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Solutions to exercise set 1

1 We known that φi(xj) = δij , where xj, j = 1, 2, 3 are the three corners, and we know
that the linear basis functions are on the form

φi(x, y) = aix+ biy + ci.

For φ1 we get the system

φi(1/2, 1/2) = 1/2a1 + 1/2b1 + c1 = 1,

φi(3/2, 1/2) = 3/2a1 + 1/2b1 + c1 = 0,

φi(1, 1) = a1 + b1 + c1 = 0.

If we set up the same systems for φ2 and φ3 we get1/2 1/2 1
3/2 1/2 1
1 1 1

a1 a2 a3

b1 b2 b3
c1 c2 c3

 =

1 0 0
0 1 0
0 0 1


with solution

φ1(x, y) = −x− y + 2,

φ2(x, y) = x− y,
φ3(x, y) = 2y − 1.

2 We first start with the basis functions that are 1 in the corners, i.e. φ1, φ2 and φ3. For
these basis functions, we can write them on the form φi = di(λi−ai)(λi− bi)(λi− ci)
(why?). As we want the functions to be zero in all other nodes, we must have, for
i = 1, a1 = 0, b1 = 1/3, c1 = 2/3. Then, since φ1(1, 0, 0) = 1, d1 = (1 − 0)(1 −
1/3)(1− 2/3) = 2/9. Thus

φ̂1 = 9/2λ1(λ1 − 1/3)(λ1 − 2/3).

By symmetry, we find

φ̂2 = 9/2λ2(λ2 − 1/3)(λ2 − 2/3),
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φ̂2 = 9/2λ2(λ2 − 1/3)(λ2 − 2/3).

For φ̂4 we note that this has to be zero along the lines through φ̂1 and φ̂2, and
through φ̂5 and φ̂6. Also, φ̂4(0, 2/3, 1/3) = 2/27, so d4 = 27/2. Thus, we have

φ̂4 = 27/2λ2λ3(λ3 − 1/3).

By symmetry,

φ̂5 = 27/2λ2λ3(λ2 − 1/3),

φ̂6 = 27/2λ3λ1(λ1 − 1/3),

φ̂7 = 27/2λ3λ1(λ3 − 1/3),

φ̂8 = 27/2λ1λ2(λ2 − 1/3),

φ̂9 = 27/2λ1λ2(λ1 − 1/3).

We see that φ̂10 must be zero along all the edges, which yields

φ̂10 = 27λ1λ2λ3.

3 a) By the fundamental theorem of calculus,

|u(x)|2 =
∣∣ ∫ x

−M

∂u

∂x1
(y1, x2)d y1

∣∣2,
and using Cauchy’s inequality with f = ∂u

∂x1
(y1, x2) and g = 1, we get

∣∣ ∫ x

−M

∂u

∂x1
(y1, x2)d y1

∣∣2 ≤ ∫ x

−M

∣∣ ∂u
∂x1

(y1, x2)
∣∣2d y1 ·

∫ x

−M
dx

≤ 2M

∫ M

−M

∣∣ ∂u
∂x1

(y1, x2)
∣∣2d y1.

b) Integrate over x2 to get∫ M

−M
|u(x)|2d x2 ≤ 2M

∫ M

−M

∫ M

−M

∣∣ ∂u
∂x1

(y1, x2)
∣∣2d y1d x2 = 2M

∫
Ω

∣∣ ∂u
∂x1

(y)
∣∣2d y,

where the equality comes from Fubini-Tonell’s theorem.

c) Integrate over x1 so

‖u‖2L2(Ω) =

∫
Ω
|u(x)|2 dx =

∫ M

−M

∫ M

−M
|u(x)|2d x2d x1

≤ 2M

∫ M

−M

∫
Ω

∣∣ ∂u
∂x1

(y)
∣∣2d yd x1

= 4M2

∫
Ω

∣∣ ∂u
∂x1

(y)
∣∣2d y

≤ 4M2

∫
Ω

∣∣ ∂u
∂x1

(y)
∣∣2 +

∣∣ ∂u
∂x2

(y)
∣∣2d y

= 4M2|u|2H1(Ω).
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d) Note that since Ω is bounded its diameter is finite. Let D = diam(Ω) < ∞.
Choose a point x ∈ Ω and let L = ‖x‖. Then Ω ⊂ [−(D + L), (D + L)]2. The
function ū defined as

ū(x) =

{
u(x) if x ∈ Ω

0 else

satisfies the requirements.

Remarks:

• The Poincaré inequality on bounded domains Ω ⊂ Rd is shown in an analogous
fashion.

• Note that the constant C grows as the box becomes larger.

• If u ∈ Hk
0 (Ω) for any k ≥ 1, then ∂u

∂xi
∈ Hk−1

0 (Ω) for any i = 1, . . . , d, and

more generally, Dαu ∈ Hk−|α|
0 for any multiindex α of size α ≤ k. Thus, we can

iterate Poincaré inequality and find that there is a constant C > 0 such that

‖u‖L2(Ω) ≤ C|u|H1(Ω) ≤ · · · ≤ C|u|Hk(Ω), ∀u ∈ Hk
0 (Ω).
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