Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Fall 2021

Exercise set 2

1 The goal of this exercise is to recall the basic properties of Gaussian quadrature, so that we can then apply it to solve a PDE with FEM in the next exercise.
a) Consider the definite integral

$$
\int_{a}^{b} f(x) d x
$$

with $b-a=h$. What is the expression for the Gaussian approximation of the integral if you work with m quadrature points? In this and the next points, use as a reference interval where the nodes live $[0,1]$, instead of the usual one $[-1,1]$.
b) Since in the FEM formulation we need even to compute integrals involving derivatives, we are now interested in applying Gaussian quadrature to approximate

$$
\int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x
$$

What is the expression, with m quadrature nodes, of the Gaussian approximation of this integral? Work again with the reference interval $[0,1]$.

We focus on the mass matrix having entries

$$
M_{i j}=\int_{a}^{b} \varphi_{i}(x) \varphi_{j}(x) d x
$$

and on the stiffness matrix whose entries are

$$
K_{i j}=\int_{a}^{b} \varphi_{i}^{\prime}(x) \varphi_{j}^{\prime}(x) d x
$$

c) Let us now consider the interval $[0,1]$, i.e. $h=1$. Define on this interval the two linear basis functions

$$
\hat{\varphi}_{0}(\xi)=1-\xi, \quad \hat{\varphi}_{1}(\xi)=\xi
$$

Compute the element mass and stiffness matrices for this interval.
d) Repeat the same reasoning for quadratic basis functions, again on the reference element $[0,1]$. What are the expressions of the element stiffness and mass matrices in this setting? Recall that the reference basis functions are now

$$
\hat{\varphi}_{0}(\xi)=(\xi-1)(2 \xi-1) \quad, \quad \hat{\varphi}_{1}(\xi)=4(1-\xi) \xi \quad, \quad \hat{\varphi}_{2}(\xi)=\xi(2 \xi-1)
$$

e) Write a Python/Matlab code which verifies that the calculated stiffness and mass matrices for quadratic basis functions are correct. Even if not necessary, compute the involved integrals with Gaussian quadrature with 5 nodes (this will be even used in the last exercise).

2 (Barycentric coordinates) Consider the triangle $\mathcal{T} \subset \mathbb{R}^{2}$ of vertices $A=(1,1), B=$ $(1,0)$, and $C=(-1,1)$.
a) Compute the barycentric coordinates of the points $(1 / 2,1 / 2)$ and $(-1 / 2,1 / 2)$.
b) How can we easily verify if a point $Q \in \mathbb{R}^{2}$ is inside or outside \mathcal{T} using barycentric coordinates?
c) Consider the integral

$$
\int_{\mathcal{T}} f(x, y) d x d y, \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

How can you rewrite it in terms of barycentric coordinates?
d) Transform the integral

$$
\int_{\mathcal{T}}(x+y) d x d y
$$

in barycentric coordinates and compute it.

3 Consider the boundary value problem

$$
-u_{x x}+\sigma u=f \quad, \quad u(a)=u_{1}, u(b)=u_{2}
$$

We want to get an approximation of the solution u both with linear and quadratic elements. Moreover, we want to get measurements of the L^{2} error.
a) First of all, write down the Galerkin formulation of the problem, defining the involved functional spaces.
b) Construct then a finite element code which can solve this BVP and requires as input parameters just

- p, which is the degree of the basis functions,
- N, which is the number of uniform elements of the triangulation,
- $\sigma, a, b, u_{1}, u_{2}$, which are the parameters of the BVP.

To assemble the load vector f, use Gaussian quadrature with 5 points. Recall that the elements are C^{0}-continuous, and this will influence the overlapping between elements in the global mass and stiffness matrices M and K.
c) Compute the error in the continuous L^{2} norm and create convergence plots. Recall that

$$
E=\sqrt{\int_{a}^{b}\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right|^{2}}
$$

where $u_{h}(x)=\sum_{i=0}^{n} \varphi_{i}(x) u_{i}$. The convergence plots, should be done both for $p=1,2$, and should consider $N \in\{4,8,16,32,64,128,256\}$. Repeat these tests for the two following problems

- For the first simulation, let $\sigma=0, a=0, b=2, u_{1}=0, u_{2}=0, u(x)=$ $\sin (\pi x)$ and $f(x)=\pi^{2} \sin (\pi x)$.
- For the second simulation, let $\sigma=2, a=-2, b=2, u_{1}=e^{-4}, u_{2}=e^{-4}$, $u(x)=e^{-x^{2}}$, and $f(x)=4\left(1-x^{2}\right) e^{-x^{2}}$.

