Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 a) Consider the finite integral

$$
\int_{a}^{b} f(x) d x
$$

You are going to integrate it with Gaussian quadrature. How will the general formula for the approximated integral be if you choose m quadrature points?
b) Consider the linear basis functions on the reference element $\widehat{\Omega}=[-1,1]$:

$$
\varphi_{0}(x)=-\frac{1}{2}(x-1) \quad, \quad \varphi_{1}(x)=\frac{1}{2}(x+1)
$$

Calculate the element mass and stiffness matrices on this interval, $\widehat{\mathbf{M}}_{e}$ and $\widehat{\mathbf{K}}_{e}$.
c) Consider the quadratic basis functions on the reference element $\widehat{\Omega}=[-1,1]$:

$$
\varphi_{0}(x)=\frac{1}{2}\left(x^{2}-x\right) \quad, \quad \varphi_{1}(x)=1-x^{2} \quad, \quad \varphi_{2}(x)=\frac{1}{2}\left(x^{2}+x\right)
$$

Calculate the element mass and stiffness matrices on this interval, $\widehat{\mathbf{M}}_{e}$ and $\widehat{\mathbf{K}}_{e}$.

2 Consider the BVP

$$
\begin{equation*}
-u_{x x}+\sigma u=f \quad, \quad u(a)=u_{1}, \quad u(b)=u_{2} \tag{1}
\end{equation*}
$$

Construct a finite element code which can solve this BVP with linear or quadratic elements. This program requires the following input parameters:

- p (polynomial degree of basis functions).
- N (number of elements on the uniform interval).
- $\sigma, a, b, u_{1}, u_{2}$ (BVP parameters).

Use Gaussian quadrature with 5 points for assembling the load vector f. Recall that the elements are C^{0}-continuous, and this will influence the overlapping between elements in the global mass and stiffness matrices \mathbf{M} and \mathbf{K}.

For the rest of the task, let $N=\{4,8,16,32,64,128,256\}$ and $p=\{1,2\}$. Calculate the error in the continuous L^{2}-norm (store them in .txt-files) and create convergence plots (the other code opens the .txt-file and creates a loglog-plot). Recall that

$$
E=\sqrt{\int_{a}^{b}\left|u\left(x_{i}\right)-u_{h}\left(x_{i}\right)\right|^{2}}
$$

This quantity can also be calculated with Gaussian quadrature.
a) For the first simulation, let $\sigma=0, a=0, b=2, u_{1}=0, u_{2}=0, u(x)=\sin (\pi x)$ and $f(x)=\pi^{2} \sin (\pi x)$.
b) For the second simulation, let $\sigma=2, a=-2, b=2, u_{1}=e^{-4}, u_{2}=e^{-4}$, $u(x)=e^{-x^{2}}$ and $f(x)=4\left(1-x^{2}\right) e^{-x^{2}}$.

