
Project 1 - TMA4220 - 2022

Deadline : 02 October 2022 at midnight
Weight on the final grade : 10%

The programming project will be split into two parts. The first part is an in-
troduction into the finite element method and is designed to build up a solid
code base for part 2, where you will actually solve larger, real life problems.
For the second part you will have to choose one of several tasks to implement.

To submit, send an email to davide.murari@ntnu.no attaching a folder with

• the Python code,

• a PDF file with the explanations and theoretical questions.

An alternative would be a Jupyter notebook with both the theoretical deriva-
tions and the code together. Make clear what are the answers to the theoretical
questions. Specify the group and the group members when you submit.

1 Gaussian quadrature

At the heart of every finite element code, lies the evaluation of an integral. This
integral may be of varying complexity depending on the problem at hand, and
many of these integrals do not even have a known analytical solution. Some in-
tegrals are possible to solve analytically, but of such computational complexity
that it is impractical to do so. As such, one often refers to numerical quadra-
ture schemes to do the core integration. One popular integration scheme is the
Gaussian quadrature.

In one dimension the Gauss quadrature takes the form

∫ 1

−1
g(z)dz ≈

Nq∑
q=1

ρqg
(
zq
)
,

where Nq is the number of integration points, zq are the Gaussian quadrature
points and ρq are the associated Gaussian weights.

1

This extends to higher dimensions by∫
Ω̂

g(z)dz ≈
Nq∑
q=1

ρqg
(
zq
)

specifying the vector quadrature points zq as well as integrating over a suitable
reference domain Ω̂ (i.e. squares or triangles in 2D, tetrahedra or cubes in 3D).

1.1 1D quadrature

Write a Python function quadrature1D(a,b,Nq, g) that returns a value I where
the variables are defined as:

• I ∈R, value of the integral

• a ∈R, integration start

• b ∈R, integration end

• Nq ∈ {1,2,3,4}, number of integration points

• g : R→R, function pointer1.

Verify that the function evaluates correctly by comparing with the analytical
solution of the integral ∫ 2

1
exdx.

1.2 2D quadrature

Using all numerical quadratures, it is important to first map the function to
the reference domain. In one dimension, this is the interval ζ ∈ [−1,1]. In
higher dimensions, we often map to barycentric coordinates (or area coordi-
nates as they are known in 2D). The gauss points are then given as triplets in
this coordinate system. The area coordinates are defined by

ζ1 =
A1

A

ζ2 =
A2

A
1A function pointer in Python is a variable which represents a function instead of the usual

numerical values. In its simplest form it is declared as f= lambda x: x**2+1 which would cause
the variable f to contain a pointer to the function f (x) = x2 +1. The function can then be evaluated
by y = f (4), which should yield the result y = 17. A function may take several arguments, i.e.
f (x,y) = x2 +y2 can be declared as f = lambda x,y: x**2 + y**2. This is even compatible with
vector or matrix operations.

2

Nq zq ρq
1-point-rule 0 2
2-point-rule −

√
1/3 1√

1/3 1
−
√

3/5 5/9
3-point-rule 0 8/9√

3/5 5/9

4-point-rule −
√

3+2
√

6/5
7

18−
√

30
36

−
√

3−2
√

6/5
7

18+
√

30
36√

3−2
√

6/5
7

18+
√

30
36√

3+2
√

6/5
7

18−
√

30
36

Table 1: 1D Gauss quadrature nodes and weights for the reference interval
[−1,1]

ζ3 =
A3

A
where A1, A2 and A3 are the area of the traingles depicted in figure 1 and A is
the total area of the triangle. Note that these do not form a linear independent
basis as ζ1 + ζ2 + ζ3 = 1. An intuitive way to interpret the barycentric coordi-

Figure 1: Barycentric coordinates in two dimensions

nates is as the coefficients of the weighted sum of the triangle vertices that give
out the point of interest. More precisely, it is the triple (ζ1,ζ2,ζ3) such that

P = ζ1p1 + ζ2p2 + ζ3p3 = ζ1p1 + ζ2p2 + (1− ζ1 − ζ2)p3.

3

Manipulating a bit this relation, one can get also another interpretation of the
barycentric coordinates ζ1,ζ2:

P = p3 + ζ1(p1 − p3) + ζ2(p2 − p3)

and hence (ζ1,ζ2) are the coordinates of the point P in the reference frame
(p3,
−−−−→p3p1 ,

−−−−→p3p2).

Nq (ζ1,ζ2,ζ3) ρ
1-point rule (1/3,1/3,1/3) 1
3-point rule (1/2,1/2,0) 1/3

(1/2,0,1/2) 1/3
(0.1/2,1/2) 1/3

4-point rule (1/3,1/3,1/3) −9/16
(3/5,1/5,1/5) 25/48
(1/5,3/5,1/5) 25/48
(1/5,1/5,3/5) 25/48

Table 2: 2D Gauss quadrature nodes and weights expressed in barycentric co-
ordinates.

Write a Python function quadrature2D (p1,p2,p3,Nq, g) that returns a value
I where the variables are defined as:

• I ∈R, value of the integral,

• p1 ∈R2, first corner point of the triangle,

• p2 ∈R2, second corner point of the triangle,

• p3 ∈R2, third corner point of the triangle,

• Nq ∈ {1,3,4}, number of integration points,

• g : R2→R, function pointer.

Hint: An easy way of mapping barycentric coordinates ζ to physical coordi-
nates x is by x = ζ1p1 +ζ2p2 +ζ3p3, where pi , i = 1,2,3 are the corner points of
the triangle.

Verify that the function evaluates correctly by comparing with the analytical
solution of the integral "

Ω

log(x+ y)dxdy

where Ω is the triangle defined by the corner points (1,0), (3,1) and (3,2).

4

2 Poisson in 2 dimensions

We are going to solve the two-dimensional Poisson problem, given by∇2u(x,y) = −f (x,y), (x,y) ∈Ω
u(x,y) = 0 (x,y) ∈ ∂Ω

(1)

with f given as

f (x,y) = −8πcos
(
2π(x2 + y2)

)
+ 16π2(x2 + y2)sin

(
2π(x2 + y2)

)
on the domain Ω given by the unit disk, i.e. Ω =

{
(x,y) : x2 + y2 ≤ 1

}
. Recall

∂Ω = {(x,y) : x2 + y2 = 1}.

Advice: For the visual representation, you might find useful the following
Python libraries and methods:

• https://matplotlib.org/stable/api/tri_api.html

• https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.tricontourf.

html

2.1 Analytical solution

Verify that the following expression is in fact a solution to the problem (1):

u(x,y) = sin
(
2π

(
x2 + y2

))
.

2.2 Weak formulation

Show that the problem can be rewritten as

a(u,v) = l(v), ∀v ∈ X

with the bilinear functional a and the linear functional l given by

a(u,v) =
"

Ω

∇u · ∇vdxdy

l(v) =
"

Ω

f vdxdy.

What is the definition of the space X?

5

https://matplotlib.org/stable/api/tri_api.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.tricontourf.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.tricontourf.html

2.3 Galerkin projection

Instead of searching for a solution u in the entire space X we are going to be
looking for a solution in a much smaller space Xh ⊂ X. Let Ω be discretized
into M triangles such that our computational domain is the union of all of
these Ω = ∪Mk=1Kk . Each triangle Kk is then defined by its three corner nodes
xi . For each of these nodes there corresponds one basis function. The space Xh
is then defined by

Xh =
{
v ∈ X : v|Kk

∈ P1 (Kk) ,1 ≤ k ≤M
}

for which the basis functions {ϕi}ni=1 satisfy

Xh = span {ϕi}ni=1 ϕj (xi) = δij

and δij is the Kronecker delta. By searching for a solution uh ∈ Xh, it is then
possible to write this as a weighted sum of the basis functions, i.e.

uh =
n∑
i=1

ui
hϕi(x,y).

Show that the problem “Find uh ∈ Xh such that a (uh,v) = l(v) ∀v ∈ Xh ” is
equivalent to the following problem:

Find u such that
Au = f (2)

with
A =

[
Aij

]
=
[
a
(
ϕi ,ϕj

)]
u =

[
ui
h

]
f = [fi] = [l (ϕi)]

2.4 Implementation

We are now going to actually solve the system (2). First we are going to take a
look at the triangulation {Kk}. From the webpage https://wiki.math.ntnu.

no/tma4220/2022h/project you may download the mesh generator.

The function GetDisc, in the script getdisc.py, is generating a mesh on the
unit disk Ω. Plot at least three meshes of different sizes using this function.

2.5 Stiffnes matrix

Build the stiffness matrix A. Use the Gaussian quadrature from exercise 1 to
do this. The matrix A should now be singular. Verify this in your code and
explain why this is the case.

6

https://wiki.math.ntnu.no/tma4220/2022h/project
https://wiki.math.ntnu.no/tma4220/2022h/project

2.6 Right hand side

Build the right hand side vector f in the same manner as A.

2.7 Boundary conditions

Implement the homogeneous Dirichlet boundary conditions. Describe what
method you used for this and how you did it.

2.8 Verification

Solve the system (2) and verify that you are (approximately) getting the same
result as the analytical solution seen in task 2.1. A good way to do so is to rep-
resent both the solutions and also their difference. Moreover, you should check
if/how the quality of the approximation changes as the number of triangles in
the mesh changes.

3 Neumann boundary conditions

Figure 2: Dirichlet and Neumann boundary conditions

We are going to change the boundary conditions of our problem and study
the BVP

∇2u(x,y) = −f (x,y)

u(x,y)
∣∣∣
∂ΩD

= 0

∂u(x,y)
∂n

∣∣∣∣∣
∂ΩN

= g(x,y)

with the source term f and exact solution u given as above, and g as

g(x,y) = 4π
√
x2 + y2 cos

(
2π(x2 + y2)

)
. (3)

7

The Dirichlet boundary condition is defined on ∂ΩD =
{
x2 + y2 = 1, y < 0

}
,

and the Neumann boundary condition on ∂ΩN =
{
x2 + y2 = 1, y > 0

}
, as shown

in figure 2.

3.1 Boundary condition

Verify that the analytical solution presented in task 2.1 satisfies (3) at the
boundary.

3.2 Variational formulation

How do a(·, ·) and l(·) change with the introduction of Neumann boundary con-
ditions?

3.3 Gauss quadrature

The Neumann boundary condition is given as an integral and should be evalu-
ated using Gaussian quadrature. Modify your quadrature methods from task 1
to solve line integrals in two dimensions, i.e. quadrature1D(a,b,Nq, g) should
get as inputs a ∈R2 and b ∈R2.

As a test case, check again that it computes correctly the line integral of ex

on the line segment connecting the points a = (1,0) and b = (2,0).

3.4 Implementation

Change your code from task 2 to solve this new boundary value problem. How
does your solution in the interior compare to the one you got in task 2 ? How
does your solution at the boundary compare?

8

	Gaussian quadrature
	1D quadrature
	2D quadrature

	Poisson in 2 dimensions
	Analytical solution
	Weak formulation
	Galerkin projection
	Implementation
	Stiffnes matrix
	Right hand side
	Boundary conditions
	Verification

	Neumann boundary conditions
	Boundary condition
	Variational formulation
	Gauss quadrature
	Implementation

