here must actually be equalities; if so, check
your guess in 114Ya.

114E Definition Because Lebesgue outer measure (114C) is indeed an outer measure (114Da), we may use it to
construct a measure p, using Carathéodory’s method (113C). This measure is Lebesgue measure on R. The sets F
measured by p (that is, for which (AN E) + 0(A\ E) = 6A for every A C R) are called Lebesgue measurable.

Sets which are negligible for y are called Lebesgue negligible; note that these are just the sets A for which 6A = 0,
and are all Lebesgue measurable (113Xa).

114F Lemma Let x € R. Then H, = ]—o0, z[ is Lebesgue measurable for every x € R.

proof (a) The point is that AT = A(I N Hy) + A(I \ H;) for every half-open interval I C R. I If either I C H,
or I N H, = (), this is trivial. Otherwise, I must be of the form [a, b[, where ¢« < x < b. Now I N H, = [a, 2| and
I'\ H, = [z,b] are both half-open intervals, and

AMINH)+AXI\Hy)=(@x—a)+(b—xz)=b—a=). Q

(b) Now suppose that A is any subset of R, and € > 0. Then we can find a sequence (I;),en of half-open intervals
such that A C (J,cy £; and Z?io M; <0A+e Now (I; NHy)jen and (I; \ Hy)jen are sequences of half-open intervals
and ANH, CUjen(Ij N Hy), A\ Hy C© U jen(Z; \ Hy). So
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0(ANH,)+60(A\ H,) < i)\([j NH,)+ i AI; \ Hy)

Jj=0

:i)\lj §9A+€

=0

Because ¢ is arbitrary, (AN H,) + 0(A\ H,) < 0A; because A is arbitrary, H, is measurable, as remarked in 113D.

114G Proposition All Borel subsets of R are Lebesgue measurable; in particular, all open sets, and all sets of the
following classes, together with countable unions of them:

(i) open intervals |a, b[, |—o0, b|, ]a, o[, | —00, o[, where a < b € R;

(ii) closed intervals [a, b], where a < b € R;

(iii) half-open intervals [a, b], ]a, b], |—00, ], [a, oo[, where a < b in R.
We have moreover the following formula for the measures of such sets, writing p for Lebesgue measure:

pla, bl = pla,b] = pla, b = pla, b =b—a

whenever a < b in R, while all the unbounded intervals have infinite measure. It follows that every countable subset of
R is measurable and of zero measure.

proof (a) I show first that all open subsets of R are measurable. B Let G C R be open. Let K C Q x Q be the set of
pairs (g, q’) of rational numbers such that [¢,¢'[ C G. Now by the remarks in 111E-111F — specifically, 111Eb, showing
that Q is countable, 111F(b-iii), showing that products of countable sets are countable, and 111F(b-i), showing that
subsets of countable sets are countable — we see that K is countable. Also, every [g, ¢'[ is measurable, being H, \ H,
in the language of 114F. So, by 111Fa, G’ = U(q’q,)eK [g,¢'[ is measurable.

By the definition of K, G’ C G. On the other hand, if z € G, there is an € > 0 such that |x — e, 2+ €[ C G. Now
there are rational numbers ¢ € |z — €, z] and ¢’ € ]z, + €], so that (¢,¢') € K and = € [q,¢'[ C G'. As z is arbitrary,
G = G’ and G is measurable. Q

(b) Now the family 3 of Lebesgue measurable sets is a o-algebra of subsets of R including the family of open sets,
so must contain every Borel set, by the definition of Borel set (111G).

(c) Of the types of interval considered, all the open intervals are actually open sets, so are surely Borel. The
complement of a closed interval is expressible as the union of at most two open intervals, so is Borel, and the closed
interval, being the complement of a Borel set, is Borel. A bounded half-open interval is expressible as the intersection
of an open interval with a closed interval, so is Borel; and finally an unbounded interval of the form ]—oo, ] or [a, 00|
is the complement of an open interval, so is also Borel.

(d) To compute the measures, we already know from 114Db that
wla,b[=0a,b[=b—a

if a < b. For the other types of bounded interval, it is enough to note that u{a} = 0 for every a € R, as the different
intervals differ only by one or two points; and this is so because {a} C [a,a + €[, so p{a} <, for every € > 0.
As for the unbounded intervals, they include arbitrarily long half-open intervals, so must have infinite measure.

(e) As just remarked, u{a} = 0 for every a. If A C R is countable, it is either empty or expressible as {a,, : n € N}.
In the former case pA = pf) = 0; in the latter, A = |J,,cn{an} is Borel and pA < >°7° p{a,} = 0.

114X Basic exercises >(a) Let g : R — R be any non-decreasing function. For half-open intervals I C R define
Mgl by setting

A =0, Agla,b] =limgg, g(x) — limgy, g(2)
if a < b. For any set A C R set

0,A = inf{z Mgl : (I;)jen is a sequence of half-open intervals
7=0

such that A C U I}
JEN
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Show that 6, is an outer measure on R. Let p4 be the measure defined from 6, by Carathéodory’s method; show that
gl is defined and equal to A4/ for every half-open interval I C R, and that every Borel subset of R is in the domain

of pg.
(1g is the Lebesgue-Stieltjes measure associated with g.)

(b) At which point would the argument of 114Xa break down if we wrote A [a, b[ = g(b) — g(a) instead of using the
formula given?

>(c) Write 6 for Lebesgue outer measure and p for Lebesgue measure on R. Show that § A = inf{uFE : E is Lebesgue
measurable, A C E} for every A C R. (Hint: Consider sets £ of the form (J;cy I;, where (I;);en is a sequence of
half-open intervals.)

(d) Let X be a set, Z a family of subsets of X such that § € Z, and A : T — [0, 00| a function such that A} = 0.
Define 6 : PX — [0, 00] by writing

A = inf{Z;’;O AL« (Ij)jen is a sequence in Z such that A C J;cy 15}

interpreting inf () as oo, so that #A = oo if A is not covered by any sequence in Z. Show that 6 is an outer measure on
X.

(e) Let E C R be a set of finite measure for Lebesgue measure . Show that for every e > 0 there is a disjoint
s dn = S : i) S €. nt: i) -
family I I, of half-open intervals such that p(EA, ., I;) < e. (Hint: let (J;)jen be a sequence of half-open
intervals such that £ C UjeN Jj and Z;’;O pud; < pkE+ %e. Now take a suitably large m and express |
disjoint union of half-open intervals.)

i<m Jj as a

>(f) Write 0 for Lebesgue outer measure and p for Lebesgue measure on R. Suppose that ¢ € R. Show that
O(A+c) =0A for every A C R, where A+c={x+c:z € A}. Show that if £ C R is measurable so is E + ¢, and that
in this case u(E + ¢) = pE.

(g) Write 0 for Lebesgue outer measure and p for Lebesgue measure on R. Suppose that ¢ > 0. Show that
0(cA) = ch(A) for every A C R, where cA = {cx : © € A}. Show that if E C R is measurable so is ¢E, and that in this
case p(cE) = cuE.

114Y Further exercises (a) In (a-iv) of the proof of 114D, show that Y - Ay,
EZO:O Z(;io Al

(b) Let g, h : R — R be two non-decreasing functions, with sum g + h; let pg, pin, pig+n be the corresponding
Lebesgue-Stieltjes measures (114Xa). Show that

is actually equal to

m

dom ptgyp = dompg Ndom pp, pgrnk = pgl + ppE for every £ € dom g4 p.

(c) Let (gn)nen be a sequence of non-decreasing functions from R to R, and suppose that g(z) = Y oo, gn(z) is
defined and finite for every z € R. Let pg,, 1ty be the corresponding Lebesgue-Stieltjes measures. Show that

dom pig = ey dom g, ,  prgE =307 pig, E for every E € dom .

(d)(i) Show that if A C R and € > 0, there is an open set G O A such that 6G < 0A + ¢, where 6 is Lebesgue
outer measure. (ii) Show that if £ C R is Lebesgue measurable and ¢ > 0, there is an open set G 2 F such that
w(G\ E) < e, where p is Lebesgue measure. (Hint: consider first the case of bounded E.) (iii) Show that if E C R is
Lebesgue measurable, there are Borel sets Hy, Hy such that Hy C F C Hy and p(He \ E) = p(E\ Hy) = 0. (Hint:
use (ii) to find Hs, and then consider the complement of E.)

(e) Write 6 for Lebesgue outer measure on R. Show that a set £ C R is Lebesgue measurable iff ([—n,n] N E) +
O([—n,n] \ E) = 2n for every n € N. (Hint: Use 114Yd to show that for each n there are measurable sets F,,, H,, such
that F,, C [-n,n]NE C H, and H, \ F, is negligible.)

(f) Repeat 114Xc and 114Yd-114Ye for the Lebesgue-Stieltjes measures of 114Xa.

(g) Write B for the o-algebra of Borel subsets of R, and let v : B — [0, c0] be a measure. Let g, Ay, 6, and p, be as
in 114Xa. Show that if vI = A\,I for every half-open interval I, then vE = pgFE for every E € B. (Hint: first consider
open sets F, and then use 114Yd(i) as extended in 114YT.)
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(h) Write B for the o-algebra of Borel subsets of R, and let v : B — [0, 00] be a measure such that v[—n,n] < oo for
every n € N. Show that there is a function g : R — R which is non-decreasing, continuous on the left and such that
vE = ugE for every E € B, where pi4 is defined as in 114Xa. Is g unique?

(i) Write B for the o-algebra of Borel subsets of R, and let v1, v be measures with domain B such that 141 = v5] < 0o
for every half-open interval I C R. Show that 11 E = 1, F for every E € B.

(j) Let € be any family of half-open intervals in R. Show that (i) there is a countable C C £ such that (J& = |JC
(definition: 1A1F) (ii) that |J € is a Borel set, so is Lebesgue measurable (iii) that there is a disjoint sequence (I,)nen
of half-open intervals in R such that (J& = J,,cp In-

(k) Show that for almost every x € R (as measured by Lebesgue measure) the set
: _mc L
{(m,n) :m e Z, ne N\{0}, |z n|§n3

is finite. (Hint: estimate the outer measure of U, >, Ujmj<inls — =45, 2 + L] for ng, k > 1.) Repeat with 2+ € in
the place of 3.

(1) Write u for Lebesgue measure on R. Show that there is a countable family F of Lebesgue measurable subsets of
R such that whenever pE is defined and finite, and € > 0, there is an F' € F such that u(EAF) < e. (Hint: in 114Xe,
show that we can take the I; to have rational endpoints.)

114 Notes and comments My own interests are in ‘abstract’ measure theory, and from the point of view of the
structure of this treatise, the chief object of this section is the description of a non-trivial measure space to provide a
focus for the general theorems which follow. Let me enumerate the methods of constructing measure spaces already
available to us. (a) We have the point-supported measures of 112Bd; in some ways, these are trivial; but they do occur
in applications, and, just because they are generally easy to deal with, it is often right to test any new ideas on them.
(b) We have Lebesgue measure on R; a straightforward generalization of the construction yields the Lebesgue-Stieltjes
measures (114Xa). (c) Next, we have ways of building new measures from old, starting with subspace measures (113Yb),
image measures (112Xf) and sums of measures (112Yf). Perhaps the most important of these is ‘Lebesgue measure on
[0,1)°, T call it p4q for the moment, where the domain of y; is {E : E C [0, 1] is Lebesgue measurable} = {EN[0,1] : EC R
is Lebesgue measurable}, and u1 F is just the Lebesgue measure of E for each E € dom p;. In fact the image measures
of Lebesgue measure on [0, 1] include a very large proportion of the probability measures (that is, measures giving
measure 1 to the whole space) of importance in ordinary applications.

Of course Lebesgue measure is not only the dominant guiding example for general measure theory, but is itself the
individual measure of greatest importance for applications. For this reason it would be possible — though in my view
narrow-minded — to read chapters 12-13 of this volume, and a substantial proportion of Volume 2, as if they applied
only to Lebesgue measure on R. This is, indeed, the context in which most of these results were first developed. 1
believe, however, that it is often the case in mathematics, that one’s understanding of a particular construction is
deepened and strengthened by an acquaintance with related objects, and that one of the ways to an appreciation of
the nature of Lebesgue measure is through a study of its properties in the more abstract context of general measure
theory.

For any proper investigation of the applications of Lebesgue measure theory we must wait for Volume 2. But I
include 114Yk as a hint of one of the ways in which this theory can be used.

115 Lebesgue measure on R”

Following the very abstract ideas of §§111-113, there is an urgent need for non-trivial examples of measure spaces.
By far the most important examples are the Euclidean spaces R” with Lebesgue measure, and I now proceed to a
definition of these measures (115A-115E), with a few of their basic properties. Except at one point (in the proof of the
fundamental lemma 115B) this section does not rely essentially on §114; but nevertheless most students encountering
Lebesgue measure for the first time will find it easier to work through the one-dimensional case carefully before
embarking on the multi-dimensional case.

115A Definitions (a) For practically the whole of this section (the exception is the proof of Lemma 115B) r will
denote a fixed integer greater than or equal to 1. I will use Roman letters a, b, ¢, d, , y to denote members of R", and
Greek letters for their coordinates, so that a = (aq,... ,..), b= (61,...,6:), v = (&1,.-. ,&).
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(b) For the purposes of this section, a half-open interval in R" is a set of the form [a, 0] = {z : a; < & < f; Vi <1},
where a, b € R". Observe that I allow 8; < «; in this formula; if this happens for any 7, then [a,b] = 0.

(c) If I = [a,b] C R" is a half-open interval, then either I = () or
=inf{¢:xel}, Bi=sup{&:zel}

for every ¢ < r; in the latter case, the expression of I as a half-open interval is unique. We may therefore define the
r-dimensional volume AI of a half-open interval I by setting

M =0, Ma,b[=TI[_, B — o if a; < B; for every i.

115B Lemma If I C R" is a half-open interval and (I;);cn is a sequence of half-open intervals covering I, then
A <>
S 2o

proof The proof is by induction on 7. For this proof only, therefore, I write A, for the function defined on the half-open
intervals of R” by the formula of 115Ac.

(a) The argument for r = 1, starting the induction, is similar to the inductive step; but rather than establish a
suitable convention to set up a trivial case » = 0, or ask you to work out the details yourself, I refer you to 114B, which
is exactly the case r = 1.

(b) For the inductive step to r + 1, where r > 1, take a half-open interval I C R"*! and (I j)jen a sequence of
half-open intervals covering I. If I = ) then of course A, 411 =0 < Y2 -0 Ar411;. Otherwise, express I as [a,b], where

a; < Bi for i <r+1, and each I; as [a(j),b(j) [. Write ¢ =[]/, Bi — a, so that A\ry11 = {(Br41 — arq1). Fix e > 0.
For each £ € R let He be the half-space {z : {41 < £}, and consider the set

A= {£ BTN S £ S BrJrla C(g ar+1) (]- + E)Z;io )\r+1(I' N HE)}

(Note that I; N He = [a(j),i)(j) [, where B;j) = ﬁi(j for i < r and 574—1 = mln(6(+1,§) so Arp1(I; N He) is always
defined.) We have a,.1 € A, because

C(O‘TJrl - ar+1) =0< (1 + G)Z;io )‘r+1(Ij N Har+1)a
and of course A C [a41, Brt1], 50 v = sup A is defined, and belongs to [a41, Bry1]-

(c) We find now that v € A.

r C('Y - O‘r+1) = sup 4(5 - ar+1)

<(1+e) EuEZATH (I;NHe) < (1+¢€) Z)‘T“ I,NnH,). Q
c
j=0 7=0

(d) ? Suppose, if possible, that v < S,4+1. Then v € [a, 41, Br41[- Set
J={z:2zeR", (x,y) e I} =[d,V],
where a’ = (aq,... ,a;), b = (B1,..., ), and for each j € N set
Ji={z:zeR", (z,7) € I;}.

Because I C . ien I, we must have J C U ien Jj- Of course both J and the J; are half-open intervals in R". (This
is one of the places Where it is helpful to count the empty set as a half-open mterval.) By the inductive hypothesis,
(=MNJ < Z;io Ardj. As ¢ > 0, there is an m € N such that ¢ < (1 +¢) Z;’;O ArJj. Now for each j < m, either

Jj =0 or aﬁjﬁl <v< Bﬁr)l, set

€ mln({BT+1} U {Br-i-l .7 < m, Jj # Q)}) >
Then

Ar1 (L N He) > A1 (I 0 Hy) + (6§ = 7)AJ;

for every j < m such that J; is non-empty, and therefore for every j. Consequently
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(€ —apy1) =C(y —ary1) +C(E =)

SA+0)Y (LGN H) + (146 (E =) Y A

j=0 =0
<S@A4e) > AN H) + (L+€) Y A (I N He)
j=m+1 j=0
<146 AN He),
j=0

and £ € A, which is impossible. X
(e) We conclude that v = 8,41, so that 8,11 € A and
Ar1d = C(Bro1 — 1) < (1+ €357 o A1 (I N Hp, ) < (1+€)3°720 Al

As € is arbitrary,
>\T+1I S Z_(;OZO A7”—Q—1Ija
as claimed.

Remark This proof is hard work, and not everybody makes such a mouthful of it. What is perhaps a more conventional
approach is sketched in 115Ya, using the Heine-Borel theorem to reduce the problem to one of finite covers, and then
(very often) saying that it is trivial. I do not use this method, partly because we do not need the Heine-Borel theorem
elsewhere in this volume (though we shall certainly need it in Volume 2, and I write out a proof in 2A2F), and partly
because I do not agree that the lemma is trivial when we have a finite sequence Iy,... ,I,, covering I. I invite you
to consider this for yourself. It seems to me that any rigorous argument must involve an induction on the dimension,
which is what I provide here. Of course dealing throughout with an infinite sequence makes it a little harder to keep
track of what we are doing, and I note that in fact there is a crucial step which necessitates truncation of the sequence;
I mean the formula

¢ =min({Br1} U{BLy 5 < m. J; #0))
in part (d) of the proof. We certainly cannot take £ = inf{ﬁﬁj_gl :j €N, J; # 0}, since this is very likely to be equal to
v. Accordingly I need some excuse for truncating, which is in the sentence

As ¢ > 0, there is an m € N such that ¢ < (1+€)3°7 ) AJj.

And that step is the reason for introducing the slack € into the definition of the set A at the beginning of the proof.
Apart from this modification, the structure of the argument is supposed to reflect that of 114B; so I hope you can use
the simpler formulae of 114B as a guide here.

115C Definition Now, and for the rest of this section, define § : P(R") — [0, oo] by writing

oo
A = inf{z M ¢ (1) en is a sequence of half-open intervals
§=0
such that A C U I}
jEN
Observe that every A can be covered by some sequence of half-open intervals — e.g., A C [J,cy[—n,n[, writing
n=(n,n,...,n) € R"; so that if we interpret the sums in [0, o0], as in 112Bc above, we always have a non-empty set
to take the infimum of, and 0 A is always defined in [0, co].
This function 6 is called Lebesgue outer measure on R”; the phrase is justified by (a) of the next proposition.

115D Proposition (a) 6 is an outer measure on R".
(b) 61 = AI for every half-open interval I C R".
proof (a)(i) 6 takes values in [0, o] because every 6A is the infimum of a non-empty subset of [0, oo].

(ii) 60 = 0 because (for instance) if we set I; = () for every j, then every I; is a half-open interval (on the
convention I am using), 0 C U,y I; and 372 Al; = 0.
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(iii) If A C B then whenever B C |J;y; we have A C (J;cy I, so 0A is the infimum of a set at least as large
as that involved in the definition of 8B, and A < 8.

(iv) Now suppose that (A, )nen is a sequence of subsets of R", with union A. For any € > 0, we can choose, for
each n € N, a sequence (I,;),en of half-open intervals such that A4, C UjeN I,,; and Z;io M, < 0A, + 27" (You
should perhaps check that this formulation is valid whether #A,, is finite or infinite.) Now by 111F(b-ii) there is a
bijection from N to N x N; express this in the form m — (k;,,, l;,). Then we find that

Zﬁ:o My b = Z:.OIO Z;io Al

(To see this, note that because every AI,; is greater than or equal to 0, and m — (kn, L) is a bijection, both sums
are equal to

SUP K CNxN is finite Z(n,j)GK Alpj.

Or look at the argument written out in 114D.) But now (I, 1, Ymen is a sequence of half-open intervals and

A= UneN An C UneN UjeN Inj = UmeN Ty s
SO

0A < f: A, g = f: iﬂm

m=0 n=0 j=0
< i(eAn +27") = f: 0A, + f: p f: 0 A, + 2.
n=0 n=0 n=0 n=0

Because e is arbitrary, 04 < Y A, (again, you should check that this is valid whether or not Y.~ ;0 A,, is finite).
As (A,)nen is arbitrary, 6 is an outer measure.

(b) Because we can always take Iy = I, I; = () for j > 1, to obtain a sequence of half-open intervals covering I with
Z;io Alj = A, we surely have 01 < AI. For the reverse inequality, use 115B; if I C ;o 1;, then AT < Z;io Alj; as
(1) jen is arbitrary, 01 > AI and 01 = AI, as required.

115E Definition Because Lebesgue outer measure (115C) is indeed an outer measure (115Da), we may use it to
construct a measure y, using Carathéodory’s method (113C). This measure is Lebesgue measure on R”. The sets
E for which pFE is defined (that is, for which §(ANE) 4+ §(A\ E) = 6A for every A C R") are called Lebesgue
measurable.

Sets which are negligible for p are called Lebesgue negligible; note that these are just the sets A for which 64 = 0,
and are all Lebesgue measurable (113Xa).

115F Lemma If i <7 and { € R, then H;e = {y : 7; < £} is Lebesgue measurable.
proof Write H for Hje.

(a) The point is that \I = A(INH)+ A(I \ H) for every half-open interval I C R". I If either I/ C H or INH = 0,
this is trivial. Otherwise, I must be of the form [a, b], where a; < § < ;. Now INH = [a,z[ and I \ H = [y, b], where
& =pjfor j#1,& =€ n5 = oy for j #1, m; =&, so both are half-open intervals, and

AINH)+ AT\ H) = (£ =) [[(8; = ej) + B: = [ (8 — @)
J#i J#i
= Bi—a) [[Bi —aj)) = 2. Q
J#i
(b) Now suppose that A is any subset of R”, and € > 0. Then we can find a sequence (I;);en of half-open intervals
such that A C (J;cy I; and Z;io A; < 0A + e In this case, (I; N H)jen amd (I; \ H)jen are sequences of half-open
intervals, ANH C U;cn(I; NH) and A\ H C U;en(L; \ H). So
NI NH)+Y M\ H)
§=0

O(ANH)+0(A\ H) <

s

<
I
o

)\Ij S 9A+6

o

<
i
o
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Because € is arbitrary, (AN H) + 0(A\ H) < 0A; because A is arbitrary, H is measurable, as remarked in 113D.

115G Proposition All Borel subsets of R" are Lebesgue measurable; in particular, all open sets, and all sets of

the following classes, together with countable unions of them:

open intervals |a,b[={z: 2z € R", a; < & < B; Vi < r}, where —0o < oy < 3; < oo for each i < r;

closed intervals [a,b] = {z: 2z € R", ; <& < 5; Vi <7}, where —co < a; < 8; < oo for each i < r.
We have moreover the following formula for the measures of such sets, writing p for Lebesgue measure:

:U/]av b[ = N[av b] = H::l 57, — Q4

whenever a < b in R”. Consequently every countable subset of R" is measurable and of zero measure.
proof (a) I show first that all open subsets of R” are measurable. I Let G C R" be open. Let K C Q" x Q" be the
set of pairs (¢, d) of r-tuples of rational numbers such that [¢,d][ C G. Now by the remarks in 111E-111F — specifically,
111Eb, showing that Q is countable, 111F(b-iii), showing that the product of two countable sets is countable, and

111F(b-i), showing that subsets of countable sets are countable — we see, inducing on r, that Q" is countable, and that
K is countable. Also, every [c, d[ is measurable, being

ﬂigr His, \ Hiy;

in the language of 115F, if ¢ = (y1,... ,v-) and d = (d1,...,6,). So, by 111Fa, G’ = U(T,S)GK [r, s[ is measurable.
By the definition of K, G’ C G. On the other hand, if € G, there is an € > 0 such that y € G whenever |ly—z| < e.

Now for each 7 there are rational numbers ;, §; such that v; < & < §; and §; —v; < % If y € [e,d[ then |n; — &| < %

for every i so ||y — z|| < e and y € G. Accordingly (¢,d) € K and x € [¢,d] C G'. As x is arbitrary, G = G’ and G is
measurable. Q

(b) Now the family ¥ of Lebesgue measurable sets is a o-algebra of subsets of R” including the family of open sets,
so must contain every Borel set, by the definition of Borel set (111G).

(c) Of the types of interval considered, all the open intervals are actually open sets, so are surely Borel. A closed
interval [a, b] is expressible as the intersection (), cy]a —27"1,b+27"1[ of a sequence of open intervals, so is Borel.

(d) To compute the measures, we already know from 115Db that yu[a,b] = [[;_, B; — a; if a < b. For the other
types of bounded interval, it is enough to note that if —co < a; < ; < 0o for every i, then

[a+€l,b] Cla,b[ C [a,b] Cla,b+€l]
whenever € > 0 in R. So
pla, b < pla,b] < infesopfa,b+el[ =infeso [T (Bi — a1 +€) = [T, Bi — as.
If 8; = «; for any ¢, then we must have
pla, b = pla,b] = 0 =[T;_, Bi — .

If B; > oy for every 4, then set € = min;<, 8; — oy > 0; then

wla,b] > pla,b > sup pla+€el, b

0<e<eg
r r
= Sup H(ﬁv —a;—¢€) = Hﬂz‘ — Q4.
0<e<eo i=1 i—1

So in this case

Ty Bi — i < pla,b] < pla,b] < [T_y Bi — o

and
pla, bl = pla,b] = [T, Bi — ai.

(e) By (d), p{a} = pla, a] = 0 for every a. If A C R” is countable, it is either empty or expressible as {a,, : n € N}.
In the former case pA = puf) = 0; in the latter, A = {J,,cy{an} is Borel and pA < 3 p{a,} = 0.

115X Basic exercises If you skipped §114, you should now return to 114X and assure yourself that you can do
the exercises there as well as those below.
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(a) Show that if I, J are half-open intervals in R”, then I\ J is expressible as the union of at most 2r disjoint
half-open intervals. Hence show that (i) any finite union of half-open intervals is expressible as a finite union of disjoint
half-open intervals (ii) any countable union of half-open intervals is expressible as the union of a disjoint sequence of
half-open intervals.

>(b) Write 6 for Lebesgue outer measure, u for Lebesgue measure on R”. Show that A = inf{uFE : F is Lebesgue
measurable, A C E} for every A C R". (Hint: consider sets E of the form |J. y I;, where (I;);en is a sequence of
half-open intervals.)

jeN

(c) Let E C R" be a set of finite measure for Lebesgue measure p. Show that for every e > 0 there is a disjoint
family lo, ..., I, of half-open intervals such that u(EA <, I;) < e (Hint: let (J;)jen be a sequence of half-open
intervals such that E C (J;ey J; and 3272, pJ; < pE + 1e. Now take a suitably large m and express J

disjoint union of half-open intervals.)

i<m Jj as a

>(d) Suppose that ¢ € R". (i) Show that §(A+c) = 0A for every A C R", where A+c¢ = {z+c:x € A}. (ii) Show
that if E C R” is measurable so is E + ¢, and that in this case u(F + ¢) = uE.

(e) Suppose that v > 0. (i) Show that 0(yA) = 4" A for every A CR", where yA = {yz : € A}. (ii) Show that if
E C R" is measurable so is vF, and that in this case u(yE) =~ "uF

115Y Further exercises (a) (i) Suppose that M is a strictly positive integer and k;, I; are integers for 1 < i < r.
Set a; = k;/M and f3; = I;/M for each i, and I = [a,b]. Show that A\ = #(J)/M", where J is {z: 2 € Z", 37z € I}.
(ii) Show that if a half-open interval I C R” is covered by a finite sequence Iy, ... , I, of half-open intervals, and all
the coordinates involved in specifying the intervals I, Iy, ... , I, are rational, then A\I < Z;n:o Al;. (iii) Assuming the
Heine-Borel theorem in the form

whenever [a,b] is a closed interval in R” which is covered by a sequence (] al), b D jen of open intervals,
there is an m € N such that [a,b] C Ujgm}a(j),b(j) [,
prove 115B. (Hint: if [a,b] C UjeN [a(j), b [, replace [a, b] by a smaller closed interval and each [a(j)7 b() [ by a larger
open interval, changing the volumes by adequately small amounts.)

(b)(i) Show that if A C R” and € > 0, there is an open set G O A such that G < 0A + ¢, where 6 is Lebesgue
outer measure. (ii) Show that if £ C R" is Lebesgue measurable and € > 0, there is an open set G O E such that
w(G\ E) < e, where p is Lebesgue measure. (Hint: consider first the case of bounded E.) (iii) Show that if £ C R"
is Lebesgue measurable, there are Borel sets Hy, Hs such that Hy C E C Hy and p(Hs \ E) = p(E \ Hy) = 0. (Hint:
use (ii) to find Hs, and then consider the complement of E.)

(c) Write 6 for Lebesgue outer measure on R”. Show that a set £ C R” is Lebesgue measurable iff ([—n,n]N E) +
O([-n,n] \ E) = (2n)" for every n € N, writing n = (n,... ,n). (Hint: use 115YDb to show that for each n there are
measurable sets F,,, H, such that F,, C [-n,n]N E C H, and H, \ F, is negligible.)

(d) Assuming that there is a set A C R which is not a Borel set, show that there is a family £ of half-open intervals
in R? such that [J& is not a Borel set. (Hint: consider & = {[£,1 +&[ x [-&,1—€[: &€ € A})

(e) Let X be a set and A a semiring of subsets of X, that is, a family of subsets of X such that
0 e A,
ENnFeAforall E, F € A,
whenever E, F' € A there are disjoint Ey, ..., F, € Asuch that E\ FF = FEyU...UE,.
Let A: A — [0,00] be a functional such that
D=0,
A\E = Z?io AE; whenever E € A and (F;);en is a disjoint sequence in A with union E.
Show that there is a measure p on X extending A. (Hint: use the method of 113Y1i.)

115 Notes and comments In the notes to §114 I ran over the methods so far available to us for the construction of
measure spaces. To the list there we can now add Lebesgue measure on R”.

If you look back at §114, you will see that I have deliberately copied the exposition there. I hope that this duplication
will help you to see the essential elements of the method, which are three: a primitive concept of volume (114A/115A);
countable subadditivity (114B/115B); and measurability of building blocks (114F/115F).
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Concerning the ‘primitive concept of volume’ there is not much to be said. The ideas of length of an interval, area of
a rectangle and volume of a cuboid go back to the beginning of mathematics. I use ‘half-open intervals’, as defined in
114Aa/115Ab, for purely technical reasons, because they fit together neatly (see 115Xa and 115Ye); if we started with
‘open’ or ‘closed’ intervals the method would still work. One thing is perhaps worth mentioning: the blocks I use are
all upright, with edges parallel to the coordinate axes. It is in fact a non-trivial exercise to prove that a block in any
other orientation has the right Lebesgue measure, and I delay this until Chapter 26. For the moment we are looking
for the shortest safe path to a precise definition, and the fact that rotating a set doesn’t change its Lebesgue measure
will have to wait.

The big step is ‘countable subadditivity’: the fact that if one block is covered by a sequence of other blocks, its
volume is less than or equal to the sum of theirs. This is surely necessary if blocks are to be measurable with the
right measures, by 112Cd. (What is remarkable is that it is so nearly sufficient.) Here we have some work to do, and
in the r-dimensional case there is a substantial hill to climb. You can do the climb in two stages if you look up the
Heine-Borel theorem (115Ya); but as I try to explain in the remarks following 115B, I do not think that this route
avoids any of the real difficulties.

The third thing we must check is that blocks are measurable in the technical sense described by Carathéodory’s
theorem. This is because they are obtainable by the operations of intersection and union and complementation from
half-spaces, and half-spaces are measurable for very straightforward reasons (114F/115F). Now we are well away, and
I do very little more, only checking that open sets, and therefore Borel sets, are measurable, and that closed and
open intervals have the right measures (114G/115G). Some more properties of Lebesgue measure can be found in
§134. But every volume, if not quite every chapter, of this treatise will introduce further features of this extraordinary
construction.
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Chapter 12
Integration

If you look along the appropriate shelf of your college’s library, you will see that the words ‘measure’ and ‘integration’
go together like Siamese twins. The linkage is both more complex and more intimate than any simple explanation can
describe. But if we say that one of the concepts on which integration is based is that of ‘area under a curve’, then
it is clear that any method of determining ‘areas’ ought to correspond to a method of integrating functions; and this
has from the beginning been an essential part of the Lebesgue theory. For a literal description of the integral of a
non-negative function in terms of the area of its ordinate set, I think it best to wait until Chapter 25 in Volume 2. In
the present chapter I seek to give a concise description of the standard integral of a real-valued function on a general
measure space, with the half-dozen most important theorems concerning this integral.

The construction bristles with technical difficulties at every step, and you will find it easy to understand why it was
not done before 1901. What may be less clear is why it was ever done at all. So perhaps you should immediately read
the statements of 123A-123D below. It is the case (some of the details will appear, rather late, in §436 in Volume 4)
that any theory of integration powerful enough to have theorems of this kind must essentially encompass all the ideas
of this chapter, and nearly all the ideas of the last.

121 Measurable functions

In this section, I take a step back to develop ideas relating to o-algebras of sets, following §111; there will be no
mention of ‘measures’ here, except in the exercises. The aim is to establish the concept of ‘measurable function’ (121C)
and a variety of associated techniques. The best single example of a o-algebra to bear in mind when reading this
chapter is probably the o-algebra of Borel subsets of R (111G); the o-algebra of Lebesgue measurable subsets of R
(114E) is a good second.

Throughout the exposition here (starting with 121A) T seek to deal with functions which are not defined on the
whole of the space X under consideration. I believe that there are compelling reasons for facing up to such functions
at an early stage (see 121G); but undeniably they add to the technical difficulties, and it would be fair to read through
the chapter once with the mental reservation that all functions are taken to be defined everywhere, before returning to
deal with the general case.

121 A Lemma Let X be a set and X a o-algebra of subsets of X. Let D be any subset of X and write
Yp={END:EeX}
Then Y p is a o-algebra of subsets of D.
proof (i) 0 =0 N D € Xp because @) € X.
(ii) If F € Xp, thereis an F € ¥ such that F = END;now D\ F = (X\E)ND € ¥p because X \ F € X.

(iii) If (F},)nen is any sequence in X p, then for each n € N we may choose an E,, € ¥ such that F,, = E,, N D; now
Unen Frn = (Upen En) N D € Xp because |,y En € Z.

Notation I will call ¥ the subspace o-algebra of subsets of D, and I will say that its members are relatively
measurable in D. Y p is also sometimes called the trace of ¥ on D.

121B Proposition Let X be a set, 3 a o-algebra of subsets of X, and D a subset of X. Write ¥ for the subspace
o-algebra of subsets of D. Then for any function f: D — R the following assertions are equiveridical, that is, if one of
them is true so are all the others:
(i) {z: f(x) < a} € Ip for every a € R;
(ii) {z : f(z) < a} € ¥p for every a € R;
(iii) {z : f(z) > a} € Ep for every a € R;
(iv) {z : f(x) > a} € Tp for every a € R.

proof (i)=(ii) Assume (i), and let @ € R. Then
{01 f@) < a} = Mol f@) <a+27) € Sp

because {z : f(z) <a+27"} € Xp for every n and Xp is closed under countable intersections (111Dd). Because a is
arbitrary, (ii) is true.



36 Integration 121B

(ii)=(iii) Assume (ii), and let a € R. Then
{z:f(x) >a}=D\{z: f(z) <a}eXp

because {z : f(z) < a} € ¥p and Xp is closed under complementation. Because a is arbitrary, (iii) is true.
(iii)=(iv) Assume (iii), and let a € R. Then
{z: f(z) >a} =Npeniz: fl@) >a—-2""} €Xp

because {z : f(z) > a—2""} € Ep for every n and Ep is closed under countable intersections. Because a is arbitrary,
(iv) is true.

(iv)=-(i) Assume (iv), and let a € R. Then
{z:f(z)<a}=D\{z: f(x) >a} €eXp

because {z : f(z) > a} € ¥p and Xp is closed under complementation. Because a is arbitrary, (i) is true.

121C Definition Let X be a set, ¥ a o-algebra of subsets of X, and D a subset of X. A function f: D — R is
called measurable (or X-measurable) if it satisfies any, or equivalently all, of the conditions (i)-(iv) of 121B.

If X is R or R”, and X is its Borel o-algebra (111G), a X-measurable function is called Borel measurable. If
X is R or R”, and ¥ is the o-algebra of Lebesgue measurable sets (114E, 115E), a Y-measurable function is called
Lebesgue measurable.

Remark Naturally the principal case here is when D = X. However, partially-defined functions are so common, and
so important, in analysis (consider, for instance, the real function Insin) that it seems worth while, from the beginning,
to establish techniques for handling them efficiently.

Many authors develop a theory of ‘extended real numbers’ at this point, working with [—o0, 00] = R U {—00, 00},
and defining measurability for functions taking values in this set. I outline such a theory in §135 below.

121D Proposition Let X be R” for some r > 1, D a subset of X, and g : D — R a function.
(a) If g is Borel measurable it is Lebesgue measurable.

(b) If g is continuous it is Borel measurable.

(¢) If r =1 and ¢ is monotonic it is Borel measurable.

proof (a) This is immediate from the definitions in 121C, if we recall that the Borel o-algebra is included in the
Lebesgue c-algebra (114G, 115G).

(b) Take a € R. Set
G={G:GCR"isopen, g(z) <aVzeGNDY},

Go=UG={z:3 Geg, zeG}
Then Gy is a union of open sets, therefore open (1A2Bd). Next,
{z:g9(z) <a} =GyND.

P (i) If g(z) < a, then (because g is continuous) there is a § > 0 such that |g(y) — g(x)| < a — g(x) whenever y € D

and ||y —z|| < d. But {y : ||y — z|| < ¢} is open (1A2D), so belongs to G and is included in Gg, and x € GoN D. (ii) If

x € Go N D, then there is a G € G such that € G; now g(y) < a for every y € G N D, so, in particular, g(z) < a. Q
Finally, Gy, being open, is a Borel set. As a is arbitrary, g is Borel measurable.

(c) Suppose first that g is non-decreasing. Let a € R and write E = {z : g(z) < a}. If E = D or E = () then
of course it is the intersection of D with a Borel set. Otherwise, E is non-empty and bounded above in R, so has a
supremum ¢ € R. Now E must be either D N]—oo, ¢[ or D N|—00, ¢, according to whether ¢ € E or not, and in either
case is the intersection of D with a Borel set (see 114G).

Similarly, if g is non-increasing, {z : g(z) > a} will again be the intersection of D with either () or R or |—o0, | or
|—00, ¢[ for some c. So in this case 121B(iii) will be satisfied.

Remark I see that in part (b) of the above proof I use some basic facts about open sets in R". These are covered in
detail in §1A2. If they are new to you it would probably be sensible to rehearse the arguments with r = 1, so that
D C R, before embracing the general case.
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121E Theorem Let X be a set and X a o-algebra of subsets of X. Let f and g be real-valued functions defined on
domains dom f, domg C X.

(a) If f is constant it is measurable.

(b) If f and g are measurable, so is f + g, where (f + g)(z) = f(z) + g(x ) for x € dom f Ndomg.

(c) If f is measurable and ¢ € R, then c¢f is measurable, where (c¢f)(z) = ¢- f(z) for z € dom f.

(d) If f and g are measurable, so is f x g, where (f x g)( )= f(z) x g(x ) for z € dom f Ndomg.

(e) If f and g are measurable, so is f/g, where (f/g)(z) = f(x)/g(x) when z € dom f Ndom g and g(x) # 0.

(f) If f is measurable and E C R is a Borel set, then there is an F € ¥ such that f~[E] = {z : f(z) € E} is equal
to F'Ndom f.

(g) If f is measurable and h is a Borel measurable function from a subset dom h of R to R, then hf is measurable,
where (hf)(z) = h(f(z)) for x € dom(hf) ={y:y € dom f, f(y) € domh}.

(h) If f is measurable and A is any set, then f[A is measurable, where dom(f]A) = ANdom f and (f]A)(x) = f(z)
for x € ANdom f.

proof For any D C X write Xp for the subspace o-algebra of subsets of D.

(a) If f(z) = c for every x € dom f, then {z : f(z) < a} = dom f if ¢ < a, § otherwise, and in either case belongs
to Edomf'

(b) Write D = dom(f + g) = dom f Ndomg. If a € R then set K ={(q,¢'): ¢, ¢ € Q, ¢+ ¢ < a}. Then K is a
subset of Q x Q, so is countable (111Fb, 1A1E). For ¢ € Q choose sets Fy, G, € X such that

{z: f(z) <q}=F,Nndom f, {z:g9(z)<q}=G,;Ndomy.
For each (q,¢') € K, the set
By ={: /@) < ¢, 9(a) < '} = F,n Gy (1D

belongs to ¥ p. Finally, if (f + g)(x) < a, then we can find ¢ € |f(x),a — g(2)[, ¢’ € Jg(z),a — q], so that (¢,¢') € K
and x € Eyq; while if (¢,¢') € K and x € Eyy, then (f + g)(z) < ¢+ ¢’ < a. Thus

{.’E : (f+g)(l') < CL} = U(q,q/)GK qul € ZD
by 111Fa. As a is arbitrary, f 4 g is measurable.
(c) Write D = dom f. Let a € R. If ¢ > 0, then

{z:cf(z) <a}l={z: f(x) < %} € Xp.
If ¢ < 0, then
{z:cf(z) <a}={x: f(z)> %} €Yp.

While if ¢ = 0, then {z : ¢f(x) < a} is either D or ), as in (a) above, so belongs to ¥p. As a is arbitrary, cf is
measurable.
(d) Write D = dom(f x g) = dom f Ndomg. Let a € R. Let K be
{(¢1,92,93,94) * 1, ... ,qa € Q, uv < @ whenever u € |q1,q2[, v € |¢3, q[}-
Then K is countable. For ¢ € Q choose sets Iy, F,, G, G, € ¥ such that

{z: f(x) < ¢} =F,Nndom f, {z:f(x)>q}=F;Ndomf,
{z:g(x) <q} =Ggndomg, {z:g(z)>q}=G,Ndomyg.
For (q1,42,43,q4) € K set
Eqigpasas = {7 1 f(2) € a1, ¢2[, 9(z) € las, qa[}
=DNF, NF,NG, NGy, € Xp;

then £ =, 4.05.00)e ¢ Parazasas € XD-
Now E={z:(f xg)(z) <a}. P (i) If (f x g)(x) < a, set u= f(z), v=g(z). Set

a—uv

—— )Y>0
’1+|ul+\v|)

7 = min(1

Take q1,...,q4 € Q such that
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u—n<qa<u<g@<u+tn v-n<g<v<gvtn
If u' € g1, g2[, v € Jgs, qaf, then v’ —u| <nand [v —v[ <7, so

u'v' —uv = (v —u) (v —v) + (v —u)v +u(v’ —v)
<02+l + |ulp < 91+ |ul + v]) < a— uw,

and v’ < a. Accordingly (¢1,42,¢3,q4) € K. Also © € Eq 4yq5q.> S0 © € E. Thus {z : (f x ¢g)(z) < a} C E. (ii) On
the other hand, if € E, there are q1, ... , g4 such that (g1, 2, ¢3,¢1) € K and © € Ey, 4,454, 50 that f(x) € ]g1, g2 and
9(2) € g3, sl and f(2)g(x) < a. So B C {z: (f x g)() < a}. Q

Thus {z : (f x g)(z) < a} € Ep. As a is arbitrary, f x g is measurable.

(e) In view of (d), it will be enough to show that 1/g is measurable. Now if a > 0, {z : 1/g(z) < a} = {x :
glx) > 1/atU{z : g(x) < 0}; if a < 0, then {z : 1/g(z) < a} = {z : 1/a < g(z) < 0}; and if @ = 0, then
{z:1/g(x) <a} = {z: g(z) <0}. And all of these belong to Xgqm1/4-

(f) Write D = dom f and consider the set
T={E:ECR, f'[E] € Sp}.

Then T is a g-algebra of subsets of R. P (i) f~1[)] =0 € Xp,so0 € T. (ii) If E € T, then f~'[R\E] = D\ f~'[E] € £p
so R\ E € T. (iii) If (Ey)nen is a sequence in T, then f~ U, ey En] = Upen /' [En] € Ep because Xp is a o-algebra,
s0 U,en En €T. Q

Next, T contains all sets of the form H, = |—00,a] for a € R, by the definition of measurability of f. The result
follows by arguments already used in 114G above. First, all open subsets of R belong to T. I* Let G C R be open.
Let K C Q x Q be the set of pairs (g, ¢’) of rational numbers such that [¢,¢'[ C G. K is countable. Also, every [q,¢'[
belongs to T, being Hy \ Hy. So G' =, gyer 4, 4'[ € T

By the definition of K, G’ C G. On the other hand, if z € G, there is a § > 0 such that |z — ,2 + 6[ C G. Now
there are rational numbers g € |x — §, 2| and ¢’ € |z, + J], so that (¢,¢') € K and x € [q,¢'| C G'. As z is arbitrary,
G=G andGeT. Q

Finally, T is a o-algebra of subsets of R including the family of open sets, so must contain every Borel set, by the
definition of Borel set (111G).

(g) If a € R, then {y : h(y) < a} is of the form E N dom h, where E is a Borel subset of R. Next, f~1[E] is of the
form F'Ndom f, where F' € 3, by (f) above. So

{z: (hf)(z) <a}=FNdomhf € Zgomny-
As a is arbitrary, hf is measurable.
(h) The point is that X gndom f ={ENA: E € Zgoms}. Soif a € R,
{z: (f1A)(2) <a} = An{z: f(z) < a} € Saom(s14)-

Remarks Of course part (c) of this theorem is just a matter of putting (a) and (d) together, while (e) is a consequence
of (d), (g) and the fact that continuous functions are Borel measurable (121Db).

T hope you will recognise the technique in the proof of part (d) as a version of arguments which may be used to prove
that the limit of a product is the product of the limits, or that the product of continuous functions is continuous. In
fact (b) and (d) here, as well as the theorems on sums and products of limits, are consequences of the fact that addition
and multiplication are continuous functions. In 121K I give a general result which may be used to exploit such facts.

Really, part (f) here is the essence of the concept of ‘measurable’ real-valued function. The point of the definition
in 121B-121C is that the Borel o-algebra of R can be generated by any of the families {]—00,a[ : a € R}, {]—00,q] :
a € R},.... (See 121Yc(ii).) There are many routes covering this territory in rather fewer words than I have used, at
the cost of slightly greater abstraction.

121F Theorem Let X be a set and ¥ a o-algebra of subsets of X. Let (f,)nen be a sequence of ¥-measurable
real-valued functions with domains included in X.
(a) Define a function lim,, o f, by writing

(limp, 00 fr) (@) = limy 00 fr ()
for all those = € |,y ﬂmz" dom f,,, for which the limit exists in R. Then lim,,_,~ f, is X-measurable.
(b) Define a function sup,,cy fr by writing
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(Suppen fn) (%) = sup,en fn(2)

for all those = € [,y dom f,, for which the supremum exists in R. Then sup,,cy f» is X-measurable.
(¢) Define a function inf,cy f,, by writing

(infren frn)(x) = infren fn (:L')
for all those x € ﬂneN dom f,, for which the infimum exists in R. Then inf, ¢y f, is X-measurable.
(d) Define a function limsup,,_, . fn by writing
(hm SUPy 00 fn)(x) = lim SUPy 00 fn(x)

for all those = € |,y dom f,,, for which the limsup exists in R. Then limsup,, ., f» is XL-measurable.

(e) Define a function liminf, . f, by writing

m>n

(liminf,—eo fr)(z) = liminf, o fr(z)

for all those =z € UneN N dom f,,, for which the liminf exists in R. Then liminf,cy f, is 3X-measurable.

m>n

proof Forn € N, a € R choose Hy,(a) € ¥ such that {x: f,(x) < a} = H,(a) Ndom f,. The proofs are now a matter
of observing the following facts:

(a) {o: (1, s fu) (@) < @} = dom(limsoo fu) N ycss Uners N Honla + 275
(b) {o & (Suppex fu)(@) < a} = dom(sup, ey fu) N e Hala):

(¢) infuen fu = —Suppcr(—fu):

(d) limsup,, , o fn = limy, SUDPypeN Jman;

(e) liminf, o0 frn = —limsup,,_,(—fn)-

121G Remarks It is at this point that we first encounter clearly the problem of functions which are not defined
everywhere. (The quotient f/g of 121Ee also need not be defined everywhere on the common domain of f and g, but it
is less important and more easily dealt with.) The whole point of the theory of measure and integration, since Lebesgue,
is that we can deal with limits of sequences of functions; and the set on which lim,, ., f,(x) exists can be decidedly
irregular, even for apparently well-behaved functions f,,. (If you have encountered the theory of Fourier series, then an
appropriate example to think of is the sequence of partial sums f,(z) = %ao + > r_; (ak cos kx + by, sin kx) of a Fourier
series in which >"77 |ax|+ |bx| = oo, so that the series is not uniformly absolutely summable, but may be conditionally
summable at certain points.)

I have tried to make it clear what domains I mean to attach to the functions sup,,cy fn, limp— oo fn, etc. The guiding
principle is that they should be the set of all € X for which the defining formulae sup,, ¢y fn(2), lim, 00 frn(x) can
be interpreted as real numbers. (As I noted in 121C, I am for the time being avoiding ‘co’ as a value of a function,
though it gives little difficulty, and some formulae are more naturally interpreted by allowing it.) But in the case of
lim, lim sup, liminf it should be noted that I am using the restrictive definition, that lim,,_,+, a, can be regarded as
existing only when there is some n € N such that a,, is defined for every m > n. There are occasions when it would
be more natural to admit the limit when we know only that a,, is defined for infinitely many m; but such a convention
could make 121Fa false, unless care was taken.

As in 111E-111F, we can use the ideas of parts (b), (c) here to discuss functions of the form supjcx fi, infrex fi
for any family (fx)rex of measurable functions indexed by a non-empty countable set K.

In this theorem and the last, the functions f, g, f,, have been permitted to have arbitrary domains, and consequently
there is nothing that can be said about the domains of the constructed functions. However, it is of course the case that
if the original functions have measurable domains, so do the functions constructed from them by the rules I propose.
I spell out the details in the next proposition.

121H Proposition Let X be a set and ¥ a o-algebra of subsets of X; let f, g and f,,, for n € N, be ¥-measurable
real-valued functions whose domains belong to ¥. Then all the functions

f+g9, fxg. flg,

SUP,, eN fn7 infneN fnv limy, s o0 f’ru lim SUPy, 00 fna lim inf,, fn

have domains belonging to ¥. Moreover, if h is a Borel measurable real-valued function defined on a Borel subset of
R, then domhf € X.
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proof For the first two, we have dom(f + g) = dom(f X g) = dom f Ndom g. Next, if E is a Borel subset of R, there
is an H € ¥ such that f~![E] = H Ndom f; so f~![E] € ¥. Thus

domhf = f~t[domh] € ¥.
Setting h(a) = 1/a for a € R\ {0}, we see that dom(1/f) € ¥. (domh = R\ {0} is a Borel set because it is open.)
Similarly, dom(1/g) and dom(f/g) = dom f N dom(1/g) belong to X.

Now for the infinite combinations. Set H,(a) = {z : € dom f,,, fo(x) < a} for n € N, a € R; as just explained,
every H, (a) belongs to ¥.. Now

dom(sup,,en frn) = Upen Nnen Hn(m) € .
Next, |fm — fn| is measurable, with domain in X, for all m, n € N (applying the results above to —f, = —1 - f,,
Jm — fn = fm + (7fn) and |fm - fn| = | | ° (fm - fn))a 50
Gk = {z : € dom f,, Ndom f, | fn(z) — fu(z)] <27%} e X
for all m, n, k € N. Accordingly

dom(limp o0 fn) = {7 :3 0, (fin(2))m>n is Cauchy} = Ny Unen Nimsn Gmnk € 2.
Manipulating the above results as in (c¢), (d) and (e) of the proof of 121F, we easily complete the proof.

Remark Note the use of the General Principle of Convergence in the proof above. I am not sure whether this will
strike you as ‘natural’, and there are alternative methods; but the formula

{ :limy, o0 fn(z) exists in R} = {x : (fn(2))nen is Cauchy}

is one worth storing in your long-term memory.

*121I I end this section with two results which can be safely passed by on first reading, but which you will need
at some point to master if you wish to go farther into measure theory than the present chapter, as both are essential
parts of the concept of ‘measurable function’.

Proposition Let X be a set and ¥ a g-algebra of subsets of X. Let D be a subset of X and f : D — R a function.
Then f is measurable iff there is a measurable function i : X — R extending f.

proof (a) If h: X — R is measurable and f = Al D, then f is measurable by 121Eh.
(b) Now suppose that f is measurable.

(i) For each ¢ € Q, the set Dy = {z : x € D, f(z) < q} belongs to the subspace o-algebra X p, that is, there is an
E, € ¥ such that D, = F, N D. Set

F =X\ Uyeq Ea:

G = mnEN UqEQ,qgfn EQ’

then both F and G belong to ¥, and are disjoint from D. P If z € D, there is a ¢ € Q such that f(z) < ¢, so that
xr € E, and x ¢ F. Also there is an n € N such that f(z) > —n,sothat © ¢ Ey for ¢ < —nandz ¢ G. Q
Set H=X\(FUG) € X. Forz € H,

{g:q€Q,z € E}
is non-empty and bounded below, so we may set
hz) =inf{qg: x € Eg};
for x € FUG, set h(z) = 0. This defines h: X — R.
(ii) h(z) = f(z) for x € D. P As remarked above, x € H. If ¢ € Q and z € E,, then f(z) < ¢; consequently

h(z) > f(x). On the other hand, given € > 0, there isa ¢ € QN[f(x), f(z)+¢€], and now z € Ey, so h(z) < ¢ < f(z)+€
as € is arbitrary, h(z) < f(z). Q

(iii) A is measurable. P If a > 0 then

{z:h(z)<a}=(HNY, ., E) UFUG) € %,

g<a
while if a <0

{z:h(z)<a}=HNU,_,E,€X. Q

g<a
This completes the proof.
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*121J The next proposition may illuminate 121E, as well as being indispensable for the work of Volume 2. I start
with a useful description of the Borel sets of R”.

Lemma Let r > 1 be an integer, and write J for the family of subsets of R” of the form {z : & < a} where i < r,
a € R, writing z = (&1,...,&), as in §115. Then the o-algebra of subsets of R" generated by J is precisely the
o-algebra B of Borel subsets of R”.

proof (a) All the sets in J are closed, so must belong to B; writing X for the o-algebra generated by 7, we must have
Y CB.

(b) The next step is to observe that all half-open intervals of the form
la,bl ={z:a; <& < B;Vi<r}
belong to X; this is because
Ja,b] = Ny, ({2 : & < Bi} \ {2 : & < ai}).

It follows that all open sets belong to . I (Compare the proof of 121Ef.) Let G C R" be an open set. Let Z be the
set of all intervals of the form ]g, ¢’] which are included in G, where ¢, ¢' € Q". Then Z is a countable subset of X, so
(because X is a o-algebra) | JZ € 3. By the definition of Z, |JZ C G. But also, if z € G, there is a 6 > 0 such that
the open ball U(z,d) with centre z and radius ¢ is included in G (1A2A). Now, for each ¢ < r, we can find rational
numbers «;, [3; such that

o )
& <ai<§i§ﬁi<§i+;,

) _; =
so that
x €la,b] CU(x,6) CG
and x € Ja,b] € Z. Thus € [JZ. As z is arbitrary, G C | JZ and G=JZ € . Q

(c) Thus X is a o-algebra of sets containing every open set, and must include B, the smallest such o-algebra.

Remark Compare the proof of 115G.

*121K Proposition Let X be a set and ¥ a o-algebra of subsets of X. Let r > 1 be an integer, and f1,..., f,
measurable functions defined on subsets of X. Set D =", dom f; and for x € D set f(z) = (fi(x),..., fr(x)) € R".
Then N

(a) for any Borel set E C R", f~1[E] belongs to the subspace o-algebra Y p;

(b) if h is a Borel measurable function from a subset dom h of R” to R, then the composition A f is measurable.

proof (a)(i) Consider the set
T={E:ECR", f-\E]eZp}
Then T is a o-algebra of subsets of R”. P (Compare 121Ef.) (a) f~'[0)] =0 € ¥p,soh € T. (B) If E € T, then
STHR™N\E] =D\ f'[E] € SpsoR\E € T. (7) If (Ey)nen is a sequence in T, then U, o Enl = Uen £ HER] €
¥p because Xp is a o-algebra, so U, oy En € T. Q
(ii) Next, for any ¢ <7 and o € R, J = {x : & < a} belongs to T, because
I ={x:2 €D, fi(z) <a} € Xp.

So T includes the family J of 121J and therefore includes the o-algebra B generated by 7, that is, contains every
Borel subset of R”.

(b) Now the rest follows by the argument of 121Eg. If ¢ € R, then {y : y € domh, h(y) < a} is of the form
E N domh, where E is a Borel subset of R", so {z : € dom(hf), (hf)(z) < a} = f~[E] N dom(hf) belongs to
Ydom hf-

121X Basic exercises >(a) Let X be a set, ¥ a g-algebra of subsets of X, and D C X. Let (D,,),en be a partition
of D into relatively measurable sets and (f,,)en a sequence of measurable real-valued functions such that D,, C dom f,
for each n. Define f: D — R by setting f(z) = f.(z) whenever n € N, x € D,,. Show that f is measurable.

(b) Let X be a set and ¥ a o-algebra of subsets of X. If f and g are measurable real-valued functions defined on
subsets of X, show that f*, f~, f Ag and fV g are measurable, where
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F+(@) = max(f(x),0) for z € dom f,
f~(2) = max(—f(),0) for x € dom f,
(f Vg)(z) = max(f(z),g(x)) for x € dom f Ndomyg,

(f A g)(x) =min(f(x),g(x)) for x € dom f N dom g.

>(c) Let (X,X,u) be a measure space. Write L for the set of real-valued functions f such that (a) dom f is a
conegligible subset of X () there is a conegligible set £ C X such that f[FE is measurable. (i) Show that the set E of
clause () in the last sentence may be taken to belong to 3 and be included in dom f. (i) Show that if f, g € £° and
c€R, then f+g,cf, fxg, |fl, fT f=, fAg, fVgall belong to £°. (iii) Show that if f, g € £° and g # 0 a.e. then
f/g € £ (iv) Show that if {f,)nen is a sequence in £° then the functions

lim,, 00 fnv SUP,eNn fn» inanN fnv lim SUPy, 00 fna lim inf,, o fn

belong to £° whenever they are defined almost everywhere as real-valued functions. (v) Show that if f € £° and
h:R — R is Borel measurable then hf € £°.

>(d) Consider the following four families of subsets of R:
Ay ={]-00,a[:a € R}, Ay ={]-00,a]:ac€R},

Az ={Ja,0[:a € R}, Ag={[a,00[:a € R}.
Show that for each j the o-algebra of subsets of R generated by A; is the o-algebra of Borel sets.

(e) Let D be any subset of R”, where r > 1. Write Tp for the set {GN D : G C R” is open}. (i) Show that
T p satisfies the properties of open sets listed in 1A2B. (ii) Let B be the o-algebra of Borel sets in R", and B(D) the
subspace o-algebra on D. Show that B(D) is just the o-algebra of subsets of D generated by Tp. (Hint: («) observe
that Tp C B(D) (B8) consider {E : E CR", EN D belongs to the o-algebra generated by Tp}.)

(f) Let (X, 3, 1) be a measure space and define £° as in 121Xc. Show that if f1,... , f,. belong to £ and h: R” — R
is Borel measurable then h(fi,... , f.) belongs to LY.

121Y Further exercises (a) Let X and Y be sets, 3 a o-algebra of subsets of X, ¢ : X — Y a function and g
a real-valued function defined on a subset of Y. Set T = {F : F C Y, ¢~ [F] € X}; then T is a o-algebra of subsets
of Y (see 111Xc). (i) Show that if g is T-measurable then g¢ is X-measurable. (ii) Give an example in which g¢ is
Y-measurable but g is not T-measurable. (iii) Show that if g¢ is X-measurable and either ¢ is injective or dom(g¢) € X
or ¢[X] C dom g, then g is T-measurable.!

(b) Let X and Y be sets, T a o-algebra of subsets of Y and ¢ : X — Y a function. Set X = {¢~1[F] : F € T}, as
in 111Xd. Show that a function f : X — R is X-measurable iff there is a T-measurable function g : ¥ — R such that
f=g9.

(c) Let X and Y be sets and X, T o-algebras of subsets of X, Y respectively. I say that a function ¢ : X — Y
is (3, T)-measurable if ¢~ '[F] € ¥ for every F € T. (i) Show that if 3, T, T are o-algebras of subsets of X, Y,
Z respectively, and ¢ : X — Y is (X, T)-measurable, ¥ : Y — Z is (T, T)-measurable, then ¥¢ : X — Z is (X, 7)-
measurable. (ii) Suppose that A C T is such that T is the o-algebra of subsets of Y generated by A (111Gb). Show
that ¢ : X — Y is (3, T)-measurable iff p~1[A] € ¥ for every A € A. (iii) For r > 1, write B, for the o-algebra of Borel
subsets of R”. Show that if X is any set and X is a o-algebra of subsets of X, then a function f: X — R" is (X, B,)-
measurable iff m; f : X — R is (X, By)-measurable for every i < r, writing m;(z) = &; for i <r, x = (&,...,&) € R".
(iv) Rewrite these ideas for partially-defined functions.

(d) Let X be a set and ¥ a o-algebra of subsets of X. For r > 1, D C X say that a function ¢ : D — R" is
measurable if ¢~ 1[G] is relatively measurable in D for every open set G C R”. If X = R® and ¥ is the o-algebra B; of
Borel subsets of R®, say that ¢ is Borel measurable. (i) Show that ¢ is measurable in this sense iff all its coordinate
functions ¢; : D — R are measurable in the sense of 121C, taking ¢(z) = (¢;(z),... ,¢-(x)) for x € D. (In particular,
this definition agrees with 121C when r = 1.) (ii) Show that ¢ : D — R" is measurable iff it is (3, BB,.)-measurable in

T am grateful to P.Wallace Thompson for pointing out the error in the original version of this exercise.
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the sense of 121Yec. (iii) Show that if ¢ : D — R" is measurable and ¢ : E — R* is Borel measurable, where £ C R",
then ¢¢ : ¢ ![E] — R® is measurable. (iv) Show that any continuous function from a subset of R® to R" is Borel
measurable.

(e) Let X be a set and 6 an outer measure on X; let u be the measure defined from 6 by Carathéodory’s method,
and ¥ its domain. Suppose that f : X — R is a function such that

{z:xze A, fla)<a}+0{x:xz€ A, f(zr) >b} <HA
whenever A C X and a < b in R. Show that f is ¥-measurable. (Hint: suppose that a € R and A < co. Set

Bk:{m:xeA,a—l—Lgf(m)Sa—i—

)
2k+2 2k+177

1 1
B;c:{x:areA,a—i—mgf(a:)ga—FW_i_2

for k € N. Show that > =, 60B) < 6A, and check a similar result for Bj,. Hence show that

0w w € A, [(2) > a} =limp oo 0z : 3 € A, f(2) > a+1})

121 Notes and comments I find myself offering no fewer than three definitions of ‘measurable function’, in 121C,
121Yc and 121Yd. It is in fact the last which is probably the most important and the best guide to further ideas.
Nevertheless, the overwhelming majority of applications refer to real-valued functions, and the four equivalent conditions
of 121B are the most natural and most convenient to use. The fact that they all coincide with the condition of 121Yd
corresponds to the fact that they are all of the form

f7YE] € Zp for every E € A

where A is a family of subsets of R generating the Borel o-algebra (121Xd, 121Yc(ii)).

The class of measurable functions may well be the widest you have yet seen, not counting the family of all real-valued
functions; all easily describable functions between subsets of R are measurable. Not only is the space of measurable
functions closed under addition and multiplication and composition with continuous functions (121E), but any natural
operation acting on a sequence of measurable functions will produce a measurable function (121F, 121Xb, 121Xa). It
is not however the case that the composition of two Lebesgue measurable functions from R to itself is always Lebesgue
measurable; I offer a counter-example in 134Ib. The point here is that a function is called ‘measurable’ if it is (2, B)-
measurable, in the language of 121Yc¢, where B is the o-algebra of Borel sets. Such a function can well fail to be
(3, ¥)-measurable, if ¥ properly includes B, so the natural argument for compositions (121Yc(i)) fails. Nevertheless,
for reasons which I will hint at in §134, non-Lebesgue-measurable functions are hard to come by, and only in the most
rarefied kinds of real analysis do they appear in any natural way. You may therefore approach the question of whether
a particular function is Lebesgue measurable with reasonable confidence that it is, and that the proof is merely a
challenge to your technique.

You will observe that the results of 121E are mostly covered by 1211-121K, which also include large parts of 114G
and 115G; and that 121Kb is covered by 121Yd(iii). You can count yourself as having mastered this part of the subject
when you find my exposition tediously repetitive. Of course, in order to deduce 121Ed from 121K, for instance, you
have to know that multiplication, regarded as a function from R2 to R, is continuous, therefore Borel measurable; the
proof of this is embedded in the proof I give of 121Ed (look at the formula for n half way through).

122 Definition of the integral

I set out the definition of ordinary integration for real-valued functions defined on an arbitrary measure space, with
its most basic properties.

122 A Definitions Let (X, ¥, 1) be a measure space.

(a) For any set A C X, I write xA for the characteristic function of A, the function from X to {0,1} given
by setting xyA(x) = 1if z € A, 0if z € X \ A. (Of course this notation depends on it being understood which is
the ‘universal’ set X under consideration; perhaps I should call it the ‘characteristic function of A as a subset of X'.)
Observe that xA is ¥-measurable, in the sense of 121C above, iff A € ¥ (because A = {z : xA(z) > 0}).
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(b) Now a simple function on X is a function of the form Z?:O a;xF;, where Ey,... , E, are measurable sets of
finite measure and ag, . .. ,a, belong to R. Warning! Some authors allow arbitrary sets F;, so that a simple function
on X is any function taking only finitely many values.

122B Lemma Let (X, 3, u) be a measure space.

(a) Every simple function on X is measurable.

(b) If f, g : X — R are simple functions, so is f + g.

(c) If f: X — R is a simple function and ¢ € R, then c¢f : X — R is a simple function.
(d) The constant zero function is simple.

proof (a) comes from the facts that yE is measurable for measurable F, and that sums and scalar multiples of
measurable functions are measurable (121Eb-121Ec). (b)-(d) are trivial.

122C Lemma Let (X, X, 1) be a measure space.

(a) If Ey,...,E, are measurable sets of finite measure, there are disjoint measurable sets Gy, ... ,G,, of finite
measure such that each E; is expressible as a union of some of the Gj.

(b) If f: X — R is a simple function, it is expressible in the form Z;-n:o bjxG; where Go,... ,G,, are disjoint
measurable sets of finite measure.

(c) If Eo, ..., E, are measurable sets of finite measure, and ao, ... ,a, € R are such that > ;" a;,xE;(x) > 0 for

every € X, then Y7 a;uE; > 0.
proof (a) Set m = 2"t — 2, and enumerate the non-empty subsets of {0,... ,n} as Iy, ..., I,,. For each j < m, set
Gj = ﬂielj Ei\ Uign,igzlj Ei.

Then every G, is a measurable set, being obtained from finitely many measurable sets by the operations U, N and \,
and has finite measure, because I; # () and G; C E; if ¢ € I;. Moreover, the G; are disjoint, for if ¢ € I; \ I; then
G; C E; and G, N E; = (. Finally, if £ < n and = € Ej, there is a j < m such that I; = {i : i <n, z € E;}, and in
this case € Gj C Ej; thus E}, is the union of those G; which it includes.

(b) Express f as Y., a;xE; where Ey, ... , E, are measurable sets of finite measure and ay, . . . , a,, are real numbers.
Let Gy, ... , G, be disjoint measurable sets of finite measure such that every F; is expressible as a union of appropriate
Gj. Set ¢;; = 1if G; C E;, 0 otherwise, so that, because the G are disjoint, xE; = Z;":O cijxG; for each i. Then

=20 aixEi =301 XL aicijxGj = 25— bix Gy,
setting b; = > a;c;; for each j < m.
(c) Set f =", a;xE;, and take G;, ¢;j, b; as in (b). Then b;uG; > 0 for every j. P If G; = (), this is trivial.
Otherwise, let x € G;; then
0 < f@) = 22iLo bixGi(x) = bjxGj(x) = by,
so again b;1G; > 0. Q Next, because the G; are disjoint,
[LEZ = Z;n:o Cij,qu
for each i, so
Yo iy =300 3 aicijnGy =31, binGy > 0,

as required.

122D Corollary Let (X, X, i) be a measure space. If
Do aixEi = 3000 bixFy,
where all the E; and F; are measurable sets of finite measure and the a;, b; are real numbers, then
Yito aipk; =370 by
proof Apply 122Cc to 37" aixEi + 375 (=bj)xFj to see that >31" a;puB; — 3°5_o bjuF; > 0; now reverse the roles

of the two sums to get the opposite inequality.

122E Definition Let (X, 3, 1) be a measure space. Then we may define the integral [ f of f, for simple functions
f: X — R, by saying that [ f = Y.."  a;uE; whenever f = > " a;xE; and every E; is a measurable set of finite
measure; 122D promises us that it won’t matter which representation of f we pick on for the calculation.
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122F Proposition Let (X, X, 1) be a measure space.

(a) If f, g: X — R are simple functions, then f + g is a simple function and [ f+g= [f+ [g.
(b) If f is a simple function and ¢ € R, then cf is a simple function and [c¢f =c [ f.

(¢) If f, g are simple functions and f(z) < g(x) for every z € X, then [ f < [g.

proof (a) and (b) are immediate from the formula given for [ f in 122E. As for (c), observe that g— f is a non-negative
simple function, so that [ g — f > 0, by 122Cc; but this means that [¢g — [ f > 0.

122G Lemma Let (X, ¥, i) be a measure space. If (f,,)nen is a sequence of simple functions which is non-decreasing
(in the sense that f,(z) < foy1(z) for every n € N, 2 € X) and f is a simple function such that f(z) < sup,,cy fn(x)
for almost every x € X (allowing sup,,cy fn (%) = oo in this formula), then [ f <sup,cy [ fo-

proof Note that f — fy is a simple function, so H = {z : (f — fo)(z) # 0} is a finite union of sets of finite measure,
and pH < oo; also f — fo is bounded, so there is an M > 0 such that (f — fo)(x) < M for every z € X.
Let € > 0. For each n € N, set H,, = {z : (f — fn)(x) > €}. Then each H, is measurable (by 121E), and (H,)nen is

a non-increasing sequence of sets with intersection

Mnen Hn ={z: f(z) > € +sup, ey fu(@)} S {22 f(2) > sup,ey fu(2)}.

Because f(x) < sup,ey fo(z) for almost every z, {z : f(x) > sup,ey fo(z)} and (), .y Hn are negligible. Also
uHy < 0o, because Hy C H. Consequently

limy, o0 ppHy = p((N,en Hn) =0
(112Cf). Let n be so large that uH, <e.
Consider the simple function g = f, + exH + M xH,. Then f < g, so
ffﬁfg=ffn+euH+Man Sffn+6(M+uH).
As e is arbitrary, [ f <sup,cy [ fa-

122H Definition Let (X, X, 1) be a measure space. For the rest of this section, I will write U for the set of functions
f such that
(i) the domain of f is a conegligible subset of X and f(x) € [0, 00| for each x € dom f,
(ii) there is a non-decreasing sequence (f,)nen of non-negative simple functions such that sup,,cy [ fn < 0o and
lim, o fn(x) = f(z) for almost every x € X.

1221 Lemma If f and (f,)nen are as in 122H, then

SUpP,,en f fn = sup{fg : g is a simple function and g <, f}.

proof Of course

SUpP,,en f fn < sup{fg : g is a simple function and g <, f}

because f, <. f for each n. On the other hand, if g is a simple function and g <, .. f, then g(z) < sup,cy fn(z) for
almost every z, so [ g < sup,cy [ fn by 122G. Thus

SUp,,en f fn> sup{fg : g is a simple function and g <,.. f},

as required.

122J Lemma Let (X, 3, u) be a measure space, and define U as in 122H.
(a) If f is a function defined on a conegligible subset of X and taking values in [0, 00, then f € U iff there is a
conegligible measurable set £ C dom f such that
() fIE is measurable,
(B) for every € > 0, u{z: xz € E, f(x) > €} < 00,
(7) sup{ [ g : g is a simple function, g <,.. f} < oc.
(b) Suppose that f € U and that h is a function defined on a conegligible subset of X and taking values in [0, col.
Suppose that h <, .. f and there is a conegligible F' C X such that A F is measurable. Then h € U.

proof (a)(i) Suppose that f € U. Then there is an non-decreasing sequence {f,)nen of non-negative simple functions
such that f =, lim,_ o fr and sup,,cy [ frn = ¢ < co. The set {z : f(z) = lim,_ fn(x)} is conegligible, so includes
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a measurable conegligible set E say. Now f|E = (lim,_ o frn)[F is measurable, by 121Fa and 121Eh; thus («) is
satisfied. Next, given € > 0, set H, = {x : 2 € E, f,(x) > %e}; then f, > %exﬂn, SO

SepHy = [ SexHn < [ fu <c,
for each n. Now (H,)nen is non-decreasing, so
.U(UneN H,) = sup, ey ity < 2c/e,
by 112Ce. Accordingly
plex e B, f(x) > e} < p(U, ey Hn) < 2¢/e < 00.
As € is arbitrary, (8) is satisfied. Finally, () is satisfied by 122I.

(ii) Now suppose that the conditions («)-(7y) are satisfied. Take an appropriate conegligible E € ¥, and for each
n € N define f,, : X — R by setting

falx)=2""kifx e B,0<k<4", 27"k < f(zx) < 27"(k+ 1),
=0ifze X \E,
=2"ifx € E and f(x) > 2".

Then f, is a non-negative simple function, being expressible as

o= i 27" s € B, f(2) 2 27 k);
all the sets {z : © € E, f(x) > 27"k} being measurable (because f[|F is measurable) and of finite measure, by ().
Also it is easy to see that (f,)nen is an non-decreasing sequence which converges to f at every point of E, so that
f =ae. limy, .o frn. Finally,
limy o0 [ fo =sup, ey [ fo <sup{[g:g < fis simple} < oo,
by (7). So f e U.

(b) Let E be a set as in (a). The sets E, F and {z : h(z) < f(z)} are all conegligible, so there is a conegligible
measurable set E’ included in their intersection. Now E’ C dom h, h|E’ is measurable,

p{rz:x e B h(x) > e} <pf{r:x € E, f(x) > e} <o
for every € > 0, and

sup{fg : g is simple, g <, h} < Sup{fg : g is simple, g <,.. f} < oc.
SoheU.

122K Definition Let (X, Y, 1) be a measure space, and define U as in 122H. For f € U, set
f f= sup{fg : g is a simple function and g <, f}.

By 1221, we see that f f=lim, f fn whenever (f,)nen is a non-decreasing sequence of simple functions converging
to f almost everywhere; in particular, if f € U is itself a simple function, then [ f, as defined here, agrees with the
original definition of [ f in 122E, since we may take f,, = f for every n.

122L Lemma Let (X, X, ) be a measure space.

(a)If f,geUthen f+geUand [f+g=[f+[g.

(b)If feUand ¢ >0 thencf € U and [cf =c [ f.

()If f,ge U and f <,e gthen [ f< [g.

(d) If f € U and g is a function with domain a conegligible subset of X, taking values in [0, oo[, and equal to f
almost everywhere, then g € U and [g= [ f.

(e) If f1, 91, f2, 92 €U and f1 — fo=g1 —go, then [ f1 — [ fo= [g1— [ g2.

proof (a) We know that there are non-decreasing sequences (fp,)nen, (gn)nen of non-negative simple functions such that
[ =ae My oo fr, § =ae. IMyoo gn, SUP, ey [ frn < 00 and sup,cy [ gn < 00. Now (fy, + gn)nen is a non-decreasing
sequence of simple functions converging to f + g a.e., and

Supnefon+gn :hmn—woffn"'gn :hmn—woffn"'hmn—wo fgn = ff+fg'
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Accordingly f + g € U, and also, as remarked in 122K,
ff'i_g:limnaooffn'*'gn:ff"i_fg-

(b) We know that there is a non-decreasing sequence (f,)nen of non-negative simple functions such that f =, ..
limy, o0 fr and sup,cy [ frn < 00. Now (c¢fn)nen is a non-decreasing sequence of simple functions converging to cf
a.e., and

SUPpneN fcfn = llmnaoo fon = Cllmn*)oo ffn = cf f
Accordingly cf € U, and also, as remarked in 122K,

fcf:limnﬁoofcfn:cff.

(c) This is obvious from 122K.

(d) If (fn)nen is a non-decreasing sequence of simple functions converging to f a.e., then it also converges to g a.e.;

so g € U and

(e) By (a), f1 + g2 and f2 4+ g1 both belong to U. Also, they are equal at any point at which all four functions are
defined, which is almost everywhere. So

Jh+[o=[f+g=[frta=[f+[a
using (a) and (d). Shifting [ g» and [ f» across the equation, we have the result.

122M Definition Let (X, %, 1) be a measure space. Define U as in 122H. A real-valued function f is integrable,
or integrable over X, or u-integrable over X, if it is expressible as f; — fo with fi, fo € U, and in this case its

integral is
[r=[H=][r

122N Remarks (a) We see from 122Le that the integral [ f is uniquely defined by the formula in 122M. Secondly,
if f € U, then f = f — 0 is integrable, and the integral here agrees with that defined in 122K. Finally, if f is a simple
function, then it can be expressed as fi — f» where f1, fo are non-negative simple functions (if f = Y. a;xE;, where
each F; is measurable and of finite measure, set

fi=Yroai xEi, fo=3i_a; xE;,
= max(—a;,0)); so that
[r=[Hh-[f=>"qanE;,

and the definition of 122M is consistent with the definition of 122E.

writing ] = max(a;,0), a;

(b) Alternative notations which I will use for [ f are [ f, [ fdu, [ f(x)u(dz), [ f(x)dz, [y f(z)u(dz), etc.,
according to which aspects of the context seem due for emphasis.

When p is Lebesgue measure on R or R” we say that [ f is the Lebesgue integral of f, and that f is Lebesgue
integrable if this is defined.

(c) Note that when I say, in 122M, that ‘f can be expressed as f; — f2’, I mean to interpret f; — f2 according to
the rules set out in 121E; so that dom f must be dom(f; — f3) = dom f; Ndom f5, and is surely conegligible.

1220 Theorem Let (X, 3, 1) be a measure space.

(a) If f and g are integrable over X then f + g is integrable and [ f+g= [f+ [ g.
(b) If f is integrable over X and ¢ € R then cf is integrable and [c¢f =c [ f.

(c) If f is integrable over X and f > 0 a.e. then [ f > 0.

(d) If f and g are integrable over X and f <, g then [ f < [g.

proof (a) Express f as fi — fo and g as g1 — g2 where f1, fo, g1 and g2 belong to U, as defined in 122H. Then
f+9=_0f1+91)— (f2+ g2) is integrable because U is closed under addition (122La), and

ff—|—g:ff1—|—g1—ff2+92=ff1+fg1—ff2—f92:ff+fg.
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(b) Express f as fi1 — fo where f1, fo belong to U. If ¢ > 0 then ¢f = cf; — cfs is integrable because U is closed
under multiplication by non-negative scalars (122Lb), and

[ef=[ch—[ch=c[fi—c[fa=c[F

If c=—1 then —f = fy — f; is integrable and

[(=h=[f-[H=-]F

Putting these together we get the result for ¢ < 0.
(c) Express f as f1 — fo where f1, fo € U. Then fo <, fi1,50 [ fo < [ f1 (122Lc), and [ f > 0.
(d) Apply (c) to g — f.

122P Theorem Let (X, X, 1) be a measure space and f a real-valued function defined on a conegligible subset of
X. Then the following are equiveridical:
(i) f is integrable;
(ii) | f| € U, as defined in 122H, and there is a conegligible set F C X such that f|E is measurable;
(iii) there are a g € U and a conegligible set E C X such that |f| <, ¢ and f[E is measurable.

proof (i)=-(iii) Suppose that f is integrable. Let fi, fo € U be such that f = f; — fa. Then there are conegligible
sets F1q, Fo such that fi[FE; and fo] Eo are measurable; set E = E7 N Fs, so that E also is a conegligible set. Now
fTE = f1|E — fo] E is measurable. Next, f1 + fo € U (122La) and |f|(z) < fi(x) + f2(x) for every x € dom f, so we
may take g = f1 + fo.

(iii)=-(ii) If f1E is measurable, so is |f|[E = |f[E| (121Eg); so if g € U and |f| <a.. g, then |f| € U by 122Jb.

(ii)=(i) Suppose that f satisfies the conditions of (ii). Set f™ = 1(|f| + f) and f~ = (|f| — f). Of course |f|| E,
fTIE and f~|E are all measurable. Also 0 < f*(z) < |f|(z) and 0 < f~(2) < |f|(z) for every x € dom f, while
|f] € U by hypothesis, so f* and f~ belong to U by 122Jb. Finally, f = f* — f~, so f is integrable.

122Q Remark The condition ‘there is a conegligible set E such that f[FE is measurable’ recurs so often that I
think it worth having a phrase for it; I will call such functions virtually measurable, or p-virtually measurable if
it seems necessary to specify the measure.

122R Corollary Let (X, X, 1) be a measure space.

(a) A non-negative real-valued function, defined on a subset of X, is integrable iff it belongs to U, as defined in
122H.

(b) If f is integrable over X and h is a real-valued function, defined on a conegligible subset of X and equal to f
almost everywhere, then h is integrable, with [h = [ f.

(c) If f is integrable over X, f >0 a.e. and [ f <0, then f =0 a.e.

(d) If f and g are integrable over X, f <, gand [¢g < [ f, then f =, g.

(e) If f is integrable over X, so is |f|, and | [ f| < [|f].

proof (a) If f is integrable then f = |f| € U, by 122P(ii). If f € U then f = f — 0 is integrable, by 122M.
(b) Let E, F be conegligible sets such that f[FE is measurable and h|F = f[F; then E N F is conegligible and

RI(ENF) = (fIE)IF is measurable. Next, there is a g € U such that |f| <a.. g, and of course |h| <,e g. So h is
integrable by 122P(iii). By 1220d, applied to f and h and then to h and f, [h = [ f.

(c) ? Suppose, if possible, otherwise. Let E C X be a conegligible set such that f|FE is measurable (122P(ii)),
and E' C ENdom f a conegligible measurable set. Then F = {z : € E’, f(z) > 0} must be non-negligible. Set
Fp={x:xz € F, f(x)>27%} for cach k € N, so that F = |J; o F and there is a k such that pFj, > 0. But consider
g =2"%x\F). Because f >0 a.e. and f > 2% on F, f >.. ¢, so that

0<2 bk = [g< [ 7.
by 1220d; which is impossible. X
(d) Apply (¢) to g — f.
(e) By (i)=(ii) of 122P, |f| is integrable. Now f* = L(|f|+ f) and f~ = 1(|f| — f) are both integrable and

non-negative, so have non-negative integrals, and

\[r=1fr=fr< [+ =[lf
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122X Basic exercises (a) Let (X, 3, u) be a measure space. (i) Show that if f : X — R is simple so is | f|, setting
|[fl(z) = |f(x)] for € dom f = X. (ii) Show that if f, g : X — R are simple functions so are f V g and f A g, as
defined in 121Xb.

>(b) Let (X, X, 1) be a measure space and f a real-valued function which is integrable over X. Show that for every
€ > 0 there is a simple function g : X — R such that [ |f — g| <e. (Hint: consider non-negative f first.)

(c) Let (X, X, 1) be a measure space, and write £! for the set of all real-valued functions which are integrable over
X. Let ® C £! be such that
(i) xE € ® whenever E € ¥ and pFE < oo;
(ii) f+g € @ for all f, g € P;
(iii) ¢f € ® whenever c € R, f € ®;
(iv) f € ® whenever f € £! is such that there is a non-decreasing sequence (f,)nen in @ for which
lim,,_, fn = f almost everywhere.
Show that ® = £1!.

>(d) Let p be counting measure on N (112Bd). Show that a function f: N — R (that is, a sequence (f(n))nen) is
p-integrable iff it is absolutely summable, and in this case

[ Fdu= [, f)u(dn) = Y32 ().

>(e) Let (X, X, 1) be a measure space and f, g two virtually measurable real-valued functions defined on subsets of
X. (i) Show that f + g, f x g and f/g, defined as in 121E, are all virtually measurable. (ii) Show that if h is a Borel
measurable real-valued function defined on any subset of R, then the composition hf is virtually measurable.

>(f) Let (X, %, 1) be a measure space and (f,,)nen & sequence of virtually measurable real-valued functions defined
on subsets of X. Show that lim, o frn, SUp,en fn, infrnen fn, limsup,,_, . fn and liminf, . fy, defined as in 121F,
are virtually measurable.

>(g) Let (X, X, u) be a measure space and f, g real-valued functions which are integrable over X. Show that f A g
and fV g, as defined in 121Xb, are integrable.

>(h) Let (X,%, ) be a measure space, f a real-valued function which is integrable over X, and ¢g a bounded
real-valued virtually measurable function defined on a conegligible subset of X. Show that f x g, defined as in 121Ed,
is integrable.

(i) Let X be a set, ¥ a o-algebra of subsets of X, and 1, us two measures with domain 3. Set uE = p1 E + poE
for E € X. Show that for any real-valued function f defined on a subset of X, [ fdu = [ fdus + [ fdus in the sense
that if one side is defined as a real number so is the other, and they are then equal. (Hint: (o) Check that a subset
of X is p-conegligible iff it is p;-conegligible for both i. (8) Check the result for simple functions f. () Now consider
general non-negative f.)

122Y Further exercises (a) Let (X, X, 1) be a ‘complete’ measure space, that is, one in which all negligible sets
are measurable (see, for instance, 113Xa). Show that if f is a virtually measurable real-valued function defined on a
subset of X, then f is measurable. Use this fact to find appropriate simplifications of 122J and 122P for such spaces
(X, %, ).

(b) Write £! for the set of all Lebesgue integrable real-valued functions on R. Let ® C £! be such that

(i) xI € ® whenever I is a bounded half-open interval in R;

(ii) f+ g€ @ for all f, g € ;

(iii) ¢f € ® whenever c € R, f € ®;

(iv) f € ® whenever f € L£! is such that there is a non-decreasing sequence (f,)neny in @ for which

lim, .~ fn = f almost everywhere.

Show that ® = £!. (Hint: show that (a) YE € ® whenever E is expressible as the union of finitely many half-open
intervals () xE € ® whenever E has finite measure and is expressible as the union of a sequence of half-open intervals
(7) xE € ® whenever E is measurable and has finite measure.)

(c) Let X be any set, and let p be counting measure on X. Let f : X — R be a function; set fT(x) = max(0, f(x)),
[~ (z) = max(0, — f(x)) for z € X. Show that the following are equiveridical: (i) [ fdu exists in R, and is equal to s;
ii) for every € > 0 there is a finite K C X such that |s — ), ; f(i)| < € whenever I C X is a finite set including K

(
(iil) Y ex [T (z) and 3 o f~ (), defined as in 112Bd, are finite, and s = > fT () — >, cx [ ().
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(d) Let (X, X, 1) be a measure space. Let us say that a function g : X — R is quasi-simple if it is expressible as
Yoo @iXGi, where (G;)ien is a partition of X into measurable sets, (a;);en is a sequence in R, and Y .o |a;|uG; < oo,
counting 0 - co as 0, so that there can be G; of infinite measure provided that the corresponding a; are zero.

(i) Show that if g and h are quasi-simple functions so are g + h, |g| and cg, for any ¢ € R. (Hint: for g + h you
will need 111F(b-ii) or its equivalent.)

(ii) Show from first principles (I mean, without using anything later than 122F in this chapter) that if g =
Yoo aixGi and h = > bixH; are quasi-simple functions, and g <, h, then > a;uG; < 300 biuH;.

(iii) Hence show that we have a functional I defined by saying that I(g) = Z?io a;14G; whenever g is a quasi-simple
function represented as Y.~ a;xGi.

(iv) Show that if g and h are quasi-simple functions and ¢ € R, then I(g + h) = I(g) + I(h) and I(cg) = cl(g),
and that I(g) < I(h) if g <,.. h.

(v) Show that if g is a quasi-simple function then g is integrable and [ g = I(g). (I do now allow you to use
122G-122R.)

(vi) Show that a real-valued function f, defined on a conegligible subset of X, is integrable iff for every € > 0
there are quasi-simple functions g, h such that g <., f <a. hand I(h) —I(g) <e.

(e) Let u be Lebesgue measure on R. Let us say (for this exercise only) that a real-valued function g with dom g C R
is ‘pseudo-simple’ if it is expressible as Y .o a;xJ;, where (J;);en is a sequence of bounded half-open intervals (not
necessarily disjoint) and Y5 |a;|uJ; < oo. (Interpret the infinite sum Y .° a;x.J; as in 121F, so that

dom(3"7 g aix i) = {z : limy, 00 D1 ai(xJ;) () exists in R}.)
(i) Show that if g, h are pseudo-simple functions so are g + h and cg, for any ¢ € R.
(ii) Show that if g is a pseudo-simple function then g is integrable.
(iii) Show that a real-valued function f, defined on a conegligible subset of R, is integrable iff for every ¢ > 0

there are pseudo-simple functions g, h such that g <,. f <s. h and f h — gdu < e. (Hint: Take ® to be the set of
integrable functions with this property, and show that it satisfies the conditions of 122YDb.)

(f) Repeat 122YDb and 122Ye for Lebesgue measure on R”, where r > 1.

(g) Let (X,X, ) be a measure space, and assume that there is at least one partition of X into infinitely many
non-empty measurable sets. Let f be a real-valued function defined on a conegligible subset of X, and a € R. Show
that the following are equiveridical:

(i) f is integrable, with [ f = a;
(ii) for every e > 0 there is a partition (E,)nen of X into non-empty measurable sets such that

ZZO:O |f(tn)|#En < 00, |a - ZZO:O f(tn)l‘En| <e

whenever (t,),cn is a sequence such that ¢, € E, Ndom f for every n. (As usual, take 0 - co = 0 in these formulae.)
(Hint: use 122Yd.)

(h) Find a re-formulation of (g) which covers the case of measure spaces which can not be partitioned into sequences
of non-empty measurable sets.

(i) Let X be a set, ¥ a o-algebra of subsets of X, and (un)nen a sequence of measures with domain . Set
pE =3 punE for E € . (i) Show that x is a measure. (ii) Show that for any real-valued function f defined
on a subset of X, f is p-integrable iff it is p,-integrable for every n and > .-, [|f|du, is finite, and that then

(j) Let X be aset, ¥ a g-algebra of subsets of X, and (u;)icr a family of measures with domain . Set uF =3, _; i 0
for F € X. (i) Show that p is a measure. (ii) Show that for any X-measurable function f : X — R, f is u-integrable
iff it is ju;-integrable for every i and °, ., ['|fldpu; is finite.

122 Notes and comments Just as in §121, some extra technical problems are caused by my insistence on trying
to integrate (i) functions which are not defined on the whole of the measure space under consideration (ii) functions
which are not, strictly speaking, measurable, but are only measurable on some conegligible set. There is nothing in the
present section to justify either of these elaborations. In the next section, however, we shall be looking at the limits
of sequences of functions, and these limits need not be defined at every point; and the examples in which the limits
are not everywhere defined are not in any sense pathological, but are central to the most important applications of the
theory.
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The question of integrating not-quite-measurable functions is more disputable. I will discuss this point further after
formally introducing ‘complete’ measure spaces in Chapter 21. For the moment, I will say only that I think it is worth
taking the trouble to have a formalisation which integrates as many functions as is reasonably possible; the original
point of the Lebesgue integral being, in part, that it enables us to integrate more functions than its predecessors.

The definition of ‘integration’ here proceeds in three distinguishable stages: (i) integration of simple functions
(122A-122G); (ii) integration of non-negative functions (122H-122L); (iii) integration of general real-valued functions
(122M-122R). T have taken each stage slowly, passing to non-negative integrable functions only when I have a full set
of the requisite lemmas on simple functions, for instance. There are, of course, innumerable alternative routes; see,
for instance, 122Yd, which offers a definition using two steps rather than three. I prefer the longer, gentler climb
partly because (to my eye) it gives a clearer view of the ideas and partly because it corresponds to an almost canonical
method of proving properties of integrable functions: we prove them first for simple functions, then for non-negative
integrable functions, then for general integrable functions. (The hint I give for 122YDb conforms to this philosophy. See
also 122Xc; but I do not give this as a formally expressed theorem, because the exact order of proof varies from case
to case, and I think it is best remembered as a method of attack rather than as a specific result to apply.)

You have a right to feel that this section has been singularly abstract, and gives very little idea of which of your
favourite functions are likely to be integrable, let alone what the integrals are. I hope that Chapter 13 will provide
some help in this direction, though I have to say that for really useful methods for calculating integrals we must wait
for Chapters 22, 25 and 26 in the next volume. If you want to know the true centre of the arguments of this section,
I would myself locate it in 122G, 122H and 122K. The point is that the ideas of 122A-122F apply to a much wider
class of structures (X, X, ), because they involve only operations on finitely many members of ¥ at a time; there is no
mention of sequences of sets. The key that makes all the rest possible is 122G, which is founded on 112Cf. And after
122G-122K, the rest of the section, although by no means elementary, really is no more than a careful series of checks
to ensure that the functional defined in 122K behaves as we expect it to.

Many of the results of this section (including the key one, 122G) will be superseded by stronger results in the
following section. But I should remark on Lemma 122Ja, which will periodically recur as a most useful criterion for
integrability of non-negative functions (see 122Ra).

There is another point about the standard integral as defined here. It is an ‘absolute’ integral, meaning that if f
is integrable so is | f| (122P). This means that although the Lebesgue integral extends the ‘proper’ Riemann integral
(see 134K below), there are functions with finite ‘improper’ Riemann integrals which are not Lebesgue integrable; a
typical example is f(z) = S22 where lim,_ foa f exists in R, while limg_ 0 foa |f| = oo, so that f is not integrable,
in the sense defined here, over the whole interval ]0, 0o[. (For full proofs of these assertions, see 283D and 282Xm in
Volume 2.) If you have encountered the theory of ‘absolutely’ and ‘conditionally’ summable series, you will be aware
that the latter can exhibit very confusing behaviour, and will appreciate that restricting the notion of ‘integrable’ to
mean ‘absolutely integrable’ is a great convenience.

Indeed, it is more than just a convenience; it is necessary to make the definition work at the level of abstraction
used in this chapter. Consider the example of counting measure p on N (112Bd, 122Xd). The structure (N, PN, p) is
invariant under permutations; that is, p(w[A]) = pA for every A C N and every permutation 7w : N — N. Consequently,
any definition of integration which depends only on the structure (N, PN, 1) must also be invariant under permutations,
that is,

J f(x(m)u(dn) = [ f(n)u(dn)

for any integrable function f and any permutation 7. But of course (as I hope you have been told) a series (f(n))nen
such that > °  f(m(n)) = >.o", f(n) € R for any permutation 7 must be absolutely summable. Thus if we are to
define an integral on an abstract measure space (X, X, ) in terms depending only on 3 and p, we are nearly inevitably
forced to define an absolute integral.

Naturally there are important contexts in which this restriction is an embarrassment, and in which some kind of
‘improper’ integral seems appropriate. A typical one is the theory of Fourier transforms, in which we find ourselves
looking at limg,_ ffa f in place of ffooo f (see §283). A vast number of more or less abstract forms of improper
integral have been proposed; many are interesting and some are important; but none rivals the ‘standard’ integral as
described in this chapter. (For an attempt at a systematic examination of a particular class of such improper integrals,
see Chapter 48 in Volume 4.)

Much less work has been done on the integration of non-measurable functions — to speak more exactly, of functions
which are not equal almost everywhere to a measurable integrable function. I am sure that this is simply because there
are too few important problems to show us which way to turn. In 134C below I mention the question of whether there
is any non-measurable real-valued function on R. The standard answer is ‘yes’, but no such function can possibly arise
as a result of any ordinary construction. Consequently the majority of questions concerning non-measurable functions
appear in very special contexts, and so far I have seen none which gives any useful hint of what a generally appropriate
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extension of the notion of ‘integrability’ might be.

123 The convergence theorems

The great labour we have gone through so far has not yet been justified by any theorems powerful enough to make
it worth while. We come now to the heart of the modern theory of integration, the ‘convergence theorems’, describing
conditions under which we can integrate the limit of a sequence of integrable functions.

123A B.Levi’s theorem Let (X, 1) be a measure space and (f,,)nen @ sequence of real-valued functions, all
integrable over X, such that (i) f,, <ae. fnt1 for every n € N (ii) sup,,cy f fn < o0o0. Then f = lim,_,, f, is integrable,

and [ f=lm,—eo [ fi-

Remarks I ought to repeat at once the conventions I am following here. Each of the functions f,, is taken to be defined
on a conegligible set dom f, C X, as in 122Nc, and the limit function f is taken to have domain

{z:xeclU,cn ﬂmZn dom f,, lim,,_, oo fn(x) is defined in R},

as in 121Fa. You would miss no important idea if you supposed that every f,, was defined everywhere on X; but the
statement f is integrable’ includes the assertion ‘f is defined, as a real number, almost everywhere’, and this is an
essential part of the theorem.

proof (a) Let us first deal with the case in which fo = 0 a.e. Write ¢ = sup,,cy [ fn = lim, o [ fn (noting that, by
1220d, ([ fn)nen is a non-decreasing sequence).

(i) All the sets dom f,, {z : fo(x) =0}, {z: fu(z) < fni1(x)} are conegligible, so their intersection F also is. For
each n € N there is a conegligible set E,, such that f,[E, is measurable (122P); let E* be a measurable conegligible
set included in the conegligible set F'N (1, oy En-

(ii) For a > 0 and n € N set H,(a) = {z : * € E*, fo(x) > a}; then H,(a) is measurable because f,[FE, is
measurable and E* is a measurable subset of E,,. Also axH,(a) < f, everywhere on E*, so

apHy(a) = faan(a) < ffn <ec.

Because f,(z) < faori1(x) for every x € E*, H,(a) € Hpy1(a) for every n € N, and writing H(a) = J,,cyy Hn(a), we
have

IS e

(112Ce). In particular, pH(a) < oo for every a. Furthermore,
sy H(K)) < infizy pH (k) < infpz1 - = 0.
Set E'= E* \ (>, H(k); then E is conegligible.

(iii) If 2 € E, there is some k such that « ¢ H(k), that is, x ¢ |, Hn(k), that is, fu(z) < k for every n;
moreover, (f,(2))nen is a non-decreasing sequence, so f(x) = limp— o0 frn(2) = sup, ey fn(2) is defined in R. Thus the
limit function f is defined almost everywhere. Because every f,[E is measurable (121Eh), so is f[E = lim, e fn | F
(121Fa). If € > 0 then {z : # € E, f(x) > €} is included in H(%e€), so has finite measure.

(iv) Now suppose that g is a simple function and that g <, f. Asin the proof of 122G, H = {z : g(x) # 0} has
finite measure, and g is bounded above by M say.
Let € > 0. For each n € Nset G,, ={z : z € E, (9 — fn)(z) > €}. Then each G,, is measurable, and (G, )nen is a
non-increasing sequence with intersection
{r:zeE, g(x) 2 et+sup,en fu(x)} S {z: g(x) > f(2)},

which is negligible. Also uGy < oo because Gy C H. Consequently lim,, .o, pG,, = 0 (112Cf). Let n be such that
uG, < e. Then, for any x € E,

9(z) < fu(x) + exH(z) + MxGn(z),
SO
g <ae. fn + MXGn + €XH

and
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Ja< [ ot MuGp + epH < c+e(M + pH).2
As ¢ is arbitrary, [g <c.

(v) Accordingly, f[E (which is non-negative) satisfies the conditions of Lemma 122Ja, and is integrable. Moreover,
its integral is at most ¢, by Definition 122K. Because f =, .. f|FE, f also is integrable, with the same integral (122Rb).
On the other hand, f >, f, for each n, so [ f > sup,cy [ fo = ¢, by 1220d.

This completes the proof when fy =0 a.e.

(b) For the general case, consider the sequence (f/)nen = (fn — fo)nen. By (a), f = lim,_, f} is integrable, and
[ =1limy, o0 [ f1; now limy, o0 fr, =ae. f'+ fo, so is integrable, with integral [ f'+ [ fo = lim, oo [ fn-

Remark You may have observed, without surprise, that the argument of (a-iv) in the proof here repeats that used for
the special case 122G.

123B Fatou’s Lemma Let (X, X, 1) be a measure space, and (f,)nen a sequence of real-valued functions, all
integrable over X. Suppose that every f,, is non-negative a.e., and that liminf,,_, f fn < oo. Then liminf, .. f, is
integrable, and [liminf, . f, <liminf, oo [ fn.

Remark Once again, this theorem includes the assertion that liminf,,_, o f,,(z) is defined in R for almost every = € X.

proof Set ¢ = lim infnﬁooffn and f = liminf, ., fn. For each n € N, let E, be a conegligible set such that
[l = ful Ey is measurable and non-negative. Set g, = inf,,>, f, ; then each g, is measurable (121Fc), non-negative
and defined on the conegligible set (), .., Em, and g, <ae. fn, SO gy is integrable (122P) with [ g,, < inf,>,, [ fin < e
Next, gn(z) < gny1(x) for every € domg,, so (g,)nen satisfies the conditions of B.Levi’s theorem (123A), and
g = lim,,_,c gn is integrable, with [ g = lim,_,o [ g» < c¢. Finally, because every f}, is equal to f,, almost everywhere,
g =liminf, o f} =ae. f, and [ f exists, equal to [ g < c.

123C Lebesgue’s Dominated Convergence Theorem Let (X, 3, 1) be a measure space and (f,,)nen a sequence
of real-valued functions, all integrable over X, such that f(x) = lim, o fn(z) exists in R for almost every z € X.
Suppose moreover that there is an integrable function g such that |f,| <s.. g for every n. Then f is integrable, and
lim, o0 | fr exists and is equal to [ f.

proof Consider fn = fn + g for each n € N. Then 0 < fn < 2g a.e. for each n, so ¢ = liminf,,_, ffn exists in R,

and f = liminf,_ o f, is integrable, with ff < ¢, by Fatou’s Lemma (123B). But observe that f =, .. f — g, since

f(z) = f(x) — g(z) at least whenever f(z) and g(z) are both defined, so f is integrable, with
[f=[F-[g<liminf, o [ fo— [g=liminf, o0 [ fo.

Similarly, considering (— f)nen,

that is,

ff > hmsupn%ooffn'
So limy, 0 [ fn exists and is equal to [ f.

Remark We have at last reached the point where the technical problems associated with partially-defined functions
are reducing, or rather, are being covered efficiently by the conventions I am using concerning the interpretation of
such formulae as ‘lim sup’.

123D To try to show the power of these theorems, I give a result here which is one of the standard applications of
the theory.

Corollary Let (X,X, 1) be a measure space and ]a, b[ a non-empty open interval in R. Let f : X X ]Ja,b[ = R be a
function such that

(i) the integral F(t) = [ f(x,t)dx is defined for every t € ]a, b];

(ii) the partial derivative %{ of f with respect to the second variable is defined everywhere in X X la, b[;

(]iii) ’Ehere is an integrable function g : X — [0, 00[ such that |%(x,t)| < g(x) for every x € X and
t € la,bl.

2] am grateful to P.Wallace Thompson for noticing a fault at this stage in previous editions.
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Then the derivative F’(t) and the integral f %(m, t)dx exist for every t € ]a,b], and are equal.
proof (a) Let t be any point of ]a, b[, and (tn>neN any sequence in Ja,b[ \ {t} converging to ¢t. Consider

F(t,) f(xtn)—f(z,t)
t,L—t f tn—t M(d$>

for each n. (This step uses 1220.) If we set

fn (l‘) — f(x»t;):tf(xzt) ,
for x € X, then we see from the Mean Value Theorem that there is a 7 (depending, of course, on both n and z), lying
between ¢, and ¢, such that f,(z) = af +(x,7), so that |f,(x)| < g(x). At the same time, lim, ;o0 frn(z) = %(Jc,t) for
every x. So Lebesgue’s Dominated Convergence Theorem tells us that f %(z, t)dx exists and is equal to

F(tn)_F(t)

limn_)ooffn(x)dx = limy, oo p—

(b) Because (t,)nen is arbitrary,

-

as claimed.

Remark In the next volume I offer a variation on this theorem, with both hypotheses and conclusion weakened (252Ye).

123X Basic exercises >(a) Let (X, X, ) be a measure space, and (f,)nen a sequence of real-valued functions,
all integrable over X, such that >~ ['|f,] is finite. Show that f(z) = > .2 fn() is defined in R for almost every
z € X,and that [ f=3° [ fn. (Hint: consider first the case in which every f,, is non-negative.)

(b) Let (X,3, 1) be a measure space. Suppose that T is any subset of R, and (f;);cr a family of functions, all
integrable over X, such that, for any t € T,

ft(m) = limsET7s~>t fs(-r)

for almost every x € X. Suppose moreover that there is an integrable function g such that |f:| <,.. g for every t € T.
Show that ¢ — [ f; : T — R is continuous.

>(c) Let f be a real-valued function defined everywhere on [0, 0], endowed with Lebesgue measure. Its (real)
Laplace transform is the function F' defined by

F(s) = fooo e 5% f(x)dx

for all those real numbers s for which the integral is defined.

(i) Show that if s € dom F and s’ > s then s’ € dom F' (because e~ *%e5* < 1 for all z). (How do you know that
z — e~ %5 is measurable?)

(ii) Show that F' is differentiable on the interior of its domain. (Hint: note that if ap € dom F and ap < a < b
then there is some M such that ze 57| f(z)| < Me~*%|f(z)| whenever x € [0, 00, s € [a, b].)

(iii) Show that if F' is defined anywhere then lim,_ o, F'(s) = 0. (Hint: use Lebesgue’s Dominated Convergence
Theorem to show that lim,_, o F(s,) = 0 whenever lim,,_,, s, = 00.)

(iv) Show that if f, g have Laplace transforms F, G then the Laplace transform of f + g is F' 4+ G, at least on
dom F'Ndom G.

(d) Let (X, X, ) be a measure space and (f,)nen & sequence of real-valued functions, all integrable over X, such
that there is an integrable function g such that |f,| <a. ¢ for every n. Show that limsup,,_, . fn is integrable and

that [limsup, ., fn > limsup, ., fa.

123Y Further exercises (a) Let (X, Y, ) be a measure space, Y any set and ¢ : X — Y any function; let u¢~!
be the image measure on Y (112Xf). Show that if A : ¥ — R is any function, then h is p¢~!-integrable iff h¢ is
p-integrable, and the integrals are then equal.

(b) Explain how to adapt 123Xc to the case in which f is undefined on a negligible subset of R.
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(c) Let (X, X, u) be a measure space and a < b in R. Let f : X x Ja,b[ — [0, 0o[ be a function such that [ f(z,¢)dz
is defined for every t € Ja,b[ and ¢t — f(x,t) is continuous for every € X. Suppose that ¢ € ]a,b[ is such that
liminf, ,. [ f(z,t)dz < co. Show that [liminf, . f(x,t)dz is defined and less than or equal to liminf, . [ f(z,t)dz.

(d) Show that there is a function f : R? — {0, 1} such that (i) the Lebesgue integral [ f(x,t)dz is defined and equal
to 1 for every t # 0 (ii) the function = — liminf, ,o f(z,t) is not Lebesgue measurable. (Remark: you will of course
have to start your construction from a non-measurable subset of R; see 134B for such a set.)

(e) Let (Y,T,v) be a measure space. Let X be a set, ¥ a o-algebra of subsets of X, and (p,)ycy a family of
measures on X such that u, X is finite for every y and uFE = [ pu,Ev(dy) is defined for every E € X. (i) Show that
i X — [0,00[ is a measure. (ii) Show that if f : X — [0, 00[ is a X-measurable function, then f is p-integrable iff it is
fy-integrable for almost every y € Y and [ ([ fdu,)v(dy) is defined, and that this is then [ fdp.

(f) Let (X, X, ) be a measure space, and (f,,)nen a sequence of virtually measurable real-valued functions all defined
almost everywhere in X. Suppose that >~ [ |fn(2) — 1|p(dz) < oo. Show that [] — fn(2) is defined in R for almost
every ¢ € X.

123 Notes and comments I hope that 123D and its special case 123Xc will help you to believe that the theory here
has useful applications.
All the theorems of this section can be thought of as ‘exchange of limit’ theorems, setting out conditions under which

n— oo n—oo

0 [ran— [0
E/fdx—/atdac.

Even for functions which are accessible to much more primitive methods of integration (e.g., the Riemann integral),
theorems of this type can involve laborious validation of inequalities. The power of Lebesgue’s integral is that it gives
general theorems which cover a reasonable proportion of the important cases which arise in practice. (I have to admit,
however, that nothing is more typical of applied analysis than its need for special results which are related to, but not
derivable from, the standard general theorems.) For instance, in 123Xc, the fact that the range of integration is the
unbounded interval [0, oo[ adds no difficulty. Of course this is connected with the fact that we consider only integrals
of functions with integrable absolute values.

The limits used in 123A-123C are all limits of sequences; it is of course part of the essence of measure theory that we
expect to be able to handle countable families of sets or functions, but that anything larger is alarming. Nevertheless,
there are many contexts in which we can take other types of limit. I describe some in 123D, 123Xb and 123Xc(iii).
The point is that in such limits as lim;_,,, ¢(¢), where u € [—00, 00|, we shall have lim;_,,, ¢(t) = a iff lim,_,o ¢(t,) = a
whenever (t,),en converges to u; so that when seeking a limit lim;_,, f f#, for some family (f;)ier of functions, it will
be sufficient if we can find lim,,_,~ [ fi, for enough sequences (t,,)nen. This type of argument will be effective for any
of the standard limits limyqq, limy g, limg_yq, lims—s oo, lim;—, o of basic calculus, and can be used in conjunction either
with B.Levi’s theorem or with Lebesgue’s theorem. I should perhaps remark that a difficulty arises with a similar
extension of Fatou’s lemma (123Yc-123Yd).

lim fn:/ lim fp,,

or
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Chapter 13
Complements

In this chapter I collect a number of results which do not lie in the direct line of the argument from 111A (the
definition of ‘c-algebra’) to 123C (Lebesgue’s Dominated Convergence Theorem), but which nevertheless demand
inclusion in this volume, being both relatively elementary, essential for further developments and necessary to a proper
comprehension of what has already been done. The longest section is §134, dealing with a few of the elementary
special properties of Lebesgue measure; in particular, its translation-invariance, the existence of non-measurable sets
and functions, and the Cantor set. The other sections are comparatively lightweight. §131 discusses (measurable)
subspaces and the interpretation of the formula [}, f, generalizing the idea of an integral ff f of a function over an
interval. §132 introduces the outer measure associated with a measure, a kind of inverse of Carathéodory’s construction
of a measure from an outer measure. §§133 and 135 lay out suitable conventions for dealing with ‘infinity’ and complex
numbers (separately! they don’t mix well) as values either of integrands or of integrals; at the same time I mention
‘upper’ and ‘lower’ integrals. Finally, in §136, I give some theorems on o-algebras of sets, describing how they can (in
some of the most important cases) be generated by relatively restricted operations.

131 Measurable subspaces

Very commonly we wish to integrate a function over a subset of a measure space; for instance, to form an integral
f; f(x)dx, where a < b in R. As often as not, we wish to do this when the function is partly or wholly undefined
outside the subset, as in such expressions as fol Inz dz. The natural framework in which to perform such operations
is that of ‘subspace measures’. If (X,%, u) is a measure space and H € ¥, there is a natural subspace measure ppy
on H, which I describe in this section. I begin with the definition of this subspace measure (131A-131C), with a
description of integration with respect to it (131E-131H); this gives a solid foundation for the concept of ‘integration
over a (measurable) subset’ (131D).

131A Proposition Let (X,X, 1) be a measure space, and H € 3. Set Xy ={F: E € X, E C H} and let uy be
the restriction of  to Xg. Then (H,X g, py) is a measure space.

proof Of course Xy is just {EN H : E € ¥}, and I have noted already (in 121A) that this is a o-algebra of subsets
of H. It is now obvious that py satisfies (iii) of 112A, so that (H, Xy, py) is a measure space.

131B Definition If (X, ¥, ) is any measure space and H € ¥, then ppy, as defined in 131A, is the subspace
measure on H.

When X = R", where » > 1, and p is Lebesgue measure on R", T will call a subspace measure py Lebesgue
measure on H.

It is worth noting the following elementary facts.

131C Lemma Let (X, X, u) be a measure space, H € ¥, and upy the subspace measure on H, with domain Y p.
Then

(a) for any A C H, A is pg-negligible iff it is p-negligible;

(b) if G € £y then (pm)g, the subspace measure on G when G is regarded as a measurable subset of H, is identical
to ug, the subspace measure on G when G is regarded as a measurable subset of X.

131D Integration over subsets: Definition Let (X, X, ) be a measure space, H € ¥ and f a real-valued
function defined on a subset of X. By [}, f (or [, f(x)u(dx), etc.) I shall mean [(f[H)dpug, if this exists, following
the definitions of 131A-131B and 122M, and taking dom(f[H) = H Ndom f, (fIH)(x) = f(x) for x € H Ndom f.

131E Proposition Let (X,X, 1) be a measure space, H € ¥, and f a real-valued function defined on a subset
dom f of H. Set f(z) = f(z) if x €dom f, 0if x € X \ H. Then [ fdug = [ fdu if either is defined in R.

proof (a) If f is ppy-simple, it is expressible as Y., a;xE;, where Ey,... ,E, € Xy, ag, ... ,a, € Rand pgE; < oo
for each i. Now f also is equal to > ., a;xE; if this is now interpreted as a function from X to R. So

S aiunE; =" gaiuE; = | fdp.
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(b) If f is a non-negative pp-integrable function, there is a non-decreasing sequence (f,)nen of non-negative pp-
simple functions converging to f pg-almost everywhere; now (f,,)nen is a non-decreasing sequence of p-simple functions
converging to f p-a.e. (131Ca), and

SuanNf.fndM = SupnGfond,uH - ffd/,LH < oQ,
so [ fdu exists and is equal to [ fdug.

(c) If fis pp-integrable, it is expressible as f; — fo where f; and fo are non-negative pp-integrable functions, so
that f = f1 — f2 and

[ fdp= [ fidp— [ fodp= [ frdpn — [ fodpr = [ fdpnu.
(d) Now suppose that f is p-integrable. In this case there is a p-conegligible £ € 3 such that £ C dom f and f [E

is X-measurable (122P). Of course u(H \ E) = 0 so E N H is py-conegligible; also, for any a € R,

{r:xeENH, f(x)>al=Hn{z:z ek, f(z) >a} € Xy,
so fIE N H is ¥ y-measurable, and f is py-virtually measurable and defined pg-a.e. Next, for € > 0,

pl{z v € ENH, |f(@)| = &} = plo 2 € B, |f(2)] = e} < oo,
while if g is a pug-simple function and g < |f| py-a.e. then § < |f| p-a.e. and

J9dun = [gdu < [1fldp < oo.

By the criteria of 122J and 122P, f is uy-integrable, so that again we have [ fduy = [ fdpu.

131F Corollary Let (X, X, 1) be a measure space and [ a real-valued function defined on a subset dom f of X.
(a) If H € ¥ and f is defined almost everywhere in X, then f[H is uy-integrable iff f x xH is py-integrable, and in

this case [, f= [ f x xH.
(b) If f is p-integrable, then f > 0 a.e. iff [, f >0 for every H € X.
(c) If f is p-integrable, then f =0 a.e. iff fH f=0for every H € X.

proof (a) Because dom f is p-conegligible, (f[H)", as defined in 131E, is equal to f x xH p-a.e., so that, by 131E,
Sy fdn= [(FTH) dp = [(f x xH)dp
if any one of the integrals exists.
(b)(i) If f > 0 p-a.e., then for any H € ¥ we must have f[H >0 pg-a.e., so [, f = [(fIH)dpg > 0.

(i) If fH f >0 for every H € 3, let £ € ¥ be a conegligible subset of dom f such that f[FE is measurable. Set
F={z:xzekE, f(x) <0}. Then [, f > 0; by 122Rc, it follows that f|F = 0 pp-a.e., which is possible only if uF' = 0,
in which case f > 0 p-a.e.

(c) Apply (b) to f and to —f to see that f <0< f a.e.

131G Corollary Let (X, X, u) be a measure space and H € ¥ a conegligible set. If f is any real-valued function
defined on a subset of X, [,, f = [ f if either is defined.

proof In the language of 131E, f = (f1 H)"~ p-almost everywhere, so that

Jr=[HE)"=[,f

if any of the integrals is defined.

131H Corollary Let (X,3, 1) be a measure space and f, g two p-integrable real-valued functions.
(a) If [, f > [, g for every H € X then f > g a.e.
(b) If [, f = [, g for every H € ¥ then f = g a.e.

proof Apply 131Fb-131Fc to f —g.

131X Basic exercises >(a) Let (X,X, 1) be a measure space, and f a real-valued function which is integrable
over X. For E € ¥ set vE = [, f. (i) Show that if E, F are disjoint members of ¥ then v(EUF) = vE + vF. (Hint:
131E.) (ii) Show that if (E,)nen is a disjoint sequence in ¥ then v(UJ, oy En) = >peq VEn. (Hint: 123C.) (iii) Show
that if f is non-negative then (X, ¥, v) is a measure space.
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>(b) Let u be Lebesgue measure on R. (i) Show that whenever ¢ < b in R and f is a real-valued function with
dom f C R, then

fdu= [ o fdn= [, fdn= [, fdu

if any of these is defined. (Hint: apply 131E to four different versions of f.) Write f: fdu for the common value. (ii)
Show that if a < b < ¢ in R then, for any real-valued function f, [ fdu = f; fdu+ [, fdu if either side is defined.
(iii) Show that if f is integrable over R, then (a,b) — fab fdu is continuous. (Hint: Either consider simple functions f

. . b .
first or consider lim,,_, oo fa fdu for monotonic sequences {(ay)nen-.)

(c) Let g : R — R be a non-decreasing function and 4 the associated Lebesgue-Stieltjes measure (114Xa). (i) Show
that if @ < b < ¢ in R then, for any real-valued function f, f[a«:[ fdug = f[a,b[ fdug + f[b@[ fduyg if either side is defined.
(ii) Show that if f is p,-integrable over R, then (a,b) — f[a,b[ fdug is continuous on {(a,b) : a < b, g is continuous at
both a and b}.

131Y Further exercises (a) Let (X, X, ;1) be a measure space and E € ¥ a measurable set of finite measure. Let
{fa)nen be a sequence of measurable real-valued functions, with measurable domains!, such that f = lim, o f, is
defined almost everywhere in F (following the conventions of 121Fa). Show that for every ¢ > 0 there is a measurable
set F' C FE such that u(E \ F) < € and (f,)nen converges uniformly to f on F. (This is Egorov’s theorem.)

131 Notes and comments If you want a quick definition of || y J for measurable H, the simplest seems to be that of
131E, which enables you to avoid the concept of ‘subspace measure’ entirely. I think however that we really do need to
be able to speak of ‘Lebesgue measure on [0, 1]’ for instance, meaning the subspace measure pg 1) where y is Lebesgue
measure on R.

This section has a certain amount of detailed technical analysis. The point is that from 131A on we generally have
at least two measures in play, and the ordinary language of measure theory — words like ‘measurable’ and ‘integrable’
— becomes untrustworthy in such contexts, since it omits the crucial declarations of which o-algebras or measures are
under consideration. Consequently I have to use less elegant and more explicit terminology. I hope however that once
you have worked carefully through such results as 131F you will feel that the pattern formed is reasonably coherent.
The general rule is that for measurable subspaces there are no serious surprises (131Cbh, 131Fa).

I ought to remark that there is also a standard definition of subspace measure on non-measurable subsets of a
measure space. | have given the definition already in 113Yb; for the theory of integration, extending the results above,
I will wait until §214. There are significant extra difficulties and the extra generality is not often needed in elementary
applications.

Let me call your attention to 131Fb-131Fc and 131Xa-131Xc; these are first steps to understanding ‘indefinite
integrals’, the functionals E — [}, f : ¥ — R where f is an integrable function. I will return to these in Chapters 22
and 23.

132 Outer measures from measures

The next topic I wish to mention is a simple construction with applications everywhere in measure theory. With
any measure there is associated, in a straightforward way, a standard outer measure (132A-132B). If we start with
Lebesgue measure we just return to Lebesgue outer measure (132C). I take the opportunity to introduce the idea of
‘measurable envelope’ (132D-132E).

132A Proposition Let (X, X, ) be a measure space. Define p* : PX — [0, 00| by writing
pA=inf{pE:EcX, ACE}
for every A C X. Then
a) for every A C X there is an E € ¥ such that A C F and u*A = pF;
b) p* is an outer measure on X;
c) u*E = pFE for every E € ¥;
set A C X is p-negligible iff u*A = 0;

a
e) 1" (Unen An) = limy, o p* Ay, for every non-decreasing sequence (A, )nen of subsets of X;

T am grateful to P.Wallace Thompson for pointing out that this clause, or something with similar effect, is necessary.
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() WA= p*(ANF)+ p*(A\ F) whenever A C X and F € X.

proof (a) For each n € N we can choose an E,, € ¥ such that A C £, and pE, < p*A+27";now £ = (), .y En € %,
ACPFE and

wWA<pE <inf,enypF, < p*A.

®)Q) pd=uhp=0. () fACBCXthen{E: ACFe€X}D{E:BCEEe€X}sopu*d<p*B. (iii) If
(An)nen is any sequence in PX, then for each n € N there is an E,, € ¥ such that 4,, C E,, and pE, = p*A,; now
Unen An € Upen En € X s0

/’L*(UneN An) S /‘L(UnEN En) S Z;.LO:O ILLEn = Z;.LO:O ’LL*An
(c) This is just because pFE < puF whenever E, F € ¥ and E C F.
(d) By (a), u*A = 0 iff there is an E € ¥ such that A C F and pE = 0; but this is the definition of ‘negligible set’.

(e) Of course (u*Ay)nen is a non-decreasing sequence with limit at most p*A, writing A = (J,, .y An, just because
pw*B < p*C whenever B C C C X. For each n € N, let E,, € ¥ be such that A, C E, and pFE, = pu*A,. Set
F, = ﬂmZn E,, for each n; then (F,),en is a non-decreasing sequence in %, and A,, C F,, C E,,, so u*A, = uF, for

each n € N. Set F' = J,,cy Fin; then A C F so

WA S pF = limy, oo uFy = limy, o0 p* Ay
Thus p*A = lim,, 00 p* Ay, as claimed.

(f) Of course p*A < p*(ANF) 4+ p*(A\ F), by (b). On the other hand, there is an E € ¥ such that A C F and
wE = p*A, by (a), and now ANFCENFeX A\FCE\FecXso

pANE) +p (A\F) Su(ENF) + p(E\ F) = pE = p*A.

132B Definition If (X, %, 1) is a measure space, I will call p*, as defined in 132A, the outer measure defined
from p.

Remark If we start with an outer measure 6 on a set X, construct a measure p from 6 by Carathéodory’s method,
and then construct the outer measure p* from p, it is not necessarily the case that p* = 6. I* Take any set X with at
least three members, and set A =0if A =0, 1if A = X, % otherwise. Then dom p = {f), X} and p*A = 1 for every
non-empty A C X. Q

However, this problem does not arise with Lebesgue outer measure. I state the next proposition in terms of Lebesgue
measure on R”, but if you skipped §115 I hope that you will still be able to make sense of this, and later results, in
terms of Lebesgue measure on R, by setting r = 1.

132C Proposition If § is Lebesgue outer measure on R” and p is Lebesgue measure, then p*, as defined in 132A,
is equal to 6.

proof Let A CR".
(a) If E is measurable and A C F, then §A < 0FE = uE; so 0A < u*A.

(b) If € > 0, there is a sequence (I,)nen of half-open intervals, covering A, with Y 2 ul, < 6A + e (using
114G /115G to identify pl, with the volume AI, used in the definition of #), so

A< p(UpenIn) < 20iopln < 0A+ e
As € is arbitrary, p*A < 6A.

Remark Accordingly it will henceforth be unnecessary to distinguish 6 from p* when speaking of ‘Lebesgue outer
measure’. (In the language of 132Xa below, Lebesgue outer measure is ‘regular’.) In particular (using 132Aa), if
A C R there is a measurable set ¥ O A such that uF = A (compare 134Fc).

132D Measurable envelopes The following is a useful concept in this context. If (X, %, u) is a measure space and
A C X, ameasurable envelope (or measurable cover) of Aisaset F € ¥ such that A C F and u(FNE) = p*(FNA)
for every F' € . In general, not every set in a measure space has a measurable envelope (I suggest examples in 216Yc¢
in Volume 2). But we do have the following.
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132E Lemma Let (X, ¥, 1) be a measure space.

(a) If AC E € %, then E is a measurable envelope of A iff 4F = 0 whenever F' € ¥ and F' C E'\ A.

(b)If AC E € ¥ and uF < oo then E is a measurable envelope of A iff uE = p*A.

(c) If F is a measurable envelope of A and H € 3, then E N H is a measurable envelope of AN H.

(d) Let (An)nen be a sequence of subsets of X. Suppose that each A, has a measurable envelope E,,. Then | J, .y En
is a measurable envelope of UneN A,

(e) If A C X can be covered by a sequence of sets of finite measure, then A has a measurable envelope.

(f) In particular, if p is Lebesgue measure on R”, then every subset of R” has a measurable envelope for p.

proof (a) If E is a measurable envelope of A, FF € ¥ and F' C E'\ A, then
uF=uwFNE)=p*(FNA)=0.

If E is not a measurable envelope of A, there is an H € ¥ such that p* (AN H) < u(EN H). Let G € ¥ be such that
ANH C G and puG = p*(ANH), and set F = ENH\ G. Since uG < w(E N H), uF > 0; but also FF C F and
FNACHNA\G is empty.

(b) If E is a measurable envelope of A then we must have
wWA=p*(ANE)=pn(ENE)=pE.
If uB = p*A, and F € ¥ is a subset of E\ A, then A C E\ F, so u(E \ F) = pFE; because pF is finite, it follows that
puF =0, so the condition of (a) is satisfied and E is a measurable envelope of A.

(c)f FeXand FCENH\A, then F C E\ A, so uF =0, by (a); as F is arbitrary, F N H is a measurable
envelope of AN H, by (a) again.

(d) Write A for |J,cnAn and E for |J, oy En. Then A C E. If F € ¥ and F C E\ A, then, for every n € N,
FNE,CE,\ A, sou(FNE,) =0,by (a). Consequently F = J, .y F N E, is negligible; as F is arbitrary, F is a
measurable envelope of A.

neN

(e) Let (F,)nen be a sequence of sets of finite measure covering A. For each n € N, let E,, € ¥ be such that
ANF, CE,and uE, = p*(ANF,) (using 132Aa above); by (b), E,, is a measurable envelope of AN F,,. By (d),

Unen En is a measurable envelope of (J,, .y AN F, = A.

(f) In the case of Lebesgue measure on R", of course, the same sequence (B,,),en will work for every A, if we take
B,, to be the half-open interval [—n,n[ for each n € N, writing n = (n,... ,n) as in §115.

132F Full outer measure This is a convenient moment at which to introduce the following term. If (X, X, u)
is a measure space, a set A C X is of full outer measure or thick if X is a measurable envelope of A; that is, if
w*(FNA) = uF for every F € ¥; equivalently, if uF =0 whenever F € Y and FF C X\ A. If uX < 00, A C X has full
outer measure iff p*A = pX.

132X Basic exercises >(a) Let X be a set and 6 an outer measure on X; let u be the measure on X defined by
Carathéodory’s method from 6, and p* the outer measure defined from p by the construction of 132A. (i) Show that
w*A > 0A for every A C X. (ii) 6 is said to be a regular outer measure if § = p*. Show that if there is any measure
v on X such that § = v* then 0 is regular. (iii) Show that if € is regular and (A, ),cn is a non-decreasing sequence of
subsets of X, then (U, cy An) = limy, o0 0A,.

(b) Let (X, X, u) be a measure space and H any member of ¥. Let py be the subspace measure on H (131B) and
w*, @i the outer measures defined from p, pg respectively. Show that pj; = p*[PH.

(c) Give an example of a measure space (X, X, 1) such that the measure ji defined by Carathéodory’s method from
the outer measure p* is a proper extension of u. (Hint: take uX = 0.)

>(d) Let (X, X, 1) be a measure space and A a subset of X. Suppose that (E,)nen is a sequence in ¥ such that
(AN Ep)pen is disjoint. Show that p*(ANU,cn Bn) = 2opeo i (AN Ey). (Hint: replace E, by E), = E, \ U, -, Ei,
and use 132Ae-132Af.)

(e) Let (X, %, 1) be a measure space and (A, )nen any sequence of subsets of X. Show that the outer measure of
Unen Nisyp Ai is at most liminf,, o p* Ay,
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(f) Let (X,%, 1) be a measure space and suppose that A C B C X are such that u*A = p*B < oo. Show that
pw*(ANE)=up*(BNE) for every E € ¥. (Hint: a measurable envelope of B is a measurable envelope of A.)

>(g) Let v, be a Lebesgue-Stieltjes measure on R, constructed as in 114Xa from a non-decreasing function g : R — R.
Show that (i) the outer measure v derived from v, (132A) coincides with the outer measure ¢, of 114Xa; (ii) if A C R
is any set, then A has a measurable envelope for the measure v,.

>(h) Let A CR" be a set which is not measured by Lebesgue measure p. Show that there is a bounded measurable
set F such that p*(ENA) =pu*(E\ A) = uE > 0. (Hint: take E = E' N E” N B, where E’ is a measurable envelope
for A, E” is a measurable envelope for R” \ A, and B is a suitable bounded set.)

(i) Let u be Lebesgue measure on R” and ¥ its domain, and f a real-valued function, defined on a subset of R”,
which is not ¥-measurable. Show that there are ¢ < ¢’ in Q and a bounded measurable set FE such that

p{r:z e Endomf, f(x) <q}=p*{z:z € Endomf, f(x) >q¢}=upE >0.

(Hint: take E,, E; to be measurable envelopes for {z : f(x) < ¢}, {z : f(x) > q} for each ¢. Find ¢ such that
w(Eq N E;) >0 and ¢’ such that u(E, N E;,) > 0.)

(j) Check that you can do exercise 113Yc.

(k) Let (X, 3, ) be a measure space and p* the outer measure defined from . Show that u*(AUB) + p*(ANB) <
w*A+ p*Bfor all A, B C X.

132Y Further exercises (a) Let (X,X, u) be a measure space and (f,)nen a sequence of real-valued functions
defined almost everywhere in X. Suppose that (€,)nen is a sequence of non-negative real numbers such that

Zf:o €n < 00, ZZO:() N*{x : |fn+1(x) - fn(x)| > en} < 0.

Show that lim,_, fy is defined (as a real-valued function) almost everywhere.

(b) Let (X, 3, u) be a measure space, Y aset and f : X — Y a function. Let v be the image measure pf~! (112Xf).
Show that v* f[A] > u*A for every A C X.

(c) Let (X,3, ) be a measure space with uX < oo. Let (A,)nen be a sequence of subsets of X such that
UneN A,, has full outer measure in X. Show that there is a partition (E,),en of X into measurable sets such that
wE, = u*(A4, N E,) for every n € N.

(d) Let (X, X, ) be a measure space and A a family of subsets of X such that (1, .y A, has full outer measure for
every sequence {(A,)pen in A. Show that there is a measure v on X, extending u, such that every member of A is
v-conegligible.

(e) Check that you can do exercises 113Yg-113Yh.
(f) Let (X,X, 1) be a measure space. Show that pu* : PX — [0, 00] is alternating of all orders, that is,

ZJQ,#(J) is even M (AU UieJ 4;) < ZJQI,#(J) is odd (AU UieJ A;)

whenever I is a non-empty finite set, (A;);cs is a family of subsets of X and A is another subset of X.

132 Notes and comments Almost the most fundamental fact in measure theory is that in all important measure
spaces there are non-measurable sets. (For Lebesgue measure see 134B below.) One can respond to this fact in a
variety of ways. An approach which works quite well is just to ignore it. The point is that, for very deep reasons, the
sets and functions which arise in ordinary applications nearly always are measurable, or can be made so by elementary
manipulations; the only exceptions I know of in applied mathematics appear in generalized control theory. As a pure
mathematician I am uncomfortable with such an approach, and as a measure theorist I think it closes the door on
some of the most subtle ideas of the theory. In this treatise, therefore, non-measurable sets will always be present, if
only subliminally. In this section I have described two of the basic methods of dealing with them: the move from a
measure to an outer measure, which at least assigns some sort of size to an arbitrary set, and the idea of ‘measurable
envelope’, which (when defined) describes the region in which the non-measurable set has to be taken into account. In
both cases we seek to describe the non-measurable set from the outside, so to speak. There are no real difficulties, and
the only points to take note of are that (i) outside the boundary marked by 132Ee measurable envelopes need not exist
(ii) Carathéodory’s construction of a measure from an outer measure, and the construction here of an outer measure
from a measure, are closely related (132C, 132Xg, 113Yc, 132Xa(i)), but are not quite inverses of each other in general
(132B, 132Xc).



62 Complements §133 intro.

133 Wider concepts of integration

There are various contexts in which it is useful to be able to assign a value to the integral of a function which is
not quite covered by the basic definition in 122M. In this section I offer suggestions concerning the assignment of the
values oo to integrals of real-valued functions (133A), the integration of complex-valued functions (133C-133H) and
upper and lower integrals (133I1-133L). In §135 below I will discuss a further elaboration of the ideas of Chapter 12.

133A Infinite integrals It is normal to restrict the phrase ‘f is integrable’ to functions f to which a finite integral
[ f can be assigned (just as a series is called ‘summable’ only when a finite sum can be assigned to it). But for
non-negative functions it is sometimes convenient to write ‘[ f = 0o’ if, in some sense, the only way in which f fails
to be integrable is that the integral is too large; that is, f is defined almost everywhere, is p-virtually measurable, and
either

{z:xz edomf, f(x) > €}
includes a set of infinite measure for some € > 0, or
sup{f h:hissimple, h <, f} = 0.
(Compare 122].) Under this rule, we shall still have
ff1+f2:ff1+ff2, fo:Cff

whenever ¢ € [0,00[ and f1, f2, f are non-negative functions for which [ fi, [ fa, [ f are defined in [0, cc].
We can therefore repeat the definition 122M and say that

Jh—=fo=[Hh-]F

whenever fi1, fo are real-valued functions such that f f1, f f2 are defined in [0, 00| and are not both infinite; the last
condition being imposed to avoid the possibility of being asked to calculate co — co.
We still have the rules that

[r+g=[r+[g [h=c[f [IA=I[F

at least when the right-hand-sides can be interpreted, allowing 0- oo = 0, but not allowing any interpretation of co —co;
and f < fg whenever both integrals are defined and f <,. g. (But of course it is now possible to have f < g and
| f = [ g =00 without f and g being equal almost everywhere.)

Setting f*(x) = max(f(z),0), f~(z) = max(—f(x),0) for z € dom f, then

ff =00 <+ ff+ = oo and f~ is integrable,

ff = —00 <= fT is integrable and ff_ = 00.

For further ideas in this direction, see §135 below.

133B Functions with exceptional values It is also convenient to allow as ‘integrable’ functions f which take
occasional values which are not real — typically, where a formula for f(x) allows the value ‘co’ on some convention. For

such a function T will write [ f = [ fif [ f is defined, where
domf={z:zecdomf, f(x) eR}, f(z)=f(z)for z € domf.

Since in this convention I still require f to be defined almost everywhere in X, the set {z : € dom f, f(z) ¢ R} will
have to be negligible.

133C Complex-valued functions All the theory of measurable and integrable functions so far developed has been
devoted to real-valued functions. There are no substantial new ideas required to deal with complex-valued functions,
but perhaps I should spell out some of the details, since there are many applications in which complex-valued functions
are the most natural context in which to work.

133D Definitions (a) Let X be a set and ¥ a o-algebra of subsets of X. If D C X and f: D — C is a function,
then we say that f is measurable if its real and imaginary parts Re f, Zm f are measurable in the sense of 121B-121C.

(b) Let (X, %, 1) be a measure space. If f is a complex-valued function defined on a conegligible subset of X, we
say that f is integrable if its real and imaginary parts are integrable, and then

Jf= Ref+i[Imf.
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(c) Let (X, %, 1) be a measure space, H € ¥ and f a complex-valued function defined on a subset of X. Then [, f
is [(f1H)dpg if this is defined in the sense of (b), taking the subspace measure pg to be that of 131A-131B.

133E Lemma (a) If X is a set, ¥ is a o-algebra of subsets of X, and f and g are measurable complex-valued
functions with domains dom f, dom g C X, then
(i) f+ g :dom f Ndomg — C is measurable;
(ii) ¢f : dom f — C is measurable, for every ¢ € C;
(iii) f x g : dom f Ndom g — C is measurable;
(iv) f/g: {z: 2z € dom f Ndomg, g(z) # 0} — C is measurable;
(v) |f] : dom f — R is measurable.
(b) If (fn)nen is a sequence of measurable complex-valued functions defined on subsets of X, then f = lim, oo fn
is measurable, if we take dom f to be

{z:x€ U ﬂ dom f,, nh_)rr;O fn(x) exists in C}

neNm>n
= dom( lim Re f,) Ndom( lim Zm f,).
n—oo n—oo

proof (a) All are immediate from 121E, if you write down the formulae for the real and imaginary parts of f+g,... ,|f]
in terms of the real and imaginary parts of f and g.

(b) Use 121Fa.

133F Proposition Let (X, X, 1) be a measure space.
(a) If f and g are integrable complex-valued functions defined on conegligible subsets of X, then f + g and cf are

integrable, [ f+g=[f+ [gand [c¢f =c[ [, for every c € C.
(b) If f is a complex-valued function defined on a conegligible subset of X, then f is integrable iff |f]| is integrable
and f is p-virtually measurable, that is, Re f and Zm f are p-virtually measurable.

proof (a) Use 1220a-1220b.

(b) The point is that | Re f|, | Zm f| < |f| < |Re f| +|Zm f|; now we need only apply 122P an adequate number
of times.

133G Lebesgue’s Dominated Convergence Theorem Let (X, X, 1) be a measure space and {f,,)nen a sequence
of integrable complex-valued functions on X such that f(z) = lim,— e fn(z) exists in C for almost every z € X.
Suppose moreover that there is a real-valued integrable function g on X such that |f,| <... g for each n. Then f is
integrable and lim,_,~ [ f, exists and is equal to [ f.

proof Apply 123C to the sequences (Re fr)nen and (Zm fp,)nen.

133H Corollary Let (X, X, ) be a measure space and ]a, b[ a non-empty open interval in R. Let f : X x]a,b[ = C
be a function such that
(i) the integral F(t) = [ f(x,t)dx is defined for every t € ]a, b];
(ii) the partial derivative %{ of f with respect to the second variable is defined everywhere in X X ]a, b[;
(iil) there is an integrable function g : X — [0, co[ such that |%(m,t)\ < g(x) for every x € X, t € ]a, b|.
Then the derivative F’(¢) and the integral f %(x, t)dx exist for every ¢ € ]a, b[, and are equal.

proof Apply 123D to Re f and Zm f.

1331 Upper and lower integrals I return now to real-valued functions. Let (X, X, 1) be a measure space and f
a real-valued function defined almost everywhere in X. Its upper integral is
Tf = inf{fg : fg is defined in the sense of 133A and f <,. g},
allowing oo for inf{oo} or inf ) and —oo for inf R. Similarly, the lower integral of f is

if = sup{fg : fg is defined, f >a.. g},

allowing —oo for sup{—oc} or sup ) and oo for supR.
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133J Proposition Let (X, 3, 1) be a measure space.
(a) Let f be a real-valued function defined almost everywhere in X.
(i) If [f is finite, then there is an integrable g such that f <,. g and [ g = [f. In this case,

{z:2 € dom fNdomy, g(z) < f(z) + go(2)}

has full outer measure for every measurable function go : X — ]0, ool.
(ii) If [f is finite, then there is an integrable h such that h <,. f and [h = [f. In this case,

{z:2 € dom fNdomh, f(z) < h(z)+ ho(z)}

has full outer measure for every measurable function hy : X — |0, cof.
(b) For any real-valued functions f, g defined on conegligible subsets of X and any ¢ > 0,

W [f< [
i) [f+9<[f+ ]9,
(iii) fcffcff,

(iv) [(=F) =~
V) [f+g=[f+ ]9,
(Vi) Jef=c¢ff

whenever the right-hand-sides do not involve adding co to —oo.
(o) If f <ae. gthenff<fgandff<fg
(d) A real-valued function f defined almost everywhere in X is integrable iff
Jr=[r=acr,
and in this case [ f = a.
(e) p*A = [xA for every A C X.

proof (a)(i) For each n € N, choose a function g,, such that f <, g, and [ g, is defined and at most 27" +Tf;

as Tf < [ gn, [gn is finite, so g, is integrable. Set h, = inf;<, g; for each n; then h, is integrable (because
I = gol < 300 1gi — gol on N, domgy), and f <ne. hy, 50

Jr<fha<fgn<2m+ [f.
By B.Levi’s theorem (123A), applied to (—hy,)nen, 9(z) = inf,en by (2) € R for almost every z, and [ g = inf,en [ hy, =

Tf, also, of course, f <,.. g¢.
Now take a measurable function go : X — ]0, o[, and consider the set

A={x:xz e€domfnNndomg, g(z) < f(x)+ go(x)}.

? If A does not have full outer measure, there is a non-negligible measurable set F C X \ A. Since gq is strictly
positive, F' = |, ey 'n where F, = {z : . € I, go(z) > 27"}, and there is an n € N such that xF,, > 0. Consider the

function g; = g — 27"xF. Then f <.. g1. Also [ g1 = [ g — 27" uF, is strictly less than [ g, so [f < [¢. X
(ii) Argue similarly, or use (b-iv).

(b) (i) If either if = —00 Oor Tf = 0o this is trivial. Otherwise it follows at once from the fact that if ¢ <, f <ae h
then [ g < [ hif the integrals are defined (in the wide sense).

(ii) If a > Tf +7g, neither Tf nor Tg can be 0o, so there must be functions fi, g1 such that f <, fi, 9 <ae. 01
and [ fi+ [ g1 <a. Now f+ g <ae f1+ g1, s0

[r+9<[fi+a<a

As a is arbitrary, we have the result.

(iii) (@) If ¢ = 0 this is trivial. (8) If ¢ > 0 and a > cff, there must be an f; such that f <, fi and ¢ [ fi <a.
Now ¢f <ae cfi and [cfi <a,so [c¢f <a. As ais arbitrary, [¢f < c[f. () Still supposing that ¢ > 0, we also have

ch = cTc’lcf < cc’lfcf = ch,
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so we get equality.

(iv) This is just because [(—f1) = — [ f1 for any function f; for which either integral is defined.

(v)-(vi) Use (iv) to turn [ into [, and apply (ii) or (iii).
(c) These are immediate from the definitions, because (for instance) if g <, . h then f <, h.

(d) If f is integrable, then

Tr=ff=J1
by 1220d. If Tf = [f = a €R, then, by (a), there are integrable g, h such that g <sc. f <ac hand [g= [h=a,
so that g =, h, by 122Rc, g =a.. f =ae. h and f is integrable, by 122Rb.
(e) If £ D A is measurable, then

pE = [ xE > [xA;
as F is arbitrary, up*A > TxA. If f g is defined and YA <,.. g, let E C dom g be a conegligible measurable set such
that g £ is measurable, and set F = {z : € E, g(z) > 1}. Then A\ F is negligible, so u*A < pF < [g; as g is
arbitrary, u*A < [xA.

Remark I hope that the formulae here remind you of lim sup, lim inf.

133K Convergence theorems for upper integrals We have the following versions of B.Levi’s theorem and
Fatou’s Lemma.

Proposition Let (X, X, 1) be a measure space, and (f,,)nen a sequence of real-valued functions defined almost every-
where in X. _
(a) If, for each n, fn <ae faot1, and —co < sup,cy [fn < 00, then f(z) = sup,cy fn(z) is defined in R for almost

every x € X, and Tf = supneNTfn.
(b) If, for each n, f, > 0 a.e., and liminf,_,o [f, < oo, then f(z) = liminf, o f,(z) is defined in R for almost
every € X, and [ f <liminf, o [ fn.

proof (a) Set ¢ = sup,,cy Tfn For each n, there is an integrable function g, such that f, <.e ¢, and [ g, = Tfn
(133J(a-1)). Set g/, = min(gn, gn+1); then g/, is integrable and f,, <,.. g, <a.c. Gn, SO

Jra<[do<[on= [t

and g, must be equal to g, a.e. Consequently g, <ae. gnit1, for each n, while sup,cy [ g = ¢ < co. By B.Levi’s
theorem, g = sup,,cy gn is defined, as a real-valued function, almost everywhere in X, and [ g = ¢. Now of course f(z)
is defined, and not greater than g(z), for any x € domg N,y dom f, such that f,(z) < g,(x) for every n, that is,

for almost every x; so Tf < [ g = c. On the other hand, f, <,.. f, so Tfn < Tf, for every n € N; it follows that Tf
must be at least ¢, and is therefore equal to ¢, as required.

(b) The argument follows that of 123B. Set ¢ = liminf, Tfn For each n, set g, = inf,,>, fn; then Tgn <
inf,,>n [ fm < c. We have g,,(2) < gn41(x) for every z € dom g, that is, almost everywhere, for each n; so, by (a),
J9=sup,en [on <c,
where
g = SUPpeN 9n =ae. lim inf,, fna

and Tlim inf, oo fn < ¢, as claimed.

*133L The following is at a less fundamental level than the results in 133J, but is still important.

Proposition Let (X, %, ) be a measure space and f a real-valued function defined almost everywhere in X. Suppose
that hy, ho are non-negative virtually measurable functions defined almost everywhere in X. Then

Jfx (bt ha)= [fxhi+ [fxha

where here, for once, we can interpret oo + (—o0) or (—00) + oo as oo if called for on the right-hand side.
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proof (a) If either Tf X hy = 0o or Tf x hy = oo then Tf X (h1 + hg) = co. P? Otherwise, there is a g such that
fx(h1+ h2) <ae g and fg < oo. In this case,

thl >a.e. f+><h1 >a.e. f+ (h1+h2) (fX(h1+h2))+ <aeg

SO Tf x hy < [ g% < oco. Similarly, ff X he < 00; contradicting our hypothesis. XQ So in this case, under the local
rule 0o + (—o0) = (—00) + 0o = o0, we have the result.

(b) Now suppose that the upper integrals T f x hy and T f x hg are both less than oo, so that their sum can be

interpreted by the usual rules. By 133J(b-ii), Tf X (h1 4+ he) < Tf x hy —1—7]‘ x hy < o0o. In the other direction, suppose
that g >ae f X (h1 + ho) and [ g < co. For i =1, 2 set

gi(z) = % if x € dom g N'dom hy Ndom he and hy(x) + he(z) > 0,

= 0 for other z € X.
Then, for both i, g; is virtually measurable, g;" <.. ¢g" and g; >4 f X h;; while g >, g1 + g2. P The set
H = {z:2z € dom f Ndom g Ndomh; Ndom hg, g(z) > f(z)(h1(x) + ha(z))}
is conegligible, and for x € H
9(z) = g1(z) + g2() if hi(z) + ha(z) > 0,
>0=g1(x) 4+ g2(x) if hy(z) + ho(x) =0. Q
So
fth1+ff><h2<fg1+fg2 Jo+9<[g

(because f g1 and [ go are both at most [ gt < oo, so we can add them on the usual rules). As g is arbitrary,
ff X hy + ff X hy < ff X (h1 + h2) and we must have equality.

133X Basic exercises >(a) Let (X, 3, ) be a measure space, and f : X — [0, c0[ a measurable function. Show

that
/fdu—supQ ”Z,u{x ) >27"k}
4’71
= lim 27" Z,u{x s f(x) > 27"k}
in [0, o).

(b) Let (X, 3, 1) be a measure space and f a complex-valued function defined on a subset of X. (i) Show that if
E €%, then f]E is pp-integrable iff f is p-integrable, writing pg for the subspace measure on E and f(x) = f(a) if
x € ENdom f, 0if x € X \ E; and in this case fE fdug = ffdu. (ii) Show that if £ € ¥ and f is defined p-almost
everywhere, then f[E is pp-integrable iff f x xE is p-integrable, and in this case [, f = [ f x xE. (iii) Show that if
Ji f=0for every E € ¥, then f =0 a.e.

(c) Suppose that (X, X, 1) is a measure space and that G is an open subset of C, that is, a set such that for every
w € G there is a § > 0 such that {z : |z —w| < 6} € G. Let f : X x G — C be a function, and suppose that
the derivative % of f with respect to the second variable exists for all x € X, z € G. Suppose moreover that (i)
F(z) = [ f(z,z)dz exists for every z € G (ii) there is an integrable function g such that |%($, 2)| < g(z) for every
x € X, z € G. Show that the derivative F’ of F exists everywhere in G, and F'(z) = f %(w, z)dzx for every z € G.
(Hint: you will need to check that |f(x,2) — f(x,w)| < |z — w|g(x) whenever x € X, z € G and w is close to z.)

>(d) Let f be a complex-valued function defined almost everywhere on [0, o[, endowed as usual with Lebesgue
measure. Its Laplace transform is the function F' defined by writing

F(s) = fooo e %% f(x)dx

for all those complex numbers s for which the integral is defined in C.
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(i) Show that if s € dom F and Res’ > Res then s’ € dom F (because e~ %e5%| < 1 for all z).

(ii) Show that F' is analytic (that is, differentiable as a function of a complex variable) on the interior of its
domain. (Hint: 133Xc.)

(iii) Show that if F' is defined anywhere then limge s— o0 F'(s) = 0.

(iv) Show that if f, g have Laplace transforms F', G then the Laplace transform of f + g is F + G, at least on
dom F' NdomG.

>(e) Let f be an integrable complex-valued function defined almost everywhere in R, endowed as usual with

Lebesgue measure. Its Fourier transform is the function ]A“ defined by

A

1) = = [T e f@)de

for all real s.

(i) Shqw that ]A” is continuous. (Hint: use Lebesgue’s Dominated Convergence Theorem on sequences of the form
fo(w) = e f(z).)

(ii) Show that if f, g have Fourier transforms f, g then the Fourier transform of f 4 g is f + g.

(iii) Show that if [z f(x)dz exists then JAC is differentiable, with ,]AN(S) = —\/%7 [ xe™* f(z)dx for every s.

(f) Let (X, X, 1) be a measure space and {f,,)nen @ sequence of real-valued functions each defined almost everywhere
in X. Suppose that there is an integrable real-valued function g such that |f,| <,.. g for each n. Show that

Tlim infy, oo fro < liminf,, Tfn, flim SUDP,, oo frn = limsup,, ffn

133Y Further exercises (a) Use the ideas of 133C-133H to develop a theory of measurable and integrable functions
taking values in R”, where r > 2.

(b) Let X be a set and X a o-algebra of subsets of X. Let Y be a subset of X and f :Y — C a Xy-measurable
function, where ¥y = {ENY : E € X}. Show that there is a X-measurable function f : X — C extending f. (Hint:
1211.)

(c) Let f be an integrable complex-valued function defined almost everywhere in R”, endowed as usual with Lebesgue

N
measure, where r > 1. Its Fourier transform is the function f defined by

F5) = gy S e flda

for all s € R, writing s.x for 01§ + ...+ 0,.§ if s = (01,...,0.), x = (&,...,&) € R".
(i) Show that jA” is continuous.

(ii) Show that if f, g have Fourier transforms JA‘, g then the Fourier transform of f + g is ]A”—|— g.

(iii) Show that if [ ||z|||f(z)|dz is finite (taking ||z|| = /& +... + & if x = (&1,...,&)), then } is differentiable,
with

of

80'k

(5) = ~rygmy J ™" " f(a)da

for every s e R", k <.

(d) Recall the definition of ‘quasi-simple’ function from 122Yd. Show that for any measure space (X, %, u) and any
real-valued function f defined almost everywhere in X,

Tf = inf{fg : g is quasi-simple, f <,.. g},

ff = sup{fg : g is quasi-simple, f >, g},

allowing oo for inf ) and supR and —oo for inf R and sup 0.

(e) State and prove a similar result concerning the ‘pseudo-simple’ functions of 122Ye.
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133 Notes and comments I have spelt this section out in detail, even though there is nothing that can really be
called a new idea in it, because it gives us an opportunity to review the previous work, and because the manipulations
which are by now, I hope, becoming ‘obvious’ to you are in fact justifiable only through difficult theorems, and I believe
that it is at least some of the time right to look back to the exact points at which justifications were written out.

You may have noticed similarities between results involving ‘upper integrals’, as described here, and those of §132
concerning ‘outer measure’ (132Ae and 133Ka, for instance, or 132Xe and 133Kb). These are not a coincidence; an
explanation of sorts can be found in 252Ym in Volume 2.

134 More on Lebesgue measure

The special properties of Lebesgue measure will take up a substantial proportion of this treatise. In this section I
present a miscellany of relatively easy basic results. In 134A-134F, r will be a fixed integer greater than or equal to
1, u will be Lebesgue measure on R” and p* will be Lebesgue outer measure (see 132C); when I say that a set or a
function is ‘measurable’, then it is to be understood that (unless otherwise stated) this means ‘measurable with respect
to the o-algebra of Lebesgue measurable sets’, while ‘negligible’ means ‘negligible for Lebesgue measure’. Most of the
results will be expressed in terms adapted to the multi-dimensional case; but if you are primarily interested in the real
line, you will miss none of the ideas if you read the whole section as if r = 1.

134A Proposition Both Lebesgue outer measure and Lebesgue measure are translation-invariant; that is, setting
A+z={a+z:a€ A} for ACR", z € R", we have

(a) p*(A+z) = p*A for every A CR", z € R";

(b) whenever E C R" is measurable and € R”, then F + x is measurable, with u(FE + ) = pFE.
proof The point is that if I C R" is a half-open interval, as defined in 114Aa/115Ab, then so is I +z, and A(I+z) = AT
for every © € R”, where X is defined as in 114Ab/115Ac; this is immediate from the definition, since [a,b] + z =
[a+2,b+ .

(a) If ACR" and x € R" and € > 0, we can find a sequence (I;);en of half-open intervals such that A C (J;cy 1
and 3272 (AL < p*A e Now A+z C ;eI + ) so

prA+a) <3 Zo M +a) =T M S prAte.
As € is arbitrary, p*(A + z) < p*A. Similarly
pA=p(A+az)+(-2) <p*(A+a),

so u*(A+ z) = p*A, as claimed.

(b) Now suppose that F C R" is measurable and z € R", and that A C R". Then, using (a) repeatedly,

pAN(E+2) + p (AN (E+2) = p" (A =2) N E) +2) + (A - 2) \ E) + 2)
= (A=z)NE)+p ((A-2)\ E)
=p(A—x)=p'A,

writing A — x for A+ (—z) = {a—x:a € A}. As A is arbitrary, E + x is measurable. Now

wE+x) =p"(E+z)=p E=pE.

134B Theorem Not every subset of R" is Lebesgue measurable.
proof Set 0= (0,...,0),1=(1,...,1) € R". On
0,1 ={(&,...,&) : & € [0,1] for every ¢ < r},

consider the relation ~, defined by saying that z ~ y iff y —x € Q". It is easy to see that this is an equivalence relation,
so divides [0, 1] into equivalence classes. Choose one point from each of these equivalence classes, and let A be the set
of points obtained in this way. Then pu*A < p*[0,1[ = 1.

Consider A+Q" ={a+q:a€ A, qeQ"} = Uq@@r A+gq. Thisis equal to R". PP If z € R", there is an e € Z" such
that x —e € [0, 1[; there is an a € A such that a ~ 2 —e, that is, z—e—a € Q";nowz =a+ (e+z—e—a) € A+Q".
Q Next, Q" is countable (111F(b-iv)), so we have

0o = pR" < 3 cor 1 (A+q),
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and there must be some ¢ € Q" such that u*(A 4 ¢) > 0; but as p* is translation-invariant (134A), u*A > 0.

Take n € N such that n > 2"/p* A, and distinct ¢q,...,q, € [0,1[NQ". Ifa, b€ Aand 1 < ¢ < j < n, then
a+q; # b+ gj; for if a = b then ¢; # ¢q;, whileif a # bthen a £ bsob—a # ¢; —q;. Thus A+qq,... , A+ q, are
disjoint. On the other hand, all are subsets of [0,2[. So we have

S w (At q) =nprA>2" = p0,2] > 5t (U< (A + @)

It follows that not all the A 4+ ¢; can be measurable; as Lebesgue measure is translation-invariant, we see that A itself
is not measurable. In any case we have found a non-measurable set.

*134C Remark 134B is known as ‘Vitali’s construction’.

Observe that at the beginning of the proof I asked you to choose one member of each of the equivalence classes for
~. This is of course an appeal to the Axiom of Choice. So far I have made rather few appeals to the axiom of choice.
One was in (a-iv) of the proof of 114D/115D; an earlier one was in 112Db; yet another in 121A. See also 1A1F. In all of
these, only ‘countable choice’ was involved; that is, I needed to choose simultaneously one member of each of a named
sequence of sets. Because there are surely uncountably many equivalence classes for ~, the form of choice needed for
the example above is essentially stronger than that needed for the positive results so far. It is in fact the case that very
large parts of measure theory can be developed without appealing to the full strength of the axiom of choice.

The significance of this is that it suggests the possibility that there might be a consistent mathematical system in
which enough of the axiom of choice is valid to make measure theory possible, without having enough to construct
a non-Lebesgue-measurable set. Such a system has indeed been worked out by R.M.Solovay (SoLovay 70). (In a
formal sense there is room for a residual doubt concerning its consistency. In my view this is of no importance.) In
Volume 5 I will return to the question of what Lebesgue measure looks like with a weak axiom of choice, or none at
all. For the moment, I have to say that nearly all measure theory continues to proceed in directions at least consistent
with the full axiom of choice, so that non-measurable sets are constantly present, at least potentially; and that will
be my normal position in this treatise. But I mention the point at this early stage because I believe that it could
happen at any time that the focus of interest might switch to systems in which the axiom of choice is false; and in this
case measure theory without non-measurable sets might become important to many pure mathematicians, and even
to applied mathematicians, who have no reason, other than the convenience of being able to quote results from books
like this one, for loyalty to the axiom of choice.

I ought to remark that while we need a fairly strong form of the axiom of choice to construct a non-Lebesgue-
measurable set, a non-Borel set can be constructed in much weaker set theories. One possible construction is outlined
in §423 in Volume 4.

Of course there is a non-Lebesgue-measurable subset of R iff there is a non-Lebesgue-measurable function from R to
R; for if every set is measurable, then the definition 121C makes it plain that every real-valued function on any subset
of R is measurable; while if A C R is not measurable, then YA : R — R is not measurable.

*134D In fact there are much stronger results than 134B concerning the existence of non-measurable sets (provided,
of course, that we allow ourselves to use the axiom of choice). Here I give one which can be reached by a slight refinement
of the methods of 134B.

Proposition There is a set C' C R" such that F N C is not measurable for any measurable set F' of non-zero measure;
so that both C and its complement have full outer measure in R".

proof (a) Start from a set A C [0,1] C R” such that (A + ¢)4eq- is a partition of R”, as constructed in the proof of
134B. As in 134B, the outer measure pu* A of A must be greater than 0. The argument there shows in fact that pF' = 0
for every measurable set I C A. P For every n we can find distinct ¢1,... ,q, € [0,1[NQ", and now
nul = p(Uycicp, F+ @) < pf0,2[=27,
so that uF < 2"/n; as n is arbitrary, uF = 0. Q
(b) Now let E C [0, 1] be a measurable envelope of A (132Ef). Then E + ¢ is a measurable envelope of A+ ¢ for any

q. PP 1 hope that this will very soon be ‘an obvious consequence of the translation-invariance of Lebesgue measure’. In
detail: A4+ q C E + ¢, F + q is measurable and, for any measurable F,

wEFN(E+q)=p((F-qNE)+q) =pl(F—qNE)
= (F=gnA)=p (F-qNA)+q) =p (FnN(A+q),
using 134A repeatedly. Q Also F is a measurable envelope of A" = E\ A. P Of course E is a measurable set including

A If F C E\ A’ is measurable then F' C A, so uF = 0, by (a); now 132Ea tells us that E is a measurable envelope
of A’. Q It follows that E + ¢ is a measurable envelope of A’ + ¢ for every q.
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(c) Let (gn)nen be a sequence running over Q”. Then

UneNE+q” 2 UneNA+q" =R".

Write E, for E+ ¢, \ U, E + ¢ for n € N, so that (E,)nen is disjoint and (J,, .y En = R".

Now set

<n

O =Upen En N (A+q0).

This is a set with the required properties.
P (i) Let F C R" be any non-negligible measurable set. Then there must be some n € N such that u(F N E,) > 0.
But this means that

W FNE,NC)>p* (FNE,N(A+q)) =p(FNE,N(E+g,)) =u(FNE,),

P (FENENC)Z p (FNE, N ((E+qn) \ (A+qn)))
=uw(FNE,N(E+g,))=pFNE,).
Since
WFNE,) < p(E+qn) =pE <1,
wW(FNE,NC)+p* (FNE,\C)>u(FNE,),and FNC cannot be measurable.

(ii) In particular, no measurable subset of R” \ C' can have non-zero measure, and C has full outer measure;
similarly, C' has no measurable subset of non-zero measure, and R” \ C has full outer measure. Q

Remark In fact it is the case that for any sequence (D, ),cn of subsets of R” there is a set C' C R” such that
w(END,NC)=p*(END,\C)=p*(END,)

for every measurable set £ C R" and every n € N. But for the proof of this result we must wait for Volume 5.

134E Borel sets and Lebesgue measure on R" Recall from 111G that the family B of Borel sets in R” is
the o-algebra generated by the family of open sets. In 114G/115G I showed that every Borel set in R” is Lebesgue
measurable. It is time we returned to the topic and looked more closely at the very intimate connexion between Borel
and measurable sets.

Recall that a set A C R” is bounded if there is an M such that A C B(0, M) = {z : ||z| < M}; equivalently, if
SUp,eq €] < oo for every j < r (writing x = (§1,...,&), as in §115).

134F Proposition (a) If A CR" is any set, then
w*A =inf{uG : G is open, G O A} = min{uH : H is Borel, H D A}.
(b) If E C R" is measurable, then
wE = sup{uF : F is closed and bounded, F C E},
and there are Borel sets Hy, Hy such that H; C E C Hy and
p(Hy \ Hy) = p(Ha \ E) = p(E'\ Hy) = 0.

(¢) If A C R" is any set, then A has a measurable envelope which is a Borel set.
(d) If f is a Lebesgue measurable real-valued function defined on a subset of R”, then there is a conegligible Borel
set H C R" such that f|H is Borel measurable.

proof (a)(i) First note that if 7 C R” is a half-open interval, and € > 0, then either I = ) is already open, or
I is expressible as [a,b] where a = (a1,...,a,), b = (f1,...,8r) and «; < B; for every i. In the latter case,
G =]a —€(b—a),b] is an open set including I, and

WG = T (1 + (B — i) = (L ul,
by the formula in 114G/115G.

(ii) Now, given € > 0, there is a sequence (I,,),en of half-open intervals, covering A, such that > ° pul, < p*A+e.
For each n, let G, 2 I,, be an open set of measure at most (1 + €)"ul,. Then G = |, . Gr is open (1A2Bd), and
A C G; also

neN

HG <3 o iGy < (14 €) 30 g pln < (1+€)" (1A +6).
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As e is arbitrary, p*A > inf{uG : G is open, G D A}.

(iii) Next, using (ii), we can choose for each n € N an open set G, 2 A such that uG, < p*A +27". Set
Hy = (,eny Gn; then Hy is a Borel set, A C Hy, and

pHy < infpen pGp < p*A.

(iv) On the other hand, we surely have p*A < p*H = pH for every Borel set H O A. So we must have
p*A <inf{uG : G is open, G D A},
and
w*A=puHy=min{uH : H is Borel, H D A}.
(b)(i) For each n € N, set E,, = EN B(0,n). Let G,, 2 E,, be an open set of measure at most ukE, + 27"; then

(because uB(0,n) < 00) pu(Gp \ Ey) < 27". Now, for each n, set G, = |J G then G, is open, E = E, C
G!,, and

m>n m>n

WG\ E) <3 (G \E) < 50 (G \ Eg) <300, 27" =27

Setting Hy = (), .y Gn, We see that Hy is a Borel set including E and that pu(Hs \ E) = 0.

neN

_ (ii) Repeating the argument of (i) with R™ \ E in place of E, we obtain a Borel set Hy, D R"\ E such that
w(Hz \ (R™\ E)) = 0; now H; = R" \ Hj is a Borel set included in F and

u(E\ Hy) = pu(H2 \ (R"\ E)) = 0.
Of course we now also have

p(Ha \ Hy) = p(Hz \ E) + p(E \ Hy) = 0.

(iii) Again using the idea of (i), there is for each n € N an open set G,, D B(0,7n) \ E such that
WG N Ey) < p(Gn \ (B(O,n) \ E)) < 27"
Set
F, =B(0,n)\ G, = B(0,n) N (R"\ G,);
then F, is closed (1A2Fd) and bounded and F,, C E,, C E. Also
pE, = pFy + u(Ey \ Fp) = pF, + w(Gn N Ey,) < pF, +27".
So
pE = limy, o0 p By, < sup, ey pFy < sup{uF : F is closed and bounded, F' C E},
and
wE = sup{uF : F is closed and bounded, F C E}.

(c) Let E be any measurable envelope of A (132Ef), and H 2O E a Borel set such that pu(H \ E) = 0; then
p(FNA)=upu(FNE)=u(FNH) for every measurable set F', so H is a measurable envelope of A.

(d) Set D = dom f and write B for the o-algebra of Borel sets. For each rational number ¢, let E, be a measurable
set such that {z : f(z) < q} = E,N D. Let Hy, H, € B be such that H, C £, C H, and u(H; \ H,) = 0. Let H be
the conegligible Borel set R™ \ | J(H, \ H;). Then

{z:(flH)(z)<¢g}=HNE,ND=H,NnDNH

belongs to the subspace o-algebra B(D) for every ¢ € Q. For irrational a € R, set H, = ()
and

1€0.q>a Hqs then H, € B,

{z: (fIH)(z) <a} = H,Ndom(f[H).
Thus f[H is Borel measurable.

Remark The emphasis on closed bounded sets in part (b) of this proposition is on account of their important topological
properties, in particular, the fact that they are ‘compact’. This is one of the most important facts about Lebesgue
measure, as will appear in Volume 4. I will discuss ‘compactness’ briefly in §2A2 of Volume 2.
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134G The Cantor set One of the purposes of the theory of Lebesgue measure and integration is to study rather
more irregular sets and functions than can be dealt with by more primitive methods. In the next few paragraphs I
discuss measurable sets and functions which from the point of view of the present theory are amenable without being
trivial. From now on, pu will be Lebesgue measure on R.

(a) The ‘Cantor set’ C' C [0,1] is defined as the intersection of a sequence (Cp,)nen of sets, constructed as follows.
Cop = [0,1]. Given that C,, consists of 2™ disjoint closed intervals each of length 37", take each of these intervals and
delete the middle third to produce two closed intervals each of length 37="~!; take C,,,1 to be the union of the 2"+!
closed intervals so formed, and continue. Observe that uC,, = (%)" for each n.

Approaching the Cantor set

The Cantor set is C' =),y Cp. Its measure is

(b) Each C,, can also be described as the set of real numbers expressible as Z;; 37J€; where every ¢; is either 0,

lor2,and¢; # 1 for j < n. Consequently C' itself is the set of numbers expressible as Z;’il 37J¢; where every €; is
either 0 or 2; that is, the set of numbers between 0 and 1 expressible in ternary form without 1’s. The expression in

each case will be unique, so we have a bijection ¢ : {0, 1} — C defined by writing
2

Bz) = 252037 2())

for every z € {0, 1}

134H The Cantor function Continuing from 134G, we have the following construction.

(a) For each n € N we define a function f, : [0,1] — [0,1] by setting

Fal@) = G)"1(Co 1 [0,])

for each = € [0, 1]. Because C,, is just a finite union of intervals, f, is a polygonal function, with f,(0) =0, f,(1) = 1;
fn is constant on each of the 2" — 1 open intervals composing [0,1] \ C,,, and rises with slope (%)" on each of the 2"
closed intervals composing C,,.
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\ \ \ \ |
0 1

Approaching the Cantor function: the functions fo, fi, f2, f3

If the jth interval of C,,, counting from the left, is [an;, bn;], then f,(a,;) =27"(j — 1) and f,(b,;) = 27"j. Also,
Anj = @ny1,25—1 and bpj = byy1 255 hence, or otherwise, fni1(an;) = fu(an;) and fri1(bnj) = fa(bn;), and fni1 agrees
with f,, on all the endpoints of the intervals of C),, and therefore on [0,1] \ Cy,.

Within any particular interval [a,;, b, ] of C),, the greatest difference between f,(z) and f,41(x) is at the new
endpoints within that interval, viz., b,y1,2;—1 and an41,2;5; and the magnitude of the difference is %2_" (because,
for instance, fn(bnt1,2j-1) = %fn(anj) + %fn(bnj), while fri1(bnyi,2j-1) = %fn(anj) + %fn(bnj)) Thus we have
| fas1(@) = fulz)] < 2277 for every n € N, z € [0,1]. Because > oo [ 27" < 00, (fy)nen is uniformly convergent to a

n=0 6
function f :[0,1] — [0,1], and f will be continuous. f is the Cantor function or Devil’s Staircase.

17

The Cantor function

(b) Because every f,, is non-decreasing, so is f. If x € [0,1] \ C, there is an n such that = € [0,1] \ Cy; let I be the
open interval of [0, 1]\ C,, containing x; then f,, 1 agrees on I with f,, for every m > n, so f agrees on I with f,, and
f is constant on I. Thus, in particular, the derivative f’(x) exists and is 0 for every = € [0,1] \ C; so f’ is zero almost
everywhere in [0, 1]. Also, of course, f(0) = 0 and f(1) = 1, because f,(0) =0, f,(1) = 1 for every n. It follows that
f:[0,1) — [0, 1] is surjective (by the Intermediate Value Theorem).

(c) Let ¢ : {0,1} — C be the function described in 134Gb. Then f(¢(2)) = %Z;’;o 2792(j) for every z € {0, 1},
P Fix 2z = ((o,C1, (2, - -+ ) in {0, 1}, and for each n take I,, to be the component interval of C,, containing ¢(z). Then
I,+1 will be the left-hand third of I,, if {,, = 0 and the right-hand third if {,, = 1. Taking a,, to be the left-hand
endpoint of I,,, we see that
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An41 = an + %3_”6” frs1(ant1) = fu(an) + %2_”@
for each n. Now
() = limy o an,  F(B(2)) = limp 0 f(an) = Ty oo Falan) = 33706279,
as claimed. Q

In particular, f[C] = [0,1]. P Any z € [0,1] is expressible as 372 (2777 12(j) = f(4(2)) for some z € {0,1}". Q

1341 The Cantor function modified I continue the argument of 134G-134H.

(a) Consider the formula

9(z) = 5 (@ + f(2)),

where f is the Cantor function, as defined in 134H; this defines a continuous function ¢ : [0, 1] — [0, 1] which is strictly
increasing (because f is non-decreasing) and has g(0) = 0, g(1) = 1; consequently, by the Intermediate Value Theorem,

g is bijective, and its inverse g~1 : [0, 1] [0,1] is continuous.
Now ¢[C is a closed set and ug[C] 1. PP Because g is a permutation of the points of [0, 1], [0, 1]\ g[C] = ¢[[0, 1]\ C].
For each of the open intervals I,,; = |by,;, Gn,j+1[ making up [0, 1]\ C,,, we see that ¢g[I,,;] = 1g(bn;), g(an, j+1)[ has length

just half the length of I,;. Consequently g[[0,1]\ C] = U,,>1 1<j<2n 9[In;] is open, and

2" —1 2"n—1
1
u(gl[0, N\ Col) = > 9lange1) = 9(bng) =35 D Gngir = bug
j=1 j=1

= 00,1\ Co) = (1= (3)™)
(134Ga). Because ([0, 1]\ Cp)nen is an increasing sequence of sets with union [0,1] \ C,
ng([[0,1]\ C1) = limy, e pg([ 0,1\ C]) = 5.
So g[C] =[0,1] \ ¢[[0,1] \ C] is closed and ug[C] = % Q
(b) By 134D there is a set D C R such that
1w (9C) N D) = p(g[C\ D) = pg[C] = 3;

2’
set A = g[C] N D. Of course A cannot be measurable, since u*A + p*(g[C] \ A) > ug[C]. However, g~1[A] C C must
be measurable, because p*C = 0. This means that if we set h = x(¢g7'[4]) : [0,1] — R, then h is measurable; but
hg=' = xA:[0,1] — R is not.
Thus the composition of a measurable function with a continuous function need not be measurable.
Contrast this with 121Eg.

134J More examples I think it is worth taking the space to spell out two more of the basic examples of Lebesgue
measurable set in detail.

(a) As already observed in 114G, every countable subset of R is negligible. In particular, Q is negligible (111ED).
We can say more. Let (¢,)nen be a sequence running over Q, and for each n € N set

I, = ]qn - 27”7 an + 27“[3

G, = Uan Iy,

Then G,, is an open set of measure at most y ;- 2- 2% = 4.27" and it contains all but finitely many points of Q, so
is dense (that is, meets every non-trivial interval). Set F,, = R\ G,,; then F), is closed, u(R\ F,) < 4/2", but F,, does
not contain g for any k > n, so F,, cannot include any non-trivial interval. Observe that (G,,)nen is non-increasing so
(Fy)nen is non-decreasing.

(b) We can elaborate the above construction, as follows. There is a measurable set E C R such that (I N E) > 0
and p(I \ E) > 0 for every non-trivial interval I C R. I First note that if k, n € N, there is a j > n such that ¢; € I,
so that I, N I; # 0 and p(Iy \ F,,) > 0. Now there must be an [ > n such that puG; < p(Iy \ F,,), so that
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p(le N\ Fo) = p((e \ Fo) \ Gi) > 0.

Choose ng < n1 < ng < ... as follows. Start with ng = 0. Given ngj, where k € N, choose nak41, nak+2 such that

:u(Ik‘ n Fn2k+1 \ Fn2k) >0, IU/(IIC n Fn2k+2 \ Fn2k+1) > 0.

Continue.
On completing the induction, set

E= UkeN Fn2k+l \ Fn2k7 H = UkeN Fn2k+2 \ Fn2k+1'

Because (F)ken is non-decreasing, ENH = . If k € N, EN I, and H N I, both have positive measure.
Now suppose that I C R is an interval with more than one point; suppose that a, b € I and a < b. Then there is an
m € N such that 4 - 27" < b — a; now there is a k > m such that g, € [a +27™,b — 27™], so that I}, C I and

p(INE)>u(ENI;) >0, p(I\E)>pHNI) >0 Q

(c) This shows that E and its complement are measurable sets which are not merely both dense (like Q and R\ Q),
but ‘essentially’ dense in that they meet every non-empty open interval in a set of positive measure, so that (for
instance) F \ A is dense for every negligible set A.

*134K Riemann integration I have tried, in writing this book, to assume as little prior knowledge as possible. In
particular, it is not necessary to have studied Riemann integration. Nevertheless, if you have worked through the basic
theory of the Riemann integral — which is, indeed, not only a splendid training in the techniques of e-§ analysis, but
also a continuing source of ideas for the subject — you will, I hope, wish to connect it with the material we are looking
at here; both because you will not want to feel that your labour has been wasted, and because you have probably
developed a number of intuitions which will continue to be valuable, if suitably adapted to the new context. I therefore
give a brief account of the relationship between the Riemann and Lebesgue methods of integration on the real line.

(a) There are many ways of describing the Riemann integral; I choose one of the popular ones. If [a, b] is a non-trivial
closed interval in R, then I say that a dissection of [a,d] is a finite list D = (ag,a1,... ,a,), where n > 1, such that
a=ayg<a <...<a,=0> If now f is a real-valued function defined (at least) on [a,b] and bounded on [a,b], the
upper sum and lower sum of f on [a,b] derived from D are

Sp(f) =21 (a; —ai—1) SUPsela; 1,0 f(2),

SD(f) = Z?:l(ai - aifl) infze]ai_l,a,z[ f(‘r)

You have to prove that if D and D’ are two dissections of [a, b], then sp(f) < Sp/(f). Now define the upper Riemann
integral and lower Riemann integral of f to be

Ula,p)(f) = inf{Sp(f) : D is a dissection of [a, b]},
Lia ) (f) = sup{sp(f) : D is a dissection of [a, b]}.

Check that L, (f) is necessarily less than or equal to Up, ) (f). Finally, declare f to be Riemann integrable over
[a,b] if Uja,p)(f) = Lia,p)(f), and in this case take the common value to be the Riemann integral yf; f of f over [a,b].

(b) If f : [a,b] — R is Riemann integrable, it is Lebesgue integrable, with the same integral. I For any dissection
D = (ag, ... ,a,) of [a,b], define gp, hp : [a,b] — R by saying

gp(x) =inf{f(y) 1y € Ja;—1,a;[} if a;-1 <z <a;, g¢gpla;) = f(a;) for each i,

hp(z) =sup{f(y) : y € lai—1,a;[} if a;—1 <z < a;, hp(a;) = f(a;) for each 1.

Then gp and hp are constant on each interval Ja;—1, a;[, so all sets {z : gp(x) < ¢}, {z : hp(x) < ¢} are finite unions
of intervals, and gp and hp are measurable; moreover,

[gpdp=sp(f). [hpdu=Sp(f).

Consequently

#abf = Ly (f) = S%p/gpdu < /fdu

g/fdu Si%f/hDdN:U[a,b](f) = %lbﬁ
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and [fdy = Jfdv = fff [, so that [ fdu exists and is equal to #:f (133Jd). Q

(c) The discussion above is of the ‘proper’ Riemann integral, of bounded functions on bounded intervals. For
unbounded functions and unbounded intervals, one uses various forms of ‘improper’ integral; for instance, the improper
Riemann integral fooo Si%dx is taken to be limg_s o0 foa Si%dx, while fol In z dx is taken to be lim, o fal Inz dx. Of these,
the second exists as a Lebesgue integral, but the first does not, because fooo |¥|dm = 00. The power of the Lebesgue
integral to deal directly with ‘absolutely integrable’ unbounded functions on unbounded domains means that what one
might call ‘conditionally integrable’ functions are pushed into the background of the theory. In Chapter 48 of Volume
4 T will discuss the general theory of such functions, but for the time being I will deal with them individually, on the
rare occasions when they arise.

*134L There is in fact a beautiful characterisation of the Riemann integrable functions, as follows.

Proposition If ¢ < b in R, a bounded function f : [a,b] — R is Riemann integrable iff it is continuous almost
everywhere in [a, b].

proof (a) Suppose that f is Riemann integrable. For each x € [a, b], set

g(x) = SUPs>o infye[a,b],ly—x\gzs f(y),

h(x) = infs>0 SUPye(q0),jy—o|<s [ (V)
so that f is continuous at x iff g(z) = h(z). We have g < f < h, so if D is any dissection of [a,b] then Sp(g) <
Sp(f) < Sp(h) and sp(g) < sp(f) < sp(h). But in fact Sp(f) = Sp(h) and sp(g) = sp(f), because on any open
interval ]c, d[ C [a, b] we must have
infxe]c,d[ g($> = infre]c,d[ f(l'), SUPgelc,d] f(SL’) = SUPgze]c,d[ h(l‘)
It follows that

Liay) (f) = Lia)(9) < Upap)(9) < Upap) (),

Ligp)(f) < Lig5)(h) < Upa g (h) = Upap) (f)-

Because f is Riemann integrable, both g and A must be Riemann integrable, with integrals equal to y‘{: f. By 134Kb,
they are both Lebesgue integrable, with the same integral. But g < h, so g =,.. h, by 122Rd. Now f is continuous at
any point where g and h agree, so f is continuous a.e.

(b) Now suppose that f is continuous a.e. For each n € N, let D,, be the dissection of [a, b] into 2™ equal portions.
Set

hy(z) = SUPyele,d| fy), gn(x)= infye]c,d[ fy)

if ]¢,d[ is an open interval of D,, containing x; for definiteness, say h,(z) = g,(x) = f(z) if  is one of the points of
the list D,. Then (gn)nen, (hn)nen are, respectively, increasing and decreasing sequences of functions, each function
constant on each of a finite family of intervals covering [a,b]; and sp, (f) = [ gndu, Sp, (f) = [ hndp. Next,

at any point x at which f is continuous; so f =,.e. limy, 00 gn =a.e. liMy— 00 hpn. By Lebesgue’s Dominated Convergence
Theorem (123C),

lim,, s o0 fgnd,u = ffd,u = limn—wofhnd,u;
but this means that
L[mb](f) > f fd/.L > U[mb](f)v

so these are all equal and f is Riemann integrable.

134X Basic exercises >(a) Show that if f is an integrable real-valued function on R”, then [ f(z + a)dz exists
and is equal to [ f for every a € R". (Hint: start with simple functions f.)

(b) More generally, show that if E C R" is measurable and f is a real-valued function which is integrable over F in
the sense of 131D, then [,  f(z + a)dx exists and is equal to [}, f for every a € R".
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(c) Show that if C' C R is any non-negligible set, it has a non-measurable subset. (Hint: use the method of 134B,
taking the relation ~ on a suitable bounded subset of C' in place of [0, 1].)

>(d) Let v, be a Lebesgue-Stieltjes measure on R, constructed as in 114Xa from a non-decreasing function g : R — R,
and X, its domain. (See also 132Xg.) Show that
(i) if A C R is any set, then

v, A =inf{y,G : G is open, G 2 A}
= min{v,H : H is Borel, H D A};
(ii) if £ € %, then
vgE = sup{yyF : F' is closed and bounded, F' C E'},

and there are Borel sets Hq, Hy such that H; C E C Hy and vy(Hy \ H1) = vy(Ha \ E) = v,(E\ H1) = 0;

(iii) if A C R is any set, then A has a measurable envelope which is a Borel set;

(iv) if f is a ¥ -measurable real-valued function defined on a subset of R, then there is a v4-conegligible Borel set
H C R such that f[H is Borel measurable.

(e) Let E C R" be a measurable set, and € > 0. (i) Show that there is an open set G D E such that u(G \ E) < e.
(Hint: apply 134Fa to each set E N B(0,n).) (ii) Show that there is a closed set F' C E such that u(E \ F) <.

(f) Let C C [0,1] be the Cantor set. Show that {z +y:z,y€ C} =10,2] and {x —y: 2z, y € C} =[-1,1].

(g) Let f, g be functions from R to itself. Show that (i) if f and g are both Borel measurable, so is their composition
fg (i) if f is Borel measurable and g is Lebesgue measurable, then fg is Lebesgue measurable (iii) if f is Lebesgue
measurable and g is Borel measurable, then fg need not be Lebesgue measurable.

(h) Show that for any integer r > 1 there is a measurable set £ C R" such that E and R" \ E both meet every
non-empty open interval in a set of strictly positive measure.

(i) Give [0, 1] its subspace measure. (i) Show that there is a disjoint sequence (A, )nen of subsets of [0, 1] all of outer
measure 1. (i) Show that there is a function f : [0,1] — 0, 1[ such that [f =0and [f = 1.

(j) Let f be a measurable real function and g a real function such that dom g \ dom f and {z : 2 € dom g N dom f,
g(x) # f(x)} are both negligible. Show that g is measurable.

134Y Further exercises (a) Fix ¢ > 0. For A C R"” set cA = {cz : x € A}. (i) Show that p*(cA) = ¢"u*A for
every A CR". (ii) Show that ¢E is measurable for every measurable E C R".

(b) Let {fmn)mmnen, (fm)men, f be real-valued measurable functions defined almost everywhere in R” and such
that f, =ae lm, oo finn for each m and f =, lim,, o fin. Show that there is a sequence (ng)ren such that
f =ae iMoo frn,. (Hint: take ny such that the measure of {z : ||z|| <k, |fr(z) — frmn, (z)| > 27%} is at most 27
for each k.)

(c) Let f be a measurable real-valued function defined almost everywhere in R”. Show that there is a sequence
(fn)nen of continuous functions converging to f almost everywhere. (Hint: Deal successively with the cases (i) f = xI
where [ is a half-open interval (ii) f = x(U,<,, I;) where Iy, ..., I, are disjoint half-open intervals (iii) f = x& where
E is a measurable set of finite measure (iv) f is a simple function (v) general f, using 134Yb at steps (iii) and (v).)

(d) Let f be a real-valued function defined on a subset of R". Show that the following are equiveridical: (i) f is
measurable (ii) whenever E C R” is measurable and puF > 0, there is a measurable set F' C F such that pF > 0 and
f1F is continuous (iii) whenever E C R" is measurable and v < pE, there is a measurable F' C F such that uF' > ~
and f[F is continuous. (Hint: for (i)=-(iii), use 134Yc and 131Ya; for (ii)=-(i) use 121D. This is a version of Lusin’s
theorem.)

(e) Let v be a measure on R which is translation-invariant in the sense of 134Ab, and such that [0, 1] is defined and
equal to 1. Show that v agrees with Lebesgue measure on the Borel sets of R. (Hint: Show first that [a, 1] belongs to
the domain of v for every a € [0,1], and hence that every half-open interval of length at most 1 belongs to the domain
of v; show that v [a,a + 27" = 27" for every a € R, n € N, and hence that v [a,b] = b — a whenever a < b.)
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(f) Let v be a measure on R” which is translation-invariant in the sense of 134Ab, where r > 1, and such that v[0, 1]
is defined and equal to 1. Show that v agrees with Lebesgue measure on the Borel sets of R”.

(g) Show that if f is any real-valued integrable function on R, and e > 0, there is a continuous function g : R — R
such that {z : g(x) # 0} is bounded and [ |f — g| < e. (Hint: show that the set ® of functions f with this property
satisfies the conditions of 122Yb.)

(h) Repeat 134Yg for real-valued integrable functions on R”, where r > 1.
(i) Repeat 134Fd, 134Xa, 134Xb, 134Yb, 134Yc, 134Yd, 134Yg and 134Yh for complex-valued functions.

(j) Show that if G C R” is open and not empty, it is expressible as a disjoint union of a sequence of half-open
intervals each of the form {z : 27™n; < & < 27™(n; + 1) for every ¢ < r} where m € N, ny,... ,n, € Z.

(k) Show that a set E C R" is Lebesgue negligible iff there is a sequence (Cy)nen of hypercubes in R” such that
E CMpenUpsn Cr and Yo (diam Cy)" < oo, writing diam Cj, for the diameter of Cj.

(1) Show that there is a continuous function f : [0,1] — [0,1]? such that p;f~![E] = poE for every measurable
E C [0,1])%, writing i, us for Lebesgue measure on R, R? respectively. (Hint: for each n € N, express [0,1]? as the
union of 4" closed squares of side 27"; call the set of these squares D,,. Construct continuous f, : [0,1] — [0,1]?,
families (Ip) pep, inductively in such a way that each Ip is a closed interval of length 4=" and f,,,[Ip] € D whenever
D € D, and m > n. The induction will proceed more smoothly if you suppose that the path f, enters each square in
D,, at a corner and leaves at an adjacent corner. Take f = lim,, ,, f,,. This is a special kind of Peano or space-filling
curve.)

(m) Show that if » < s there is a continuous function f : [0,1]" — [0,1]* such that wu,f '[E] = psE for every
measurable E C [0, 1]°, writing p,, s for Lebesgue measure on R”, R® respectively.

(n) Show that there is a continuous function f : R — R? such that u; f~[E] = u2E for every measurable E C R?,
writing ju1, po for Lebesgue measure on R, R? respectively.

(o) Show that the function f : [0,1] — [0, 1] of 134Y]1 may be chosen in such a way that usf[E] = u1 E for every
Lebesgue measurable set E C [0, 1]. (Hint: using the construction suggested in 134Y1, and setting H = f~1[([0,1]\Q)?],
ST H will be an isomorphism between (H, ju1, i) and (f[H], pi2, ¢[#]), writing p1, g and pg f7) for the subspace measures.)

(p) Show that R can be expressed as the union of a disjoint sequence (E,,),ecn of sets of finite measure such that
w(INE,) >0 for every non-empty open interval I C R and every n € N.

(q) Show that for any » > 1, R" can be expressed as the union of a disjoint sequence (E,)nen of sets of finite
measure such that u(G N E,) > 0 for every non-empty open set G C R" and every n € N.

(r) Show that there is a disjoint sequence (A, )nen of subsets of R such that p*(A, NE) = pE for every measurable
set E and every n € N. (Remark: in fact there is a disjoint family (A;);er with this property, but I think a new idea
is needed for this extension. See 4191 in Volume 4.)

(s) Repeat 134Yr for R”, where r > 1.

(t) Describe a Borel measurable function f : [0,1] — [0,1] such that f[A is discontinuous at every point of A
whenever A C [0, 1] is a set of full outer measure.

(u) Let (E,)nen be a sequence of non-negligible measurable subsets of R”. Show that there is a measurable set
E C R” such that all the sets E,, N E, E, \ E are non-negligible.

134 Notes and comments Lebesgue measure enjoys an enormous variety of special properties, corresponding to the
richness of the real line, with its algebraic and topological and order structures. Here I have only been able to hint at
what is possible.

There are many methods of constructing non-measurable sets, all significant; the one I give in 134B is perhaps the
most accessible, and shows that translation-invariance is (subject to the axiom of choice) an insuperable barrier to
measuring every subset of R.
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In 134F I list some of the basic relationships between the measure and the topology of Euclidean space. Others are
in 134Yc, 134Yd and 134Yg; see also 134Xd. A systematic analysis of these will take up a large part of Volume 4.

The Cantor set and function (134G-1341I) form one of the basic examples in the theory. Here I present them just
as an interesting design and as a counter-example to a natural conjecture. But they will reappear in three different
chapters of Volume 2 as illustrations of three quite different phenomena.

The relationship between the Lebesgue and Riemann integrals goes a good deal deeper than I wish to explore just
at present; the fact that the Lebesgue integral extends the Riemann integral (134Kb) is only a small part of the story,
and I should be sorry if you were left with the impression that the Lebesgue integral therefore renders the Riemann
integral obsolete. Without going into the details here, I hope that 134F and 134Yg make it plain that the Lebesgue
integral is in some sense the canonical extension of the Riemann integral. (This, at least, I shall return to in Chapter
43.) Another way of looking at this is 134YT; the Lebesgue integral is the basic translation-invariant integral on R".

135 The extended real line

It is often convenient to allow ‘oo’ into our formulae, and in the context of measure theory the appropriate ma-
nipulations are sufficiently consistent for it to be possible to develop a theory of the extended real line, the set
[~00,00] = RU {—00, 00}, sometimes written R. I give a brief account without full proofs, as I hope that by the time
this material becomes necessary to the arguments I use it will all appear thoroughly elementary.

135A The algebraic structure of [—oo, 0] (a) If we write
a+oco=00+a=00, a+(—00)=(—00)+a=—-00
for every a € R, and
00+ 00 =00, (—00)+(—00)=—00,

but refuse to define oo 4+ (—o0) or (—o0) + 0o, we obtain a partially-defined binary operation on [—o0, 00}, extending
ordinary addition on R. This is associative in the sense that
if u, v, w € [—00,00] and one of u + (v + w), (u + v) + w is defined, so is the other, and they are then
equal,
and commutative in the sense that
if u, v € [—00,00] and one of u + v, v 4+ u is defined, so is the other, and they are then equal.
It has an identity 0 such that « +0 =0+ u = u for every u € [—00, o0]; but co and —oo lack inverses.

(b) If we define

a-00=00-a=00, a-(—00)=(-0) a=—00
for real a > 0,
a-00=00-a=-00, a-(—00)=(-00) a=o00
for real a < 0,
0000 =(—00): (—0) =00, (—00)-00=00"(—00)=—00,

0-00=00-0=0-(—0)=(-00)-0=0
then we obtain a binary operation on [—o00, 00| extending ordinary multiplication on R, which is associative and

commutative and has an identity 1; 0, oo and —oo lack inverses.

(c) We have a distributive law, a little weaker than the associative and commutative laws of addition:
if u, v, w € [—00, 00] and both u(v + w) and uv + uw are defined, then they are equal.
(But note the problems which arise with such combinations as co(1 + (—2)), 0- 00+ 0 (—00).)

(d) While co and —oo do not have inverses in the semigroup ([—o0, 0], ), there seems no harm in writing a/co =
a/(—o00) = 0 for every a € R. But of course such an extension of the notion of division must be watched carefully in
such formulae as u - .

135B The order structure of [—oo, 0] (a) If we write

—o00 < u < oo for every u € [—00, 00],
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we obtain a relation on [—oo, 0], extending the usual ordering of R, which is a total ordering, that is,
for any u, v, w € [—00,00], if u < v and v < w then u < w,
u < u for every u € [—o00, x|,
for any u, v € [—00,00], if u < v and v < u then u = v,
for any wu, v € [—00, 00], either u < v or v < w.
Moreover, every subset of [—00, oo] has a supremum and an infimum, if we write sup ) = —oco, inf ) = co.

(b) The ordering is ‘translation-invariant’ in the weak sense that
if u, v, w € [—00,00] and v < w and w + v, u + w are both defined, then u + v < u + w.
It is preserved by non-negative multiplications in the sense that
if u, v, w € [—00,00] and 0 < w and v < w, then uv < ww,
while it is reversed by non-positive multiplications in the sense that
if u, v, w € [—o00,00] and u < 0 and v < w, then uw < uw.

135C The Borel structure of [—oo, cc] We say that a set £ C [—00, 0] is a Borel set in [—oo0,00] if ENR is a
Borel subset of R. It is easy to check that the family of such sets is a o-algebra of subsets of [—00, 00]. See also 135Xb
below.

135D Convergent sequences in [—oo,00] We can say that a sequence (u,)nen in [—00,00] converges to u €
[—o0, 0] if
whenever v < u there is an ng € N such that v < u, for every n > ng, and whenever u < v there is an
ng € N such that u, < v for every n > ng;
alternatively,
either u € R and for every § > 0 there is an ng € N such that u,, € [u — §,u + 4] for every n > ng
oru = —oo and for every a € R there is an ng € N such that u,, < a for every n > ng
or u = oo and for every a € R there is an ng € N such that u,, > a for every n > ny.
(Compare the notion of convergence in 112Ba.)

135E Measurable functions Let X be any set and ¥ a o-algebra of subsets of X.

(a) Let D be a subset of X and X p the subspace o-algebra (121A). For any function f : D — [—00, 00|, the following
are equiveridical:
(i) {z: f(x) <wu} € Xp for every u € [—00, x];
(ii) {z : f(z) <u} € Tp for every u € [—o0, o0;
(iii) {z : f(z) > u} € ¥p for every u € [—o0, 00];
(iv) {z : f(z) > u} € Ep for every u € [—00, x);
(v) {z: f(z) < q} € Tp for every ¢ € Q.
P The proof is almost identical to that of 121B. The only modifications are:

—in (i)=(i), {z : f(z) < oo} and {z : f(x) < —oo} are not necessarily equal to [),cn{z @ f(z) < 0o + 27"},
Mpeniz @ f(z) < —oo+27"}; but the former is D, so surely belongs to ¥p, and the latter is (), {7 : f(z) < —n},
so belongs to ¥ p.

— In (iii)=(iv), similarly, we have to use the facts that

{z: f(x) > —oc} =D € ¥p, {zx:f(r)>o00}=,enlz: f(x) >n} e Ep.
— Concerning the extra condition (v), of course we have (ii)=(v), but also we have (v)=-(i), because
{.’I; : f(x) < 'LL} = UqGQ,q<u{$ : f(.’l)') S Q}
for every u € [—o0,¢0]. Q

(b) We may therefore say, as in 121C, that a function taking values in [—o0, o0] is measurable if it satisfies these
equivalent conditions.

(c) Note that if f: D — [—00,00] is ¥-measurable, then

Exo(f) = f {oo}] ={z: f(z) > 00}, E_o(f) = f[{—00}] ={z: f(z) < —oc}
must belong to Xp, while fg = fI1D \ (Exo(f) U E_oo(f)), the ‘real-valued part of f’, is measurable in the sense of
121C.
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(d) Conversely, if E and E_ belong to Xp, and fg : D\ (Ex UE_) — R is measurable, then f : D — [—00, 00]
will be measurable, where f(z) = 0 if x € Ey, f(z) = —c0 if z € E_ and f(x) = fr(x) for other z € D.

(e) It follows that if f, g are measurable functions from subsets of X to [—oo, 0], then f + g, f x g and f/g are
measurable. I® This can be proved either by adapting the arguments of 121Eb, 121Ed and 121Ee, or by applying those
results to fr and gr and considering separately the sets on which one or both are infinite. @Q

(f) We can say that a function h from a subset D of [—00, 00] to [—00, o¢] is Borel measurable if it is measurable (in
the sense of (b) above) with respect to the Borel o-algebra of [—o00, oo] (as defined in 135C). Now if X is a set, X is a o-
algebra of subsets of X, f is a measurable function from a subset of X to [—oo, 00] and h is a Borel measurable function
from a subset of [—00, 00] to [~00, 0], then hf is measurable. P Apply 121Eg to h* fg, where h* = h[(R N h~1[R]),
and then look separately at the sets {z : f(z) = £oo}, {z: Af(z) = £oo}. Q

(g) Let X be a set and ¥ a o-algebra of subsets of X. Let (f,)nen be a sequence of measurable functions from
subsets of X to [—o00,00]. Then lim,_ o fn, sup,ey frn and inf,en f, are measurable, if, following the principles set
out in 121F, we take their domains to be

{z 12 € Upen Nimsy dom frn, limy, o0 fr(z) exists in [—oo, ool},

Npen dom fr.
P Follow the method of 121Fa-121Fc. Q

135F [—o0, oo]-valued integrable functions (a) We are surely not going to admit a function as ‘integrable’ unless
it is finite almost everywhere, and for such functions the remarks in 133B are already adequate.

(b) However, it is possible to make a consistent extension of the idea of an infinite integral, elaborating slightly
the ideas of 133A. If (X, X, 1) is a measure space and f is a function, defined almost everywhere in X, taking values
in [0, 0], and virtually measurable (that is, such that f[E is measurable in the sense of 135E for some conegligible
set E), then we can safely write ‘[ f = 0o’ whenever f is not integrable. We shall find that for such functions we
have [f+g = [f+ [gand [c¢f = c [ f for every ¢ € [0,00], using the definitions given above for addition and
multiplication on [0, c0]. Consequently, as in 122M-1220, we can say that for a general virtually measurable function
[, defined almost everywhere in X, taking values in [—o0, 00|, [ f = [ fi— [ f» whenever f is expressible as a difference
f1 — f2 of non-negative functions such that [ f; and [ fo are both defined and not both infinite. Now we have, as

always, the basic formulae
Jr+vg=[r+[g [er=c[r [IA=1]]

whenever the right-hand-sides are defined, and f f < f g whenever f <,. g and both integrals are defined. It is
important to note that [ f can be finite, on this definition, only when f is finite almost everywhere.

135G We now have versions of B.Levi’s theorem and Fatou’s Lemma (compare 133K).

Proposition Let (X, X, 1) be a measure space, and (f,)nen a sequence of [—o0, 0o]-valued functions defined almost
everywhere in X which have integrals defined in [—o0, 00].

(a) If f, <ae. fnt1 for every n and —oo < sup,cy [ fn, then [sup,cy fr = Suppen [ fo-
(b) If, for each n, f, > 0 a.e., then [liminf, o0 f, <liminf, oo [ fo-

proof (a) Note that f = sup,,cy fn is defined everywhere on (1, .y dom f,,, which is almost everywhere; and that there
is a conegligible set E such that f, | E is measurable for every n, so that f[E is measurable. Now if u = sup,,cy [ fn is
finite, then all but finitely many of the f,, must be finite almost everywhere, and the result is a consequence of B.Levi’s
theorem for real-valued functions; while if u = co then surely [ sup,cy f» is infinite.

(b) As in 123B or 133Kb, this now follows, applying (a) to g, = inf,,>n fm-
135H Upper and lower integrals again (a) To handle functions taking values in [—o0, co] we need to adapt the

definitions in 133I. Let (X, X, 1) be a measure space and f a [—00, oo]-valued function defined almost everywhere in
X. Its upper integral is

Tf = inf{fg : fg is defined in the sense of 135F and f <,.. g},

allowing oo for inf{oo} and —oo for inf |—00, 00| or inf[—oo, oo]. Similarly, the lower integral of f is
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if = sup{fg : fg is defined, f >, g}

With this modification, all the results of 133J are valid for functions taking values in [—oo, oo] rather than in R.

(b) Corresponding to 133Ka, we have the following. Let (X, 3, ) be a measure space, and (f,)nen a sequence of
[—00, oo]-valued functions defined almost everywhere in X.

(i) If fr <ae. frny1 for every n and sup,,cy Tfn > —o0, then TsupneN frn = sup,en Tfn.

(ii) If, for each n, f, > 0 a.e., then Tlim inf,, oo frn <liminf,, Tfn.

1351 Subspace measures We need to re-examine the ideas of §131 in the new context.

Proposition Let (X, X, 1) be a measure space, and H € ¥; write Xy for the subspace o-algebra on H and ppy for the
subspace measure. For any [—o0, 0o]-valued function f defined on a subset of H, write f for the extension of f defined
by saying that f(z) = f(z) if z € dom f, 0if z € X \ H.
(a) Suppose that f is a [—o00, oo]-valued function defined on a subset of H.
(i) dom f is pg-conegligible iff dom f is p-conegligible.
(ii) f is py-virtually measurable iff f is p-virtually measurable.
(i) [y fdpm = [y fdu if either is defined in [—oco, o0].
(b) Suppose that h is a [—00, oo]-valued function defined almost everywhere in X. Then [, (h[H)dpg = [ hx xH dp
if either is defined in [—o0, o0].
(¢) If h is a [—00, oc]-valued function and [y hdp is defined in [—oco, 00}, then [, (hIH)duy is defined in [—oo, co].
(d) Suppose that h is a [—00, oo]-valued function defined almost everywhere in X. Then

[ (M H)dpg = [ b x xHdp.

proof (a)(i) This is immediate from 131Ca, since H \ dom f = X \ dom f.

(ii)(e) If f is ppg-virtually measurable, there is a pg-conegligible E € Y g such that f[E is X py-measurable.
There is an F' € ¥ such that F = FN H; now G = FU (X \ H) belongs to X and E = GN H and G is p-conegligible.
Also, for q € Q,

{z:2e€q, fx)<q¢t={z:zcE, fr)y<q} eXy CUifq<0,
={z:z€k, flz) <ggUX\H)eXifqg>0,

so f]G is S-measurable and f is p-virtually measurable.

(B) It f is p-virtually measurable, there is a p-conegligible G € ¥ such that f]G is Y-measurable. Now
FE = G N H belongs to X and is py-conegligible, and for ¢ € Q

{fe:zeE flo)<gp=Hn{z:2€G, f(z) <q} €Xn.
So fIFE is Y y-measurable and f is pg-virtually measurable.

(iii) Assume that at least one of the integrals is defined. Then (ii) tells us that there is a p-conegligible £ € ¥
such that f[FE is Y-measurable, in which case f[H N E is ¥ y-measurable.

(a) Suppose that f is non-negative everywhere on its domain. Then || g fdpyg and / ¥ fdyp are both defined in
[0, 00]. If both are infinite, we can stop. Otherwise,

G={z:xc ENH, f(z) <ol ={z:x€E, f(z) < oo}
must be conegligible. Set ¢ = f]G N H; then § = f|G, s0 g = f pg-a.e. and g = f p-a.e. Accordingly fH fdpg =
ngduH and fX fdp = fX gdu. Now we are supposing that at least one of these is finite. But in this case we can
apply 131E to see that [}, gdu = [ gdp, so [, fdu= [y fdu.
(B) In general, express f as f* — f~, where
f+($) = maX(Oa f(x))v fi(m) - max(O, 7f(£C))
for z € dom f. Then (fT)” = f* and (f~)" = f~. So

fod'uH:fo+d“H7foid“H:fxf+d“7fxf7d“:fxfd”
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if any of the four expressions is defined in [—o0, 00].
(b) Set f = h|H; then (h x xyH)(x) = f(z) for every z € dom h, so (a—iii) tells us that
JyhxxHdp= [ fdu= [, (h|H)dpg
if any of the three is defined in [—oc0, o0].

(c) Setting h'(z) = max(0,h(x)) and h™(x) = max(0,—h(z)) for 2 € domh, both [, h*du and [, h~du are
defined in [0, o], and at most one of them is infinite. In particular, both are p-virtually measurable and defined p-almost
everywhere, so the same is true of h* x xH and h~ x xH. As [, hT xxHdp < [ h*dpand [ b~ x xHdp < [ h™dp,
at most one of [, h* x xHdpu, [ h™ x xHdy is infinite, and

[y hxxHdp = [ bt x xHdp— [ h~ x xHdp
is defined in [—o0, o0]. By (b) above, [, (hIH)dug is defined in [—oo, co].
(d)(i) Suppose that [, gdu is defined in [—oo, 00| and that h x xH < g p-a.e. Then
[ (T H)dun = [, g x xHdp
is defined, by (c); and as g(x) > 0 for p-almost every x € X \ H, g x xH <, g. So
[ (W H)dpy < [, (gt H)dps = [ g x xHdp < [, gdp.
As g is arbitrary, TH(h[H)d,uH < th x xH dp.

(ii) Suppose that [y, fdug is defined in [~o0, 00 and that h[H < f pg-a.e. Then [, fdyu is defined in [—oo,oc]
and h x YH < f [-a.e., SO

[ hxxHdp< [ fdu= [ fdpn.
As f is arbitrary, TXh x xH dp < TH(h[H)d,uH.
135X Basic exercises (a) We say that a set G C [—o00,00] is open if (i) G N R is open in the usual sense as a
subset of R (ii) if oo € G, then there is some a € R such that |a,00] C G (iii) if —oo € G then there is some a € R such

that [—o00,a] C G. Show that the family ¥ of open subsets of [—00, 00] has the properties corresponding to (a)-(d) of
1A2B.

(b) Show that the Borel sets of [—o0, 0] as defined in 135C are precisely the members of the o-algebra of subsets
of [—o0, 00| generated by the open sets as defined in 135Xa.

>(c) Define ¢ : [—00,00] — [—1, 1] by setting

¢(—0) = =1, ¢(x) =tanhz = i

e Lif —o <z <oo, @)=L

Show that (i) ¢ is an order-isomorphism between [—oo,00] and [—1,1] (ii) for any sequence (up)nen in [—oo0, 0],
(Un)neny = u iff (d(un))neny — ¢(u) (iii) for any set E C [—o0,00], E is Borel in [—00, 00| iff ¢[E] is a Borel subset of
R (iv) a real-valued function h defined on a subset of [—o0, cc] is Borel measurable iff h¢~! is Borel measurable.

>(d) Let X be a set, ¥ a o-algebra of subsets of X and f a function from a subset of X to [—o0,0c]. Show that
f is measurable iff the composition ¢ f is measurable, where ¢ is the function of 135Xc. Use this to reduce 135Ef and
135Eg to the corresponding results in §121.

(e) Let ¢ : [~00,00] — [1,1] be the function described in 135Xc. Show that the functions
(tu) = @(67H (1) + o7 (w) : [ L 1P\ {(=1,1), (L, —1)} = [-1,1],
(t,u) = o(o~ (o (u)) : [-1,1]* — [-1,1],
(t,u) = o(0~ 1 (1)/¢~ (w) « ([=1,1] x ([=1, 1\ {O})) \ {(£L, £1)} = [-1,1]

are Borel measurable. Use this with 121K to prove 135Ee.

(f) Following the conventions of 135Ab and 135Ad, give full descriptions of the cases in which uu'/vv" = (u/v)(vw' /v")
and in which vw/vw = u/v.
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(g) Let (X, %, 1) be a measure space and suppose that F € ¥ has non-zero finite measure. Let f be a virtually
measurable [—o00, co]-valued function defined on a subset of X and suppose that f(z) is defined and greater than « for
almost every x € E. Show that [, f > auFE.

135Y Further exercises (a) Let X be a set and ¥ a o-algebra of subsets of X. Show that if f : X — [0,00] is

Y-measurable, there is a sequence (E,),en in ¥ such that f= > n%—lXE”'

(b) Let (X, 3, ) be a measure space, and f, g two [—o0, co]-valued functions, defined on subsets of X, such that
[ f and [ g are both defined in [—oco, c0]. (i) Show that [ fV g and [ f Ag are defined in [—o0, o¢], where (fV g)(z) =
max(f(z),g(x)), (f A g)(x) = min(f(z),g(x)) for € dom f Ndomg. (ii) Show that [ fVg+ [fAg=[f+ [gin
the sense that if one of the sums is defined in [—o0, 00| so is the other, and they are then equal.

(c) Let (X, ¥, ) be a measure space, f : X — [~00,00] a function and g : X — [0,00], h : X — [0, oc] measurable
functions. Show that [f x (¢ +h) = [f x g+ [f X h, where here we interpret oo + (—00) as 0o, as in 133L.

135 Notes and comments I have taken this exposition into a separate section partly because of its length, and
partly because I wish to emphasize that these techniques are incidental to the principal ideas of this volume. Really all
I am trying to do here is give a coherent account of the language commonly used to deal with a variety of peripheral
cases. As a general rule, ‘oo’ enters these arguments only as a shorthand for certain types of triviality. When we find
ourselves wishing to assign the values +00 to a function, either this happens on a negligible set — in which case it is
often right, if slightly less comforting, to think of the function as undefined on that set — or things have got completely
out of hand, and the theory has little useful to tell us.

Of course it is not difficult to incorporate the theory of the extended real line directly into the arguments of Chapter
12, so that the results of this section become the basic ones. I have avoided this route partly in an attempt to reduce
the number of new ideas needed in the technically very demanding material of Chapter 12 — believing, as I do, that
independently of our treatment of +oo it is absolutely necessary to be able to deal with partially-defined functions —
and partly because I do not think that the real line should really be regarded as a substructure of the extended real
line. I think that they are different structures with different properties, and that the original real line is overwhelmingly
more important. But it is fair to say that in terms of the ideas treated in this volume they are so similar that when
you are properly familiar with this work you will be able to move freely from one to the other, so freely indeed that
you can safely leave the distinction to formal occasions, such as when you are presenting the statement of a theorem.

*136 The Monotone Class Theorem

For the final section of this volume, I present two theorems on c-algebras, with some simple corollaries. They are
here because I find no natural home for them in Volume 2. While they (especially 136B) are part of the basic technique
of measure theory, and have many and widespread applications, they are not central to the particular approach I have
chosen, and can if you wish be left on one side until they come to be needed.

136A Lemma Let X be a set, and A a family of subsets of X. Then the following are equiveridical:
(i) X € A, B\ A € A whenever A, B € Aand A C B, and |J,,.yA4n € A whenever (A,)nen is a
non-decreasing sequence in A;
(i) e A X\ Ac Aforevery Ac A, and |J,,cyy An € A whenever (A, )nen is a disjoint sequence in A.

neN

proof (i)=-(ii) Suppose that (i) is true. Then of course ) = X \ X belongs to A and X \ A € A for every A € A. If
A, B € A are disjoint, then A C X \ B € A, so (X \ B) \ 4 and its complement AU B belong to A. So if (A,)nen
is a disjoint sequence in A, |J,-,, A; € A for every n, and |J,,.y An is the union of a non-decreasing sequence in A, so
belongs to A. Thus (ii) is true.

(ii)=-(1) If (ii) is true, then of course X = X \ () belongs to A. If A and B are members of A such that A C B, then
X \ B belongs to A and is disjoint from A, so AU (X \ B) and its complement B\ A belong to .A. Thus the second
clause of (i) is satisfied. As for the third, if (A, ),en is a non-decreasing sequence in A, then Ay, A1 \ Ao, A2 \ A1,...
is a disjoint sequence in A, so its union | J, . An belongs to A.

neN

neN
Definition If A C PX satisfies the conditions of (i) and/or (ii) above, it is called a Dynkin class of subsets of X.
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136B Monotone Class Theorem Let X be a set and A a Dynkin class of subsets of X. Suppose that Z C A is
such that INJ € Z for all I, J € Z. Then A includes the o-algebra of subsets of X generated by Z.

proof (a) Let & be the family of Dynkin classes of subsets of X including Z. Then it is easy to check, using either (i)
or (i) of 136A, that the intersection ¥ = [ & also is a Dynkin class (compare 111Ga). Because A € G, ¥ C A.

(b) If H € ¥, then
Sy={E:E€X EnHeYx}

is a Dynkin class. P (o) XN H=HeXsoX e€Xy. (B)If A, Be Xy and AC B then AN H, BN H belong to X
and AN H C BN H; consequently

(B\A)NH=(BNH)\(ANH) e X

and B\ A € ¥g. () If (An)nen is a non-decreasing sequence in Xy, then (A, N H),en is a non-decreasing sequence
in 3, so

(UnGN An) NH= UnEN(An N H) eX

and UnEN A, €Xy. Q
It follows that if TN H € 3 for every I € Z, so that ¥y 2 Z, then ¥y € & and must be equal to X.

(c) We find next that GNH € X for all G, H € 3. P Take I, J € Z. We know that INJ € Z. As I is arbitrary,
Yy=Yand H € ¥, that is, HNJ € 3. As J is arbitrary, Xy = Y and G € ¥y, that is, GNH € ¥. Q

(d) Since ¥ is a Dynkin class, = X \ X € 3. Also
GUH=X\(X\GN(X\H)eX
for any G, H € ¥ (using (c)). So if (Gy)nen is any sequence in ¥, G}, = U, ,, Gi € X for each n (inducing on n). But
(G!)nen is now a non-decreasing sequence in X, so
Unen Gn = Upen G, € 2.

This means that 3 satisfies all the conditions of 111A and is a o-algebra of subsets of X. Since Z C X, ¥ must
include the o-algebra Y’ of subsets of X generated by Z. So ¥/ C ¥ C A, as required.
(Actually, of course, 3 = ¥, because ¥’ € &.)

Remark I have seen this result called the Sierpinski Class Theorem and the m-A Theorem.

136C Corollary Let X be a set, and u, v two measures defined on X with domains ¥, T respectively. Suppose
that uX = vX < oo, and that Z C X N T is a family of sets such that uI = vl for every I € Z and I NJ € T for all I,
J € Z. Then uFE = vE for every E in the o-algebra of subsets of X generated by Z.

proof The point is that
A={H:HeXnNT, uH =vH}
is a Dynkin class of subsets of X. P I work from (ii) of 136A. Of course ) € A. If A € A then
p(X\NA) =puX —pA=vX —vA=v(X\ A
(because uX = vX < oo, so the subtraction is safe), and X \ A € A. If (A,,)en is a disjoint sequence in A, then
pA =300 g pAn =300 v A, = VA,

and |J,cnAn € A Q
Since Z C A, 136B tells us that the o-algebra ¥’ generated by Z is included in A, that is, 4 and v agree on Y.

136D Corollary Let u, v be two measures on R", where r > 1, both defined, and agreeing, on all intervals of the
form

|—oo,al ={z:z<a} ={(&,...,&) : & < o for every i <7}

for a = (aq,...,a.) € R". Suppose further that yR™ < co. Then p and v agree on all the Borel subsets of R”.

proof In 136C, take X = R" and 7 the set of intervals | —o0, a]. Then INJ € Z for all I, J € Z, since |—o0, a]N]—00,b] =
|—o00,a A D], writing a A b = (min(ay, 1), ... ,min(a,., G,)) if a = (aq,... ,a.), b= (B1,...,8,) € R". Also, setting
n=(n,...,n)forneN,
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VR" = limy, 00 ¥ ]—00, 0] = lim,, 00 pt]—00, n] = uR".

So all the conditions of 136C are satisfied and p, v agree on the g-algebra ¥ generated by Z. But this is just the
o-algebra of Borel sets, by 121J.

136E Algebras of sets: Definition Let X be a set. A family £ C PX is an algebra or field of subsets of X if
(i) 0 € ¢&;
(ii) for every F € &, its complement X \ E belongs to &;
(iii) for every E, F € £, EUF € &.

136F Remarks (a) I could very well have introduced this notion in Chapter 11, along with ‘o-algebras’. I omitted
it, apart from some exercises, because there seemed to be quite enough new definitions in §111 already, and because 1
had nothing substantial to say about algebras of sets.

(b) If £ is an algebra of subsets of X, then
ENF=X\((X\E)U(X\F)), E\F=En(X\F),

EyUFE,U...UE,, EyNnEN...NE,
belong to £ for all E, F, Ey,...,E, € £. (Induce on n for the last.)

(c) A o-algebra of subsets of X is (of course) an algebra of subsets of X.

136G Theorem Let X be a set and £ an algebra of subsets of X. Suppose that A C PX is a family of sets such
that
(@) Upen An € A for every non-decreasing sequence (A, )nen in A,
(B) Nyen An € A for every non-increasing sequence (A, )nen in A,
() ECA
Then A includes the o-algebra of subsets of X generated by &.

proof I use the same ideas as in 136B.

(a) Let & be the family of all sets S C PX satisfying («)-(y). Then its intersection ¥ = (& also satisfies the
conditions. Because A € G, ¥ C A.

(b) If H € %, then
Sy={E:Ec% EnHEex}

satisfies conditions («)-(8). P (o) If (A, )nen is a non-decreasing sequence in Xy, then (A, N H),¢n is a non-decreasing
sequence in ¥, so

(UnEN An) NH = UnEN(An N H) Sy

and (J,cny An € Xy (B) Similarly, if (A,)nen is a non-increasing sequence in Yg, then (), .yA, N H € ¥ so

mnEN An €Xy. Q
It follows that if EN H € X for every E € &£, so that Xy also satisfies (), then ¥y € & and must be equal to X.

(c) Consequently GNH € ¥ for all G, H € ¥. P Take E, F € £. We know that ENF € £. As E is arbitrary,
YSrp=Yand H € X, that is, HN F € ¥. As F' is arbitrary, Xy = ¥ and G € Xy, that is, GN H € ¥. Q

(d) Next, X* ={X\H:He X} e6&. P (a)lf (A))nen is a non-decreasing sequence in X*, then (X \ A, )nen is a
non-increasing sequence in X, so

UnEN A" =X \ ﬂneN(X \ An) € X*.

(8) Similarly, if (A,,)nen is a non-increasing sequence in 3*, then

ﬂneN A, =X \ UneN(X \ An) e x”.
(VIEeEthen X\Ec&soX\EecXand F € ¥*. Q It follows that ¥ C ¥*, that is, that X \ H € X for every
HeX.

(e) Putting (c) and (d) together with the fact that X € ¥ (because X € &) and the union of a non-decreasing
sequence in X belongs to X (by condition («)), we see that the same argument as in part (d) of the proof of 136B shows
that X is a g-algebra of subsets of X. So, just as in 136B, we conclude that the o-algebra generated by £ is included
in ¥ and therefore in A.



136Xk The Monotone Class Theorem 87

*136H Proposition Let (X, X, 1) be a measure space such that uX < oo, and £ a subalgebra of ¥; let ¥’ be the
o-algebra of subsets of X generated by €. If F' € ¥/ and € > 0, there is an F € £ such that u(ENF) <e.

proof Let A be the family of sets F' € ¥ such that
for every € > 0 there is an E € £ such that u(FAFE) <e.

Then A is a Dynkin class. B I check the three conditions of 136A(i). (a) X € A because X € €. (5) If Fy, F, € A
and € > 0, there are Ey, E» € € such that u(F;AE;) < e for both i; now E; \ E» € € and

(F1\ Fo)A(Ey \ E2) C (F1AEY) U (FRAES),
s0
p((FL\ F2)A(Ey \ Ep)) < p(FLAEY) + p(FaAE,) < e.
As e is arbitrary, F} \ F5 € A. (v) If (F,,)nen is a non-decreasing sequence in A, with union F, and € > 0, then
limg, oo pFy = pF < pX < o0,
so there is an n € N such that u(F \ F,) < 1e. Now there is an E € € such that u(F,AE) < i as FAE C

(F\ F,)U(F,AE), y(FAE) <e. As ¢ is arbitrary, F € A. Q
Since £ C A and & is closed under N, A includes the o-algebra ¥/ generated by &£, as claimed.

136X Basic exercises >(a) Let X be a set and A a family of subsets of X. Show that the following are equiveridical:
(i) X € Aand B\ A € A whenever A, B€ Aand A C B;
(ii)de A, X\ A€ Aforevery Ae Aand AU B € A whenever A, B € A are disjoint.

(b) Suppose that X is a set and A C PX. Show that A is a o-algebra of subsets of X iff it is a Dynkin class and
AN B e A whenever A, B € A.

(c) Let X be a set, and 7 a family of subsets of X such that INJ € Z for all I, J € Z; let ¥ be the o-algebra of
subsets of X generated by Z. Show that uE = vE whenever E € ¥ is covered by a sequence in Z. (Hint: For J € T,
set uyE=pw(ENJ), vyE=v(ENJ) for E € X. Use 136C to show that pu; = vy for each J.)

>(d) Set X = {0,1,2,3}, Z = {X,{0,1},{0,2}}. Find two distinct measures u, v on X, both defined on the
o-algebra PX and with ul = vI < oo for every I € T.

(e) Let ¥ be the family of subsets of [0, 1[ expressible as finite unions of half-open intervals [a,b[. Show that X is
an algebra of subsets of [0,1].

(f) Let X be a set, and Z a family of subsets of X such that I N J € Z whenever I, J € Z. Let ¥ be the smallest
family of sets such that X € ¥, F'\ E € ¥ whenever E, F € ¥ and E C F, and Z C ¥. Show that ¥ is an algebra of
subsets of X.

(g) Let X be a set, and £ an algebra of subsets of X. A functional v : £ — R is called (finitely) additive if
V(EUF)=vE+vF whenever E, F € £ and ENF = (. (i) Show that in this case v(EUF)+v(ENF) =vE 4+ vF
for all E, " € €. (ii) Show that if vE > 0 for every E € £ then v(U,<,, Ei) < i o vE; for all Ey, ..., E, €.

>(h) Let X be a set, and A a family of subsets of X such that («) 0, X belong to A (8) ANB € Aforall A, Be A
(v) AU B € A whenever A, B € Aand AN B ={. Show that {A: A€ A, X\ A € A} is an algebra of subsets of X.

>(i) Let X be a set, and A a family of subsets of X such that (a) 0, X belong to A (8) N,y An € A for every
sequence (An)nen in A (7) U, en An € A for every disjoint sequence (A,,)nen in A. Show that {A: A e A, X\ Ac A}
is a o-algebra of subsets of X.

>(j) Let A be a family of subsets of R such that (i) (1, ey An € A for every sequence (A, )nen in A (ii) ,cn An € A
for every disjoint sequence (A4, )nen in A (iii) every open interval ]a, b| belongs to A. Show that every Borel subset of
R belongs to A. (Hint: show that every half-open interval [a, b[, a, b] belongs to A, and therefore all intervals |—oo, al,
[a, oo[; now use 136Xi.)

>(k) Let X be a set, £ an algebra of subsets of X, and A a family of subsets of X such that (a) [,y 4n € A for
every non-increasing sequence (A, )nen in A (8) U,y An € A for every disjoint sequence in A (y) & C A. Show that
the o-algebra of sets generated by &£ is included in A. (Hint: use the method of 136B to reduce to the case in which
AN B e A for every A, B € A; now use 136Xi.)
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136Y Further exercises (a) Let X be a set and £ an algebra of subsets of X. Let v : £ — [0, oo[ be a non-negative
functional which is additive in the sense of 136Xg. Define 6 : PX — [0, oo by setting

A =inf{} "  vE, : (E,)nen is a sequence in € covering A}

for every A C X. (i) Show that 6 is an outer measure on X and that 0E < vE for every E € €. (ii) Let p be the
measure on X defined from 6 by Carathéodory’s method, and 3 its domain. Show that £ C ¥ and that uFE < vFE for
every E € £. (iii) Show that the following are equiveridical: () pE = vE for every E € £ (8) X = vX () whenever
(En)nen is a non-increasing sequence in € with empty intersection, lim,, o, vE, = 0.

(b) Let X be a set, £ an algebra of subsets of X, and v a non-negative additive functional on €. Let ¥ be the
o-algebra of subsets of X generated by £. Show that there is at most one measure y on X with domain ¥ extending
v, and that there is such a measure iff lim,_, vF,, = 0 for every non-increasing sequence (F,),cn in & with empty
intersection.

(c) Let X be a set. Let G be a family of subsets of X such that (i) GNH € G for all G, H € G (ii) for every G € G
there is a sequence (Gy)nen in G such that X \ G = [, cyGn. Let A be a family of subsets of X such that («) 0,
X € A(B) Nen An € A for every non-increasing sequence (A, )nen in A () U, ey An € A for every disjoint sequence
in A (§) G C A. Show that the o-algebra of sets generated by G is included in .A.

136 Notes and comments The most useful result here is 136B; it will be needed in Chapter 27, and helpful at various
other points in Volume 2, often through its corollaries 136C and 136Xc. Of course 136C, like its corollary 136D and
its special case 136Yb, can be used directly only on measures which do not take the value oo, since we have to know
that u(F \ E) = uF — pE for measurable sets E C F'; that is why it comes into prominence only when we specialize
to probability measures (for which the whole space has measure 1). So I include 136Xc to indicate a technique that
can take us a step farther. I do not feel that we are really ready for general measures on the Borel sets of R", but I
mention 136D to show what kind of class Z can appear in 136B.

The two theorems here (136B, 136G) both address the question: given a family of sets Z, what operations must we
perform in order to build the o-algebra Y generated by Z? For arbitrary Z, of course, we expect to need complements
and unions of sequences. The point of the theorems here is that if 7 has a certain amount of structure then we can
reach ¥ with more limited operations; thus if Z is an algebra of sets, then monotonic unions and intersections are
enough (136G). Of course there are innumerable variations on this theme. I offer 136Xh-136Xj as a typical result which
will actually be used in Volume 4, and 136Xk and 136Yc¢ as examples of possible modifications. There is an abstract
version of 136B in 313G in Volume 3.

Having once started to consider the extension of an algebra of sets to a o-algebra, it is natural to ask for conditions
under which a functional on an algebra of sets can be extended to a measure. The condition of additivity (136Xg)
is obviously necessary, and almost equally obviously not sufficient. I include 136Ya-136YDb as the most important of
many necessary and sufficient conditions for an additive functional to be extendable to a measure. We shall have to
return to this in Volume 4.
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Appendix to Volume 1
Useful Facts

Each volume of this treatise will have an appendix, containing very brief accounts of material which many readers
will have met before but some may not, and which is relevant to some topic dealt with in the volume. For this first
volume the appendix is short, partly because the volume itself is short, but mostly because the required basic knowledge
of analysis is so fundamental that it must be done properly from a regular textbook or in a regular course. However I
do set out a few details that might be omitted from some first courses in analysis, describing some not-quite-standard
notation and the elementary theory of countable sets (§1A1), open and closed sets in Euclidean space (§1A2) and upper
and lower limits of sequences and functions (§1A3).

1A1 Set theory

In 111E-111F T briefly discussed ‘countable’ sets. The approach there was along what seemed to be the shortest
path to the facts immediately needed, and it is perhaps right that I should here indicate a more conventional route. I
take the opportunity to list some notation which I find convenient but is not universally employed.

1A1A Square bracket notations I use square brackets [ and | in a variety of ways; the context will I hope always
make it clear what interpretation is expected.

(a) For a, b € R, I write
[a,b] ={x:a <x<b}, Ja,b[={z:a<z<b},
[a,b[={z:a <z <b}, Ja,bl={r:a<x<b}

It is natural, when these formulae appear, to jump to the conclusion that a < b; but just occasionally it is useful to
interpret them when b < @, in which case I follow the formulae above literally, so that

[ava} = {a}ﬂ ]ava[ = [ava[ = ]a’v a] = wa

[a,b] = ]a,b] = [a,b] =]a,b] =0 if b < a.

(b) We can interpret the formulae with infinite a or b; for example,

|00, b[={z:x <b}, Ja,c0[={x:a<z}, ]-oo0,00[=R,
[a,00[={z:2>a}, ]—-o0,b]={x:2<b},
and even
0,00] ={z:2€R, >0} U{oo}, [—00,00]=RU{—00,00}.

(c) With some circumspection — since further choices have to be made, which it is safer to set out explicitly when
the occasion arises — we can use similar formulae for ‘intervals’ in multidimensional space R"; see, for instance, 115A
or 136D; and even in general partially ordered sets, though these will not be important to us before Volume 3.

(d) Perhaps I owe you an explanation for my choice of ]a, b[, [a, b[ in favour of (a, b), [a,b), which are both commoner
and more pleasing to the eye. In the first instance it is simply because the formula
(1,2) €]0,2(  1,3]

makes better sense than its translation. Generally, it leads to a slightly better balance in the number of appearances
of (‘and [, even allowing for the further uses of [...] which T am about to specify.

1A1B Direct and inverse images I now describe an entirely different use of square brackets, belonging to abstract
set theory rather than to the theory of the real number system.

(a) If f is a function and A is a set, I write
flAl={f(z):z € Andom f}

for the direct image of A under f. Note that while A will often be a subset of the domain of f, this is not assumed.
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(b) If f is a function and B is a set, I write
[7YBl={z:z edomf, f(z) € B}

for the inverse image of B under f. This time, it is important to note that there is no presumption that f is injective,
or that f~! is a function; the formula f~1[] is being given a meaning independent of any meaning of the expression
f~1. But it is easy to see that when f is injective, so that we have a true inverse function f~! (defined on the set of
values of f, f[dom f]), then f~![B], as defined here, agrees with its interpretation under (a).

(c) Now suppose that R is a relation, that is, a set of ordered pairs, and A, B are sets. Then I write

R[A] = {y: 32 € A such that (z,y) € R},

R7YB] = {x: 3y € B such that (z,y) € R}.
If we write

R~ ={(y,x): (z,y) € R},

then we have an alternative interpretation of R~*[B] which agrees with the one just given. Moreover, if R is the graph
of a function f, that is, if for every = there is at most one y such that (z,y) € R, then the formulae here agree with
those of (a)-(b) above.

(d) (The following is addressed exclusively to readers who have been taught to distinguish between the words ‘set’
and ‘class’.) T have used the word ‘set’ more than once above. But that was purely for euphony. The same formulae can
be used with arbitrary classes, though in some set theories the expressions involved may not be recognised as ‘terms’
in the technical sense.

1A1C Countable sets In 111Fa I defined ‘countable set’ as follows: a set K is countable if either it is empty or
there is a surjective function from N to K. A commoner formulation is to say that a set K is countable iff either it is
finite or there is a bijection between N and K. So I should check at once that these two formulations agree.

1A1D Proposition Let K be a set. Then the following are equiveridical:
(i) either K is empty or there is a surjection from N onto K;

(ii) either K is finite or there is a bijection between N and K;

(iii) there is an injection from K to N.

proof (a)(i)=(iii) Assume (i). If K is empty, then the empty function is an injection from K to N. Otherwise, there
is a surjection ¢ : N — K. Now, for each k € K, set

Y(k) =min{n : n € N, ¢(n) = k};

this is always well-defined because ¢ is surjective, so that {n : ¢(n) = k} is never empty, and must have a least member.
Because ¢y(k) = k for every k, 1) must be injective, so is the required injection from K to N.

(b)(iii)=(ii) Assume (iii); let ¢ : K — N be an injection, and set A = ¢[K] C N. Then ¢ is a bijection between K
and A. If K is finite, then of course (ii) is satisfied. Otherwise, A must also be infinite. Define ¢ : A — N by setting

¢(m) = #({i:ic A i <m}),
the number of elements of A less than m, for each m € A; thus ¢(m) is the position of m if the elements of A are listed

from the bottom, starting at 0 for the least element of A. Then ¢ : A — N is a bijection, because A is infinite, and
¢ : K — N is a bijection.

(c)(il)=(i) If K is empty, surely it satisfies (i). If K is finite and not empty, list its members as ko, ... , k,; now
set ¢(i) = k; for i < mn, ko for i > n to get a surjection ¢ : N — K. If K is infinite, there is a bijection from N to K,
which is of course also a surjection from N to K. So (i) is true in all cases.

Remark I referred to the ‘empty function’ in the proof above. This is the function with domain (; having said this,
any, or no, rule for calculating the function will have the same effect, since it will never be applied. By examining
your feelings about this construction you can learn something about your basic attitude to mathematics. You may feel
that it is an artificial irrelevance, or you may feel that it is as necessary as the number 0. Both are entirely legitimate
feelings, and the fully rounded mathematician alternates between them; but I have to say that I myself tend to the
latter more often than the former, and that when I say ‘function’ in this treatise the empty function will generally be
in the back of my mind as a possibility.
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1A1E Properties of countable sets Let me recapitulate the basic properties of countable sets:

(a) If K is countable and ¢ : K — L is a surjection, then L is countable. I* If K is empty then so is L. Otherwise
there is a surjection ¥ : N — K, so ¢ is a surjection from N onto L, and L is countable. Q

(b) If K is countable and ¢ : L — K is an injection, then L is countable. I By 1A1D(iii), there is an injection
¥ : K — N; now ¢ : L — N is injective, so L is countable. Q

(c) In particular, any subset of a countable set is countable (as in 111F(b-i)).
(d) The Cartesian product of finitely many countable sets is countable (111Fb(iii)-(iv)).

(e) Z is countable. P The map (m,n) — m —n: N x N — Z is surjective. Q

(f) Q is countable. B The map (m,n) — ;55 : Z x N — Q is surjective. Q

1A1F Another fundamental property is worth distinguishing from these, as it relies on a slightly deeper argument.
Theorem If IC is a countable collection of countable sets, then
UK={z:3K ek, ze€ K}
is countable.
proof Set
K'=K\{0}={K: K ek, K+#0};
then K’ C K, so is countable, and |JK' = JK. If K’ = 0, then
UK =Uk =0

is surely countable. Otherwise, let m — K,, : N — K’ be a surjection. For each m € N, K, is a non-empty countable
set, so there is a surjection n +— kp,y, : N = K,,,. Now (m,n) — kn, : N x N — K is a surjection (if k € K, there
is a K € K’ such that k € K; there is an m € N such that K = K,,; there is an n € N such that k = kp,p,). So |JK is
countable, as required.

*1A1G Remark I divide this result from the ‘elementary’ facts in 1A1E partly because it uses a different principle
of argument from any necessary for the earlier work. In the middle of the proof I wrote ‘so there is a surjection
n = kmn ' N — K,,’. That there is a surjection from N onto K, does indeed follow from the immediately preceding
statement ‘K, is a non-empty countable set’. The sleight of hand lies in immediately naming such a surjection as
‘n — kmy’. There may of course be many surjections from N to K,,, — as a rule, indeed, there will be uncountably many
— and what I am in effect doing here is picking arbitrarily on one of them. The choice has to be arbitrary, because I
am working in a totally abstract context, and while in any particular application of this theorem there may be some
natural surjection to use, I have no way of forecasting what approach, if any, might offer a criterion for distinguishing
a particular function here. Now it has been a basic method of mathematical argument, from Euclid’s time at least,
that we are willing to give a name to an object, a ‘general point’ or an ‘arbitrary number’, without specifying exactly
which object we are naming. But here I am picking out simultaneously infinitely many objects, all arbitrary members
of certain sets. This is a use of the Axiom of Choice.

I do not recall ever having had a student criticise an argument in the form of that in 1A1F on the grounds that it
uses a new, and possibly illegitimate, principle; I am sure that it never occurred to me that anything exceptionable was
being done in these cases, until someone pointed it out. If you find that discussions of this kind are irrelevant to your
own mathematical interests, you can certainly pass them by, at least until you reach Volume 5. Mathematical systems
have been studied in which the axiom of choice is false; they are of great interest but so far remain peripheral to the
subject. Systems in which the axiom of choice is so false that the union of countably many countable sets is sometimes
uncountable have a character all of their own, and in particular the theory of Lebesgue measure is transformed; I will
come to this possibility in Chapter 56 of Volume 5.

For a brief comment on other ways of using the axiom of choice, see 134C.

1A1H Some uncountable sets Of course not all sets are countable. In 114G/115G I remark that all countable
subsets of FEuclidean space are negligible for Lebesgue measure; consequently, any set which is not negligible — for
instance, any non-trivial interval — must be uncountable. But perhaps it will be helpful if I offer here elementary
arguments to show that R and PN are not countable.
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(a) There is no surjection from N onto R. B Let n — a, : N = R be any function. For each n € N, express a,, in
decimal form as

an =k, +0-€p1€p2... =k, + Z;.il 1077'.67”',
where k,, € Z is the greatest integer not greater than a,, and each €,; is an integer between 0 and 9; for definiteness,
if a,, happens to be an exact decimal, use the terminating expansion, so that the €,; are eventually 0 rather than

eventually 9.
Now define ¢;, for i > 1, by saying that

Gi:6if€¢i<6,

Consider a = kg +1+ ) .o, 10 %¢;, so that a = kg +1+0-€r€2 ... in decimal form. I claim that a # a,, for every n. Of
course a # ag because ag < kg + 1 < a. If n > 1, then €, # €,,; because no ¢; is either 0 or 9, there is no alternative
decimal expansion of a, so the expansion a,, = k,, + 0 - €,1€,2 ... cannot represent a, and a # a,.

Thus I have constructed a real number which is not in the list ag,a1,.... As (an)nen is arbitrary, there is no
surjection from N onto R. Q

Thus R is uncountable.

(b) There is no surjection from N onto its power set PN. P Let n — A, : N — PN be any function. Set
A={n:neN,n¢A,}.
If n € N, then
either n € A,, in which case n ¢ A,
orn ¢ Ay, in which case n € A.
Thus in both cases we have n € AAA,,, so that A # A,,. As n is arbitrary, A ¢ {A,, : n € N} and n — A, is not a

surjection. As (A, )nen is arbitrary, there is no surjection from N onto PN. Q
Thus PN is also uncountable.

1A1I Remark In fact it is the case that there is a bijection between R and PN (2A1Ha); so that the uncountability
of both can be established by just one of the arguments above.

1A1J Notation For definiteness, I remark here that I will say that a family A of sets is a partition of a set X
whenever A is a disjoint cover of X, that is, X = |JA and ANA’ = () for all distinct A, A’ € A; in particular, the empty
set may or may not belong to A. Similarly, an indexed family (4;);cr is a partition partition of X if | J,.; 4; = X
and A; N A; = 0 for all distinct 4, j € I; again, one or more of the A; may be empty.

icl

1A1 Notes and comments The ideas of 1A1C-1A1I are essentially due to G.F.Cantor. These concepts are funda-
mental to modern set theory, and indeed to very large parts of modern pure mathematics. The notes above hardly
begin to suggest the extraordinary fertility of these ideas, which need a book of their own for their proper expression;
my only aim here has been to try to make sense of those tiny parts of the subject which are needed in the present
volume. In later volumes I will present results which call on substantially more advanced ideas, which I will discuss in
appendices to those volumes.

1A2 Open and closed sets in R”

In 111G I gave the definition of an open set in R or R”, and in 121D I used, in passing, some of the basic properties
of these sets; perhaps it will be helpful if I set out a tiny part of the elementary theory.

1A2A Open sets Recall that a set G C R is open if for every x € G there is a § > 0 such that |z — §,z + §[ C G;
similarly, a set G C R" is open if for every € G there is a § > 0 such that U(z,d) C G, where U(z,6) = {y :
ly — x| < 6}, writing ||z|| for \/(Z + ...+ (2 if 2 = (C1,...,¢). Henceforth I give the arguments for general r; if you
are at present interested only in the one-dimensional case, you should have no difficulty in reading them as if r = 1
throughout.
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1A2B The family of all open sets Let ¥ be the family of open sets of R”. Then ¥ has the following properties.

(a) 0 € T, that is, the empty set is open. PP Because the definition of ‘D is open’ begins with ‘for every z € 0, ...”,
it must be vacuously satisfied by the empty set. Q

(b) R™ € ¥, that is, the whole space under consideration is an open set. B U(z,1) C R" for every z € R". Q

(¢) f G, H € T then GN H € ¥; that is, the intersection of two open sets is always an open set. I Let x € GN H.
Then there are d1, do > 0 such that U(x,d;) € G and U(x,d2) € H. Set 6 = min(dy,d2) > 0; then

U(x,0) ={y:|ly — || <min(d1,d2)} = U(x,01) NU(x,d2) CGNH.

As zx is arbitrary, G N H is open. Q
(d) If G C T, then

UG={z:3GeG,xeG}eF

that is, the union of any family of open sets is open. I Let « € | JG. Then there is a G € G such that € G. Because
G € T, there is a 6 > 0 such that

U(z,0) € G CUG.
As z is arbitrary, | JG € T. Q

1A2C Cauchy’s inequality: Proposition For all z, y € R", ||z + y|| < ||=|| + ||y]|-

proof Express z as (&1,...,&), y as (1,... ,nr); set @ = ||z||, 8 = ||y|]|. Then both « and /8 are non-negative. If
a = 0then Y7 & = 0soevery § = 0 and = = 0, so [z +y| = |yl = [|=]| + [[yll; if B =0, then y = 0 and
llz +yll = llz|| = ||lz|| + |ly|l. Otherwise, consider

afllz +yl* < aplle +yl* + llay — Bzl

=aB ) (& +n)”+ Y _(am; — BE)

j=1 j=1

= aBg} +aBn; + o’} + B°E
j=1

= a®B+af® +a?p? + f2a?
= af(a+B)* = ap(llz] + llyl)>.

Dividing both sides by a8 and taking square roots we have the result.

1A2D Corollary U(z,J), as defined in 1A2A, is open, for every z € R” and § > 0.
proof If y € U(x,6), then n =6 — |ly — z[| > 0. Now if 2 € U(y,n),
[z =zl =z=p) + @ —2)| <llz =yl +lly —zll <n+lly—=z] =9,
and z € U(x,9); thus U(y,n) C U(x,d). As y is arbitrary, U(z,d) is open.

1A2E Closed sets: Definition A set F' C R” is closed if R" \ F' is open. (Warning! ‘Most’ subsets of R" are
neither open nor closed; two subsets of R", viz., ) and R", are both open and closed.) Corresponding to the list in
1A2B, we have the following properties of the family F of closed subsets of R".

1A2F Proposition Let F be the family of closed subsets of R".
(a) 0 € F (because R" € T).

(b) R™ € F (because §) € T).

(¢)f E, F € F then EUF € F, because

R\ (FUF)=R"\E)N(R"\ F) €¥%.
(d) If £ C F is a non-empty family of closed sets, then
NE={r:2 € FYF &} =R " \Upc:R"\ F) € F.

Remark In (d), we need to assume that £ # ) to ensure that (& C R".
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1A2G Corresponding to 1A2D, we have the following fact:
Lemma If x € R” and § > 0 then B(z,d) = {y : ||y — z|| < d§} is closed.
proof Set G =R"\ B(z,9). lf y € G, then n = |y — x| —J > 0; if z € U(y,n), then
d+n=ly—zl <ly—zl+lz -zl <n+|z -z,
so ||z —z|| >dand z € G. So U(y,n) C G. As y is arbitrary, G is open and B(x,d) is closed.

1A3 Lim sups and lim infs

It occurs to me that not every foundation course in real analysis has time to deal with the concepts lim sup and
lim inf.

1A3A Definition (a) For a real sequence {(a,)nen, write

limsup,, . @n = limy_, 0 SUDP,, >y m = inf,en SUDP,, >y, Gmy

liminf, o an = limy, o0 infr>p @p = SUP, ey infrm>n am;

if we allow the values +0o, both for suprema and infima and for limits (see 112Ba), these will always be defined, because
the sequences

<Supm2n am>n6N, <1nfm2n am>n6N

are monotonic.

(b) Explicitly:

limsup,,_, o an =00 <= {a, :n € N} is unbounded above,

limsup,, oo Gn = —00 <= lim,_yo0 Gy = —00,
that is, if and only if for every a € R there is an ng € N such that a,, < a for every n > ng;

liminf, o a, = —00 <= {a, :n € N} is unbounded below,

liminf,, s a, =0 <= lim,_ o a, = 00,

that is, if and only if for every a € R there is an ng € N such that a,, > a for every n > ny.

(c) For finite a € R, we have
lim sup,,_, o, an = a iff (i) for every € > 0 there is an ng € N such that a,, < a + € for every n > ng (ii) for
every € > 0, ng € N there is an n > ng such that a,, > a — ¢,
while
liminf,, o an, = a iff (i) for every € > 0 there is an ng € N such that a,, > a — € for every n > ng (ii) for
every € > 0, ng € N there is an n > ng such that a, < a+e.
Generally, for u € [—00, 00], we can say that
limsup,,_, o, an, = u iff (i) for every v > w (if any) there is an ng € N such that a,, < v for every n > ny
(ii) for every v < u, ng € N there is an n > ng such that a, > v,
liminf, o a, = w iff (i) for every v < u there is an ng € N such that a,, > v for every n > nq (ii) for
every v > u, ng € N there is an n > ng such that a,, < v.

1A3B We have the following basic results.

Proposition For any sequences (a,)nen, (bn)nen in R,
(a) liminf,, o a, < limsup,,_, ., an,
(b) lim;, s 00 @, = u € [—00, 00] iff limsup,, , . an, = liminf, . a, = u,
(¢) liminf, o a, = —limsup,,_, . (—an),
(d) limsup,,_, o (an + b,) < limsup,,_, . a, + limsup,,_, . by,
(e) liminf, oo (a, + by,) > liminf,, o a, + liminf,, o by,
(f) limsup,,_, o, can, = climsup,,_, . a, if ¢ >0,
(g) liminf,, o ca, = climinf, . a, if ¢ >0,
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with the proviso in (d) and (e) that we must be able to interpret the right-hand-side of the inequality according to the
rules in 135A, while in (f) and (g) we take 0- 00 =0 (—o0) = 0.
proof (a) sup,,>,, @, > inf,,>, an, for every n, so

lim sup,,_, o @n = limy 00 SUD,y, >, G 2> 1My o0 INfiy>p @y = limsup,,_, o ay.

(b) Using the last description of limsup,,_, ., and liminf,,_,», in 1A3Ac, and a corresponding description of lim,, o,

we have

lim a, = u
n—oo
<= for every v > u there is an n; € N such that a,, < v for every n > ny
and for every v < u there is an no € N such that a,, > v for every n > ny
<= for every v > u there is an n; € N such that a,, < v for every n > ny
and for every v < u, ng € N there is an n > ng such that a, > v
and for every v < u there is an ny € N such that a,, > v for every n > no
and for every v > u, ng € N there is an n > ng such that a, <wv
<= limsupa, = liminf a, = u.
n—oo

n—0o0

(c) This is just a matter of turning the formulae upside down:

liminf a,, = sup inf a,, = sup(— sup (—an,))

n—00 neNm=>n neN m>n
= — inf sup(—a,,) = — limsup(—ay,).
neENm>n n— 00

(d) If v > limsup,,_, ., a, + limsup,,_, . bn, there are vy, vy such that v; > limsup,,_, . an, v2 > limsup,,_, . b, and
v1 + v2 = v. Now there are ny, ny € N such that SUD;>p, An < U1 and SUD;, >, b, < vs; so that

sup A, + b, < sup A, + sup b

m>max(ny,n2) m>max(ny,n2) m>max(ny,n2)
< sup a., + sup by, < v+ vy =w.
m>n; m>na
As v is arbitrary,
limsup,,_, o @n + by, = infyenSup,,>,, am + bm < limsup,,_, . an + limsup,,_, ., by.

(e) Putting (c) and (d) together,

liminf a,, + b, = —limsup(—a,) + (=by)

n—00 n—o00
> —limsup(—a,,) — limsup(—b,,) = liminf a,, + liminf b,,.
n—o00 n—o00 n—00 n—00

(f) Because ¢ > 0,

lim sup ca,, = inf sup ca,, = inf ¢ sup a.,

n—oo neNm>n neN m>n
= cinf sup a,, = climsup a,.
neENm>n n—00
(g) Finally,
liminf,,  ca, = —limsup,,_, . ¢(—a,) = —climsup,,_, . (—a,) = climinf,,_, a,.

1A3C Remark Of course the familiar results that lim,, o an + b, = lim, o0 ap + limy, o0 by, lim, o ca,, =
clim,,_,o a,, are immediate corollaries of 1A3B.
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*1A3D Other expressions of the same idea The concepts of lim sup and lim inf may be applied in any context
in which we can consider the limit of a real-valued function. For instance, if f is a real-valued function defined (at
least) on a punctured interval of the form {z : 0 < |¢ — 2| < ¢} where ¢ € R and € > 0, then

limsup,_,, f(t) = limsyo Supg<;—cj<s [ (1) = infocs<e SUPg<|—cj<s (1),
liminf, ¢ f(t) = limsyo infocjs—cj<s f(¢) = supges<c infoc)i—ci<s [ (1),
allowing oo and —oco whenever they seem called for. Or if f is defined on the half-open interval |e, ¢ + €], we can say
lim Suptic f(t) = lim&LO Supc<t§c+6 f(t) = inf0<5§e Supc<t§c+6 f(t)a
liminfy . f(t) = limsyo infeci<crs f(t) = supges<e infecicers f(1)-
Similarly, if f is defined on [M, oco[ for some M € R, we have
limsup, o, f(t) = limg 00 SUP;>, f(t) = info>nrsup;s, f(1),

liminf; o0 f(t) = lim,y—s o0 inf>q f(t) = sup,> gy infr>a f(£).

A further extension of the idea is examined briefly in 2A3S in Volume 2.
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Concordance

T list here the section and paragraph numbers which have (to my knowledge) appeared in print in references to this
volume, and which have since been changed.

112E-112F Image measures These paragraphs, referred to in the 2001 and 2003 editions of Volume 2, and the
2003 and 2006 editions of Volume 4, have been moved to 234C-234D in Volume 2.

112Ya Sums of measures This material, referred to in the 2001 and 2003 editions of Volume 2, has been moved
to 234G in Volume 2.

121Yb (¥, T)-measurable functions Exercise 121Yb in the 2000 and 2001 editions, referred to in the 2001 and
2003 editions of Volume 2, has been moved to 121Yc.

132E Measurable envelopes Parts (d) and (e) of 132E in the 2000 and 2001 editions, referred to in the 2001
edition of Volume 2 and the 2002 edition of Volume 3, are now parts (e) and (f).

132G Pull-back measures Proposition 132G, referred to in the 2006 edition of Volume 4, has been moved to
234F.
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Index to volume 1

Principal topics and results

The general index below is intended to be comprehensive. Inevitably the entries are voluminous to the point that
they are often unhelpful. I have therefore prepared a shorter, better-annotated, index which will, I hope, help readers
to focus on particular areas. It does not mention definitions, as the bold-type entries in the main index are supposed to
lead efficiently to these; and if you draw blank here you should always, of course, try again in the main index. Entries
in the form of mathematical assertions frequently omit essential hypotheses and should be checked against the formal
statements in the body of the work.

Borel sets in R™ 111G
—— and Lebesgue measure 114G, 115G, 134F

Cantor set and function 134G, 134H

Carathéodory’s construction of measures from outer measures 113C
construction of measures

—— from outer measures (Carathéodory’s method) 113C

—— subspace measures 131A

convergence theorems (B.Levi, Fatou, Lebesgue) §123

countable sets 111F, 1A1C et seq.

counting measure 112Bd

extended real line §135
Fatou’s Lemma ([ liminf < liminf [ for sequences of non-negative functions) 123B

inner regularity of measures

—— (with respect to compact sets) Lebesgue measure 134F
integration of real-valued functions, construction §122

—— as a positive linear functional 1220

—— characterization of integrable functions 122P, 122R

—— functions and integrals with values in [—o00, 00] 133A, 135F

Lebesgue measure, construction of §114, §115

—— further properties §134

Lebesgue’s Dominated Convergence Theorem ( f lim = lim f for dominated sequences of functions) 123C
B.Levi’s theorem ([ lim = lim [ for monotonic sequences of functions) 123A

measurable envelopes

—— elementary properties 132E

measurable functions

— (real-valued) §121

—— —— sums, products and other operations on finitely many functions 121E
—— —— limits, infima, suprema 121F

measure space §112

Monotone Class Theorem 136B

non-measurable set (for Lebesgue measure) 134B

outer measures constructed from measures 132A et seq.
outer regularity of Lebesgue measure 134F
indexvheaderRothberger

subspace measures
—— for measurable subspaces §131

o-algebras of sets §111
—— generated by given families 136B, 136G
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General index

References in bold type refer to definitions; references in italics are passing references. Definitions marked with >
are those in which my usage is dangerously at variance with that of some other author or authors.

additive functional on an algebra of sets see finitely additive (136Xg)

algebra of sets 113Yi, 136E, 136F, 136G, 136Xg, 136Xh, 136Xk, 136Ya, 136YD; see also oc-algebra (111A)
almost every, almost everywhere 112Dd

almost surely 112De

alternating functional 132Yf

analytic (complex) function 133Xc

axiom see countable choice

Borel algebra see Borel o-algebra (111Gd, 135C)

Borel measurable function 121C, 121D, 121Eg, 121H, 121K, 121Yd, 134Fd, 134Xg, 134Yt, 135Ef, 135Xc, 135Xe

Borel sets in R, R” 111G, 111Yd, 114G, 114Yd, 115G, 115Yb, 115Yd, 121Ef, 121K, 134F, 134Xd, 135C, 136D,
136X

Borel o-algebra (of subsets of R") 111Gd, 114Yyg-114Yi, 121J, 121Xd, 121Xe, 121Y¢c, 121Yd;

—— (of other spaces) 135C, 135Xb

bounded set (in R") 134E

Cantor function 134H, 1341

Cantor set 134G, 134H, 1341, 134Xf

Carathéodory’s method (of constructing measures) 113C, 113D, 113Xa, 113Xd, 113Xg, 113Yc, 113Yk, 114E, 114Xa,
115E, 121Ye, 132Xc, 136Ya

characteristic function (of a set) 122Aa

choice, axiom of 134C, 1A1G; see also countable choice

closed interval (in R or R") 114G, 115G, 1A1A

closed set (in a topological space) 134Fb, 134Xd, 1A2E, 1A2F, 1A2G

complete measure (space) 112Df, 113Xa, 122Ya

complex-valued function §133

component (in a topological space) 111Ye

conegligible set 112Dc

continuous function 121D, 121Yd

convergent sequence 135D

countable (set) 111F, 114G, 115G, §1A1

countable choice, axiom of 13/C

counting measure 112Bd, 122Xd, 122 notes

cover see measurable envelope (132D)

Dedekind complete ordered set 135Ba

derivative of a functionsee partial derivative

Devil’s Staircase see Cantor function (134H)
differentiable function (of one variable) 123D
differentiating through an integral 123D

Dirac measure 112Bd

direct image (of a set under a function or relation) 1A1B
disintegration of a measure 123Ye

disjoint family (of sets) 112Bb

Dominated Convergence Theorem see Lebesgue’s Dominated Convergence Theorem (123C)
Dynkin class 136A, 136B, 136Xb

Egorov’s theorem 131Ya

envelope see measurable envelope (132D)
equiveridical 121B

Euclidean topology §1A2

extended real line 121C, §135

extension of finitely additive functionals 113Yi
extension of measures 113Yc¢, 113Yh, 132Yd
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Fatou’s Lemma 123B, 133Kb, 135Gb, 135Hb

field (of sets) see algebra (136E)

finitely additive function(al) on an algebra of sets 136Xg, 136Ya, 136YDb
Fourier series 121G

Fourier transform 133Xd, 133Yc

full outer measure 132F, 132Yd, 134D, 134Yt

function 1A1B

generated (o-)algebra of sets 111Gb, 111Xe, 111Xf, 121J, 121Xd, 121Yc, 136B, 136C, 136G, 136H, 136Xc, 136Xk,
136YDb, 136Yc

half-open interval (in R or R") 114Aa, 114G, 114Yj, 115Ab, 115Xa, 115Xc, 115Yd

ideal in an algebra of sets see o-ideal (112Db)

image measure 112Xf, 123Ya, 132Yb

indefinite integral 131Xa

infinity 112B, 133A, §135

inner measure 113Yg

—— —— defined by a measure 113Yh

integrable function §122 (122M), 128Ya, 133B, 133Db, 133F, 133Jd, 133Xa, 135Fa

integral §122 (122E, 122K, 122M), 133B, 133D; see also integrable function, Lebesgue integral (122Nb), lower
integral (133I), Riemann integral (134K), upper integral (133I)

interval see half-open interval (114Aa, 115Ab), open interval (111Xb

inverse image (of a set under a function or relation) 1A1B

inverse-measure-preserving function 134Y1-134Yn

Laplace transform 123Xc, 123Yb, 133Xd

Lebesgue, H. Vol. 1 intro.

Lebesgue’s Dominated Convergence Theorem 123C, 133G

Lebesgue integrable function 122Nb, 122Yb, 122Ye, 122Yf

Lebesgue integral 122Nb

Lebesgue measurable function 121C, 121D, 134Xg, 134Xj

Lebesgue measurable set 114E, 114F, 114G, 114Xe, 114Ye, 115E, 115F, 115G

Lebesgue measure (on R) §114 (114E), 131Xb, 133Xd, 133Xe, 134G-134L

— — (on R") §115 (115E), 132C, 132Ef, 133Yc, §134

—— —— (on other subsets of R") 131B

Lebesgue negligible set 114E,; 115E, 134Yk

Lebesgue outer measure 114C, 114D, 114Xc, 114Yd, 115C, 115D, 115E, 115Xb, 115Xd, 115Yb, 132C, 134A, 134D,
134Fa

Lebesgue-Stieltjes measure 114Xa, 114Xb, 114Yb, 114Yc, 114Yf, 131Xc, 132Xg, 134Xd

length of an interval 114Ab

B.Levi’s theorem 123A, 123Xa, 133Ka, 135Ga, 135Hb

lower integral 1331, 133J, 133Xf, 133Yd, 135Ha

lower Riemann integral 134Ka

Lusin’s theorem 134Yd

measurable cover see measurable envelope (132D)

measurable envelope 132D, 132E, 132F, 132Xg, 134Fc, 134Xd; see also full outer measure (132F)
measurable function (taking values in R) §121 (121C), 122Ya

—— — (taking values in R") 121Yd

—— —— (taking values in other spaces) 133Da, 133E, 133Yb, 135E, 135Xd, 135Yf
— — ((¥, T)-measurable function) 121Yc

—— —— see also Borel measurable, Lebesgue measurable

measurable set 112A; see also relatively measurable (121A)

measurable space 111Bc

measurable transformation see inverse-measure-preserving function

measure 112A

—— (in ‘p measures E’, ‘E is measured by p’) >112Be
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measure space §112 (112A)

Monotone Class Theorem 136B-136D, 136Xc, 136Xf
Monotone Convergence Theorem see B.Levi’s theorem (123A)
monotonic function 121D

negligible set 112D, 131Ca; see also Lebesgue negligible (114E, 115E), null ideal (112Db)
non-decreasing sequence of sets 112Ce

non-increasing sequence of sets 112Cf

non-measurable set 134B, 134D, 134Xc

null ideal of a measure 112Db

null set see negligible (112Da)

open interval 111Xb, 114G, 115G, 1A1A

open set (in R") 111Ge, 111Ye, 114Yd, 115G, 115Yb, 133Xc, 134Fa, 134Xe, 135Xa, 1A2A, 1A2B, 1A2D; (in R)
111Gc, 111Ye, 114G, 134Xd

outer measure §113 (113A), 114Xd, 132B, 152Xy, 136Ya; see also Lebesgue outer measure (114C, 115C), regular
outer measure (132Xa)

—— —— defined from a measure 113Ya, 132A-132E (132B), 132Xa-132Xi, 132Xk, 132Ya-132Yc, 133Je

partial derivative 123D

partition 1A1J

Peano curve 134Y1-134Yo

point-supported measure 112Bd;see also Dirac measure (112Bd)
power set PN 1A1Hb

presque partout 112De

pseudo-simple function 122Ye, 133Ye

quasi-simple function 122Yd, 133Yd

regular outer measure 132C, 132Xa
relation 1A1B

relatively measurable set 121 A

Riemann integrable function 134K, 134L
Riemann integral 134K

semi-ring of sets 115Ye

Sierpinski Class Theorem see Monotone Class Theorem (136B)
simple function §122 (>122A)

space-filling curve 134Y1

Stieltjes measure see Lebesgue-Stieltjes measure (114Xa)
subspace measure 113Yb

—— —— on a measurable subset 131A, 131B, 131C, 132Xb, 1351
—— —— (integration with respect to a subspace measure) 131D, 131E-131H, 131Xa-131Xc, 135D¢, 133Xb, 1351
subspace o-algebra 121A

sum over arbitrary index set 112Bd

sum of measures 112Yf, 122Xi

supported see point-supported (112Bd)

thick set see full outer measure (132F)

totally ordered set 135Ba

trace (of a o-algebra) see subspace o-algebra (121A)
translation-invariant measure 114Xf, 115Xd, 134A, 134Ye, 134Yf

upper integral 1331, 133J-133L, 133Xf, 133Yd, 135H, 1351, 135Yc
upper Riemann integral 134Ka

virtually measurable function 122Q, 122Xe, 122Xf, 135Ia
Vitali’s construction of a non-measurable set 134B
volume 115Ac

a.e. (‘almost everywhere’) 112Dd
a.s. (‘almost surely’) 112De
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C = the set of complex numbers

diam (in diam A) = diameter
dom (in dom f): the domain of a function f

L9 (in £%(p)) 121Xb

LY (in LY(p)) 122Xc

liminf (in liminf, o) §1A3 (1A3Aa); (in liminf,o) 1A3D
limsup (in limsup,,_,.,) §1A3 (1A3Aa); (in limsup,,) 1A3D

N x N 111Fb

P see power set
p.p. (‘presque partout’) 112De

Q (the set of rational numbers) 111Eb, 1A1Ef

R (the set of real numbers) 111Fe, 1A1Ha
R see extended real line (§135)

U (in U(z,0)) 1A2A

Z (the set of integers) 111Eb, 1A1Ee
ZFC see Zermelo-Fraenkel set theory

-\ Theorem see Monotone Class Theorem (136B)

o-algebra of sets 111A, 111B, 111D-111G, 111Xc-111Xf, 111Yb, 136Xb, 136Xi; see also Borel o-algebra (111G))
o-field see o-algebra (111A)
o-ideal (of sets) 112Db

S ies @i 112Bd
X (in xA, where A is a set) 122Aa

\ (in E\ F, ‘set difference’) 111C

A (in EAF, ‘symmetric difference’) 111C

U (in U, en £n) 111C; (in J A) 1A1F

N (in N,y £n) 111C; (in N E) 1A2F

V, A (in a lattice) 121Xb

I (in fTA, the restriction of a function to a set) 121Eh
=.. 112Dg, 112Xe

<ae 112Dg, 112Xe

>. . 112Dg, 112Xe

* (in p*) see outer measure defined by a measure (132B)
« (In py) see inner measure defined by a measure (113Yh)
[ (n [ f, [ fdu, [ f(z)p(dz)) 122E, 122K, 122M, 122Nb; see also upper integral, lower integral (133I)
— (in fA f) 131D; see also subspace measure

T see upper integral (133I)
| see lower integral (133I)

if see Riemann integral (134K)

* (in f*, where f is a function) 121Xa

~ (in 7, where f is a function) 121Xa

oo see infinity

[ ] (in [a,b]) see closed interval (115G, 1A1A); (in f[A], f~1[B], R[A], R~1[B]) 1A1B
[ [ (in [a,b]) see half-open interval (115Ab, 1A1A)

] ] (in ]a,b]) see half-open interval (LA1A)
| [ (in]a,b])

in ]a, b[) see open interval (115G, 1A1A)



