Norwegian University of Science and Technology
Department of Mathematical
Sciences

Solutions to exercise set 1

11 We known that $\phi_{i}\left(\mathbf{x}_{\mathbf{j}}\right)=\delta_{i j}$, where $\mathbf{x}_{\mathbf{j}}, j=1,2,3$ are the three corners, and we know that the linear basis functions are on the form

$$
\phi_{i}(x, y)=a_{i} x+b_{i} y+c_{i} .
$$

For ϕ_{1} we get the system

$$
\begin{aligned}
\phi_{i}(1 / 2,1 / 2) & =1 / 2 a_{1}+1 / 2 b_{1}+c_{1}=1, \\
\phi_{i}(3 / 2,1 / 2) & =3 / 2 a_{1}+1 / 2 b_{1}+c_{1}=0, \\
\phi_{i}(1,1) & =a_{1}+b_{1}+c_{1}=0 .
\end{aligned}
$$

If we set up the same systems for ϕ_{2} and ϕ_{3} we get

$$
\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 1 \\
3 / 2 & 1 / 2 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

with solution

$$
\begin{aligned}
& \phi_{1}(x, y)=-x-y+2, \\
& \phi_{2}(x, y)=x-y, \\
& \phi_{3}(x, y)=2 y-1 .
\end{aligned}
$$

2 We first start with the basis functions that are 1 in the corners, i.e. ϕ_{1}, ϕ_{2} and ϕ_{3}. For these basis functions, we can write them on the form $\phi_{i}=d_{i}\left(\lambda_{i}-a_{i}\right)\left(\lambda_{i}-b_{i}\right)\left(\lambda_{i}-c_{i}\right)$ (why?). As we want the functions to be zero in all other nodes, we must have, for $i=1, a_{1}=0, b_{1}=1 / 3, c_{1}=2 / 3$. Then, since $\phi_{1}(1,0,0)=1, d_{1}=(1-0)(1-$ $1 / 3)(1-2 / 3)=2 / 9$. Thus

$$
\hat{\phi}_{1}=9 / 2 \lambda_{1}\left(\lambda_{1}-1 / 3\right)\left(\lambda_{1}-2 / 3\right) .
$$

By symmetry, we find

$$
\hat{\phi}_{2}=9 / 2 \lambda_{2}\left(\lambda_{2}-1 / 3\right)\left(\lambda_{2}-2 / 3\right),
$$

$$
\hat{\phi}_{2}=9 / 2 \lambda_{2}\left(\lambda_{2}-1 / 3\right)\left(\lambda_{2}-2 / 3\right)
$$

For $\hat{\phi}_{4}$ we note that this has to be zero along the lines through $\hat{\phi}_{1}$ and $\hat{\phi}_{2}$, and through $\hat{\phi}_{5}$ and $\hat{\phi}_{6}$. Also, $\hat{\phi}_{4}(0,2 / 3,1 / 3)=2 / 27$, so $d_{4}=27 / 2$. Thus, we have

$$
\hat{\phi}_{4}=27 / 2 \lambda_{2} \lambda_{3}\left(\lambda_{3}-1 / 3\right)
$$

By symmetry,

$$
\begin{aligned}
& \hat{\phi}_{5}=27 / 2 \lambda_{2} \lambda_{3}\left(\lambda_{2}-1 / 3\right), \\
& \hat{\phi}_{6}=27 / 2 \lambda_{3} \lambda_{1}\left(\lambda_{1}-1 / 3\right), \\
& \hat{\phi}_{7}=27 / 2 \lambda_{3} \lambda_{1}\left(\lambda_{3}-1 / 3\right), \\
& \hat{\phi}_{8}=27 / 2 \lambda_{1} \lambda_{2}\left(\lambda_{2}-1 / 3\right), \\
& \hat{\phi}_{9}=27 / 2 \lambda_{1} \lambda_{2}\left(\lambda_{1}-1 / 3\right) .
\end{aligned}
$$

We see that $\hat{\phi}_{10}$ must be zero along all the edges, which yields

$$
\hat{\phi}_{10}=27 \lambda_{1} \lambda_{2} \lambda_{3} .
$$

3 a) By the fundamental theorem of calculus,

$$
|u(x)|^{2}=\left|\int_{-M}^{x} \frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right) d y_{1}\right|^{2}
$$

and using Cauchy's inequality with $f=\frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right)$ and $g=1$, we get

$$
\begin{aligned}
\left|\int_{-M}^{x} \frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right) d y_{1}\right|^{2} & \leq \int_{-M}^{x}\left|\frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right)\right|^{2} d y_{1} \cdot \int_{-M}^{x} d x \\
& \leq 2 M \int_{-M}^{M}\left|\frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right)\right|^{2} d y_{1}
\end{aligned}
$$

b) Integrate over x_{2} to get

$$
\int_{-M}^{M}|u(x)|^{2} d x_{2} \leq 2 M \int_{-M}^{M} \int_{-M}^{M}\left|\frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right)\right|^{2} d y_{1} d x_{2}=2 M \int_{\Omega}\left|\frac{\partial u}{\partial x_{1}}(y)\right|^{2} d y
$$

where the equality comes from Fubini-Tonell's theorem
c) Integrate over x_{1} so

$$
\begin{aligned}
\|u\|_{L^{2}(\Omega)}^{2}=\int_{\Omega}|u(x)|^{2} d x & =\int_{-M}^{M} \int_{-M}^{M}|u(x)|^{2} d x_{2} d x_{1} \\
& \leq 2 M \int_{-M}^{M} \int_{\Omega}\left|\frac{\partial u}{\partial x_{1}}(y)\right|^{2} d y d x_{1} \\
& =4 M^{2} \int_{\Omega}\left|\frac{\partial u}{\partial x_{1}}(y)\right|^{2} d y \\
& \leq 4 M^{2} \int_{\Omega}\left|\frac{\partial u}{\partial x_{1}}(y)\right|^{2}+\left|\frac{\partial u}{\partial x_{2}}(y)\right|^{2} d y \\
& =4 M^{2}|u|_{H^{1}(\Omega)}^{2}
\end{aligned}
$$

d) Note that since Ω is bounded its diameter is finite. Let $D=\operatorname{diam}(\Omega)<\infty$. Choose a point $x \in \Omega$ and let $L=\|x\|$. Then $\Omega \subset[-(D+L),(D+L)]^{2}$. The function \bar{u} defined as

$$
\bar{u}(x)= \begin{cases}u(x) & \text { if } x \in \Omega \\ 0 & \text { else }\end{cases}
$$

satisfies the requirements.
Remarks:

- The Poincaré inequality on bounded domains $\Omega \subset \mathbb{R}^{d}$ is shown in an analogous fashion.
- Note that the constant C grows as the box becomes larger.
- If $u \in H_{0}^{k}(\Omega)$ for any $k \geq 1$, then $\frac{\partial u}{\partial x_{i}} \in H_{0}^{k-1}(\Omega)$ for any $i=1, \ldots, d$, and more generally, $D^{\alpha} u \in H_{0}^{k-|\alpha|}$ for any multiindex α of size $\alpha \leq k$. Thus, we can iterate Poincaré inequality and find that there is a constant $C>0$ such that

$$
\|u\|_{L^{2}(\Omega)} \leq C|u|_{H^{1}(\Omega)} \leq \cdots \leq C|u|_{H^{k}(\Omega)}, \forall u \in H_{0}^{k}(\Omega)
$$

