
Programming project in TMA4220 - part 2

Do real-life experimentation using your FEM code

In the second part of the project you are going to make use of your finite element library
which you have now built. We are going to apply this to one of several real-life applications.
The three first tasks introduce the main equations you can choose from

• ∂2u
∂t2

= α∇2u - the heat equation

• ∇σ(u) = −f - the linear elasticity equation

• ρ∂2u
∂t2

= ∇σ(u) - the free vibration equation

and include some very rough ”getting-started” theory on these.

You should choose one of the following exercises (i.e. either 1, 2, 3 og 4).



Exercise 1: The heat equation

Figure 1: A candle

In this exercise we will model heat transfer in a thin metal sheet when a candle is placed
under it.

The heat equation reads

∂u

∂t
= α∇2u+ f

u(t, x, y)|∂Ω = uD(t, x, y) (1)

u(t, x, y)|t=0 = u0(x, y)

where α is a positive constant defined by

α =
κ

cpρ

with κ being the thermal conductivity, ρ the mass density, cp the specific heat capacity of
the material and f a heat source term.

We will let the computational domain Ω be a two dimensional metal sheet, and we want
to find the temperature distribution in the metal sheet when a candle fire is placed under
it.



a) Semidiscretization

We are going to semidiscretize the system by projecting the spatial variables to a finite
element subspace Xh. First, assume the source term f is 0, and multiply (1) by a test
function v and integrate over the domain Ω to get∫∫

Ω

∂u

∂t
v dA = −

∫∫
Ω

α∇u∇v dA.

Note that we have only semidiscretized the system, so our unknown u is given as a linear
combination of the spatial basis functions, and is continuous in time, i.e.

uh(x, y, t) =

n∑
i=1

uih(t)ϕi(x, y).

The variational form of the problem then reads: Find uh ∈ XD
h such that∫∫

Ω

∂u
∂t v dA = −

∫∫
Ω

α∇u∇v dA, ∀v ∈ Xh

⇒
∑
i

∫∫
Ω

ϕiϕjdA
∂uih
∂t = −

∑
i

∫∫
Ω

α∇ϕi∇ϕjdAuih ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = −Au(t) (2)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij ] =

∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij ] =

∫∫
Ω

ϕiϕj dV.

Construct the matrix A and M as defined above.

b) Include the source term

Assume the heat from the candle light is given by a function

f(t, x, y) = e−β((x2+y2),

for some parameter β > 0.

What changes in the variational formulation from (a) do you need in order to include this?



c) Time integration

The system (2) is an ODE, which should be familiar from previous courses. Very briefly
an ODE is an equation on the form

∂y

∂t
= g(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hg(tn, yn).

More sophisticated include the improved Eulers methods

yn+1 = yn +
h

2
(g(tn, yn) + g(tn+1, yn + hg(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(g(tn, yn) + g(tn+1, yn+1))

and the famous Runge-Kutta methods.

Choose an ODE scheme (based on your previous experience and expertise) and implement
your time integration. Why did you choose the solver you did?

d) Experimentation

The parameters κ, ρ and cp are problem specific. Try to find (by for example googling it)
typical values for these for different types of metal.

The free parameters that you can change in this problem are the boundary conditions

u(t, x, y)|∂Ω = uD(t, x, y)

and the initial condition

u(t, x, y)|t=0 = u0(x, y).

What do you think are appropriate boundary and initial conditions? Why?

The parameter β in the source term decides how large the candle light is. What happens
if you let β be large (for example β = 1000)?

Use a source function
f(t, x, y) = e−β((x−a sin(t))2+y2)

for different values of a. What happens to the solution when a is large? Do you have to
change the time integration somehow?

e)

When the analytical solution is not known, a way to compute the convergence rate is to
compare the numerical solution with the numerical solution computed using very small
elements.

Compute the solution for element sizes h ∈ { 1
2i
, i = 0, 1, 2, 3} and compare these with the

solution using element size h = 1
25

. Compute the relative error and the convergence rate.



Exercise 2: Linear elasticity equation

We are in this problem going to consider the linear elasticity equation. The equations
describe deformation and motion in a continuum. While the entire theory of continuum
mechanics is an entire course by itself, it will here be sufficient to only study a small
part of this: the linear elasticity. This is governed by three main variables u, ε and σ (see
Table 1).

u =

[
ux
uy

]
-

the displacement vector measures
how much each spatial point has moved
in (x, y)-direction

ε =

[
εxx εxy
εxy εyy

]
-

the strain tensor measures how
much each spatial point has deformed
or stretched

σ =

[
σxx σxy
σxy σyy

]
-

the stress tensor measures how
much forces per area are acting on a
particular spatial point

Table 1: Linear elasticity variables in two dimensions

Note that the subscript denotes vector component and not derivative, i.e. ux 6= ∂u
∂x .

These three variables can be expressed in terms of each other in the following way:

u = u(x) (3)

ε = ε(u) (4)

σ = σ(ε) (5)

The primary unknown u (the displacement) is the one we are going to find in our finite
element implementation. From (3) we will have two displacement values for each finite
element ”node”, one in each of the spatial directions.

The relation (4) is a purely geometric one. Consider an infinitesimal small square of size
dx and dy, and its deformed geometry as depicted in figure 2. The strain is defined as
the stretching of the element, i.e. εxx = length(ab)−length(AB)

length(AB) . The complete derivations of
these quantities is described well in the Wikipedia article on strain, and the result is the
following relations

εxx(u) =
∂ux
∂x

εyy(u) =
∂uy
∂y

(6)

εxy(u) =
∂ux
∂y

+
∂uy
∂x

.

Note that these relations are the linearized quantities, which will only be true for small
deformations.

For the final relation, which connects the deformation to the forces acting upon it, we turn
to the material properties. Again, there is a rich literature on the subject, and different

http://en.wikipedia.org/wiki/Deformation_(mechanics)#Normal_strain


Figure 2: An infinitesimal small deformed rectangle

relations or physical laws to describe different materials. In our case, we will study small
deformations on solid materials like metal, wood or concrete. It is observed that such
materials behave elastically when under stress of a certain limit, i.e. a deformed geometry
will return to its initial state if all external forces are removed. Experiment has shown
that the Generalized Hooks Law is proving remarkable accurate under such conditions. It
states the following. Consider a body being dragged to each side by some stress σxx as
depicted in Figure 3. Hooks law states that the forces on a spring is linearly dependant
on the amount of stretching multiplied by some stiffness constant, i.e. σxx = Eεxx. The
constant E is called Young’s modulus. Generalizing upon this law, we see that materials
typically contract in the y-direction, while being dragged in the x-direction. The ratio of
compression vs expansion is called Poisson’s ratio ν and is expressed as εyy = −νεxx. This
gives the following relations

εxx =
1

E
σxx

εyy = − ν
E
σxx

Due to symmetry conditions, we see that when applying a stress σyy in addition to σxx
we get

εxx =
1

E
σxx −

ν

E
σyy

εyy =
1

E
σyy −

ν

E
σxx

Finally, it can be shown (but we will not) that the relation between the shear strain and
shear stress is εxy = 21+ν

E σxy. Collecting the components of ε and σ in a vector, gives us



Figure 3: Deformed geometry under axial stresses

the compact notation

ε̄ = C−1σ̄ εxx
εyy
εxy

 =

 1
E − ν

E 0
− ν
E

1
E 0

0 0 21+ν
E

 σxx
σyy
σxy


or conversely

σ̄ = Cε̄ (7) σxx
σyy
σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
εxy


For a body at static equilibrium, we have the governing equations

∇σ(u) = −f (8)[
∂

∂x
,
∂

∂y

] [
σxx σxy
σxy σyy

]
= − [fx, fy]

and some appropriate boundary conditions

u = g, on ∂ΩD (9)

σ · n̂ = h, on ∂ΩN (10)



a) Weak form

Show that (8) can be written as the scalar equation

2∑
i=1

2∑
j=i

∫
Ω
εij(v)σij(u) dA =

2∑
i=1

∫
Ω
vifi dA+

2∑
i=1

2∑
j=1

∫
∂Ω
viσijn̂ dS

(where we have exchanged the subscripts (x, y) with (1, 2)) by multiplying with a test

function v =

[
v1(x, y)
v2(x, y)

]
and integrating over the domain Ω Moreover, show that this

can be written in compact vector form as∫
Ω
ε̄(v)TCε̄(u) dA =

∫
Ω
vTf dA+

∫
∂Ω
vTσn̂ dS

=

∫
Ω
vTf dA+

∫
∂Ω
vTh dS

b) Galerkin projection

As in 2b) let v be a test function in the space Xh of piecewise linear functions on some
triangulation T . Note that unlike before, we now have vector test functions. This means
that for each node î, we will have two test functions

ϕî,1(x) =

[
ϕî(x)

0

]
ϕî,2(x) =

[
0

ϕî(x)

]
Let these functions be numbered by a single running index i = 2̂i+ d, where i is the node
number in the triangulation and d is the vector component of the function.

Show that by inserting v = ϕj and u =
∑

iϕiui into (11) you get the system of linear
equations

Au = b

where

A = [Aij ] =

∫
Ω
ε̄(ϕi)

TCε̄(ϕj), dA

b = [bi] =

∫
Ω
ϕTi f dA+

∫
∂Ω
ϕTi h dS

(Hint: ε̄(·) is a linear operator)

c) Test case

Show that

u =

[
(x2 − 1)(y2 − 1)
(x2 − 1)(y2 − 1)

]



is a solution to the problem

∇σ(u) = −f in Ω (11)

u = 0 on ∂Ω

where

fx =
E

1− ν2

(
−2y2 − x2 + νx2 − 2νxy − 2xy + 3− ν

)
fy =

E

1− ν2

(
−2x2 − y2 + νy2 − 2νxy − 2xy + 3− ν

)
and Ω = {(x, y) : max(|x|, |y|) ≤ 1} is the refereance square (−1, 1)2.

d) Implementation

Modify your Poisson solver to solve the problem (11). Verify that you are getting the
correct result by comparing with the exact solution. The mesh may be obtained through
the Grid function getPlate( ).

e) Stress analysis

Solving (8) with a finite element method gives you the primary unknown: the displacement
u. If you are interested in derived quantities such as the stresses, these can be calculated
from (7). Note that σ is in essence the derivative of u which means that since u is C0 across
element boundaries, then σ will be discontinuous. To get stresses at the nodal values, we
propose to average the stresses over all neighbouring elements.

Loop over all elements and evaluate (the constant) stresses on that element. For each node,
assign the stresses to be the average stress over all neighbouring elements. This method is
called ”Stress Recovery”.

f)

When the analytical solution is not known, a way to compute the convergence rate is to
compare the numerical solution with the numerical solution computed using very small
elements.

Compute the solution for element sizes h ∈ { 1
2i
, i = 0, 1, 2, 3} and compare these with the

solution using element size h = 1
25

. Compute the relative error and the convergence rate.



Exercise 3: Vibration analysis

Do problem 2a) - 2d) and read the theory on linear elasticity.

Figure 4: Mass-spring-model

The forces acting on a point mass m by a spring is given by the well known Hooks law:

mẍ = −kx

This can be extended to multiple springs and multiple bodies as in figure 5

Figure 5: 2 degree-of-freedom mass spring model

The physical laws will now become a system of equations instead of the scalar one above.
The forces acting on m1 is the spring k1 dragging in negative direction and k2 dragging
in the positive direction.

m1ẍ1 = −k1x1 + k2(x2 − x1)

This is symmetric, and we have an analogue expression for m2. The system can be written
in matrix form as[

m1 0
0 m2

] ¨[
x1

x2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
M ẍ = Ax



When doing continuum mechanics, it is the exact same idea, but the actual equations
differ some. Instead of discrete equations, we have continuous functions in space and the
governing equations are

ρü = ∇σ(u)

semi-discretization yields the following system of equations

M ü = −Au (12)

with the usual stiffness and mass matrix

A = [Aij ] =

∫∫
Ω

ε̄(ϕi)
TCε̄(ϕj) dV

M = [Mij ] =

∫∫
Ω

ρϕTi ϕj dV.

e)

Build the 3d mass matrix as given above.

We are now going to search for solutions of the type:

ueωit (13)

which inserted into (12) yields
ω2Mu = Au (14)

f)

Equation (14) is called a generalized eigenvalue problem (the traditional being with M =
I). Find the 20 first eigenvalues ωi and eigenvectors ui corresponding to this problem.

g)

Let x0 be your initial geometric description (the nodal values). Plot an animation of the
eigenmodes by

x = x0 + αui sin(t)

You may want to scale the vibration amplitude by some visually pleasing scalar α, and
choose the time steps appropriately. Note that for visualization purposes, you will not use
the eigenfrequency ωi since you are interested in viewing (say) 1-5 complete periods of the
vibration, but for engineering purposes this is a very important quantity.

h)

An interesting question is with regards to ”harmonic” frequencies. The 1st nonzero fre-
quency is often called the fundamental frequency, and the rest is called overtones. If the
overtones are multiplies of the natural frequency (i.e. fi = nf0, where n is an integer and
f0 is the fundamental frequency) the sound is said to be harmonic. This is an important
part in all musical instruments. More information can be found in the Wikipedia article
on pitch.

http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Pitch_(music)


Exercise 4: The best answer

In this problem you are tasked to give the most accurate finite element code you can make.
It is going to be a technical problem, and will focus on improving your finite element library.
You are going to compute a finite element solution to problems with known exact solutions
u and the goal is to get the error ‖u− uh‖ as small as possible. From the theory we know
that ‖u− uh‖ ≈ Chp, so there are two ways of improving the error

- decrease h

- increase p

Both strategies will require major revisions to your existing library from part 1 of the
project; either from implementing new basis functions (p-refinement), or optimizing exist-
ing algorithms to handle large number of unknowns (h-refinement).

a) Profile your code

Read about profiling at the Python documentation page. Use some profile library to find
out which part of your program is the slowest.

b) Compute the error

To compute the error of you finite element solution, you will need to integrate this in some
norm. One usually measures the error of finite element problems in one of the three norms,

|u− uh|2H1 =

∫
Ω
∇(u− uh) · ∇(u− uh)dA

‖u− uh‖2L2 =

∫
Ω

(u− uh)2dA

‖u− uh‖L∞ = sup
x∈Ω
|u(x)− uh(x)|.

The H1-seminorm is usually denoted as the energy norm, and satisfies a(u, u) = |u|2H1 .
From the Galerkin orthogonality, we know that the finite element solution is the best
possible solution (in our solution space) as measured in the energy norm. It is the most
natural, and predictive way of computing the error.

Compute your error in energy norm on the problem from task 2 and task 3 in part 1 of
the project. To compute the continuous integral of the norms, you will need to split it into
a sum of integration over single elements, and evaluate the error functions here. You will
find your assembly procedure from task 2a to be helpful.

c) Get convergence plots

Again, we will use the analytical solutions from part I. Compute your solution on a series
of meshes of different sizes. Plot the error you are getting vs the element size h in a log-log
plot. What do you see? Explain your findings.

https://docs.python.org/3.5/library/profile.html


d)

When the analytical solution is not known, a way to compute the convergence rate is to
compare the numerical solution with the numerical solution computed using very small
elements.

Compute the solution for element sizes h ∈ { 1
2i
, i = 0, 1, 2, 3} and compare these with the

solution using element size h = 1
25

. Compute the relative error and the convergence rate.

e) Machine precision

Computers operate with a limited number of decimal digits. For your typical computing
environment, this is of the order O(10−15). Can you create a 2D finite element solution
which reaches machine precision? How large system did you need, and how long time did
the computations take? You can use the time-module in Python to measure this.

Figure 6: The L shape

f) The L-shape

Let the domain Ω = [−1, 1]2/[0, 1]2 be the L-shaped domain around the origin (see Figure
6). Solve the Poisson problem

∇2u = 0 in Ω,

u = 0 on ΓD,

∂u

∂n
= g on ΓN .

With the known exact solution

u(r, θ) = r2/3 sin(
2θ + 2π

3
), θ ∈

[π
2
, 2π
]

(15)

compute g from (15) and run your finite element program on this problem. How fine
solution are you able to obtain? How long did your simulation take?


