TMA4220: Numerical solution of partial differential equations by element methods

Spectra of the continuous and discrete Laplace operator

March 19, 2002

Einar M. Rønquist Department of Mathematical Sciences NTNU, N-7491 Trondheim, Norway

1 Strong form

Consider the one-dimensional eigenvalue problem

$$-u_{xx} = \lambda u$$
 in $\Omega = (0,1)$, $u(0) = u(1) = 0$. (1)

The eigenfunctions

$$u_j(x) = \sin(\pi j x) \tag{2}$$

and eigenvalues

$$\lambda_j = \pi^2 j^2 \tag{3}$$

satisfy the eigenvalue problem (1) for $j = 1, 2,, \infty$.

2 Weak form

The weak form of (1) is: Find $u \in X = H_0^1(\Omega)$ and $\lambda \in \mathbb{R}$ such that

$$\int_0^1 u_x v_x \, dx = \lambda \int_0^1 u \, v \, dx \quad \forall v \in X . \tag{4}$$

We can also express this weak form as: Find $(u, \lambda) \in X \times \mathbb{R}$ such that

$$a(u,v) = \lambda(u,v) \quad \forall v \in X$$
 (5)

where

$$a(w,v) = \int_0^1 w_x v_x \, dx \tag{6}$$

$$(w,v) = \int_0^1 w \, v \, dx \tag{7}$$

Note that a(w, v) and (w, v) are both symmetric, positive-definite bilinear forms.

3 Rayleigh quotient

From the weak formulation of the eigenvalue problem, it follows that

$$\forall v \in X = H_0^1(\Omega), \qquad \lambda = \frac{a(v,v)}{(v,v)} > 0$$
 (8)

since $a(\cdot, \cdot)$ and (\cdot, \cdot) are SPD bilinear forms. In particular,

$$\lambda_j = \frac{a(u_j, u_j)}{(u_j, u_j)} > 0, \ \ j = 1, 2, ..., \infty.$$
 (9)

Note that

$$\frac{a(v,v)}{(v,v)} \ge \lambda_{\min} > 0 , \qquad (10)$$

with

$$\lambda_{\min} = \min_{v \in X} \frac{a(v, v)}{(v, v)} . \tag{11}$$

4 Discrete eigenvalue problem

Following the standard Galerkin procedure, we can express the discrete eigenvalue problem as: Find $u_h \in X_h \subset X = H^1_0(\Omega)$ and $\lambda_h \in \mathbb{R}$ such that

$$a(u_h, v) = \lambda_h(u_h, v) \quad \forall v \in X_h . \tag{12}$$

The discrete eigenfunctions and eigenvalues are denoted as $(u_h)_j$ and $(\lambda_h)_j$, respectively. If $\dim(X_h) = N$, we immediately observe that

$$(\lambda_h)_j = \frac{a((u_h)_j, (u_h)_j)}{((u_h)_j, (u_h)_j)} > 0, \quad j = 1, 2, ..., N.$$
(13)

In particular,

$$\forall v \in X_h, \qquad 0 < (\lambda_h)_{\min} \le \frac{a(v,v)}{(v,v)} \le (\lambda_h)_{\max}. \tag{14}$$

Since

$$(\lambda_h)_{\min} = \min_{v \in X_h} \frac{a(v, v)}{(v, v)} , \qquad (15)$$

while

$$\lambda_{\min} = \min_{v \in X} \frac{a(v, v)}{(v, v)} , \qquad (16)$$

we obtain the important result that

$$(\lambda_h)_{\min} \ge \lambda_{\min}$$
 (17)

In other words, the minimum eigenvalue for the discrete problem is always greater than or equal to the minimum eigenvalue for the continuous problem.

5 One-dimensional example

We consider here the numerical solution of (1) using linear finite elements. In particular, we assume that we use K equal elements, each of length (mesh size) h = 1/K. Our discrete space X_h can then be defined as

$$X_h = \{ v \in X = H_0^1(\Omega) \mid v_{|_{T_h^k}} \in \mathbb{P}_1(T_h^k), k = 1, ..., K \}$$
 (18)

$$= span\{\phi_1, \phi_2, ..., \phi_N\} . \tag{19}$$

As usual, we assume that we use a nodal basis for X_h , that is,

$$\forall v \in X_h, \qquad v(x) = \sum_{i=1}^N v_i \, \phi_i(x), \qquad (20)$$

where the basis coefficients $v_i = v(x_i)$, i = 1, 2, ..., N. Note that K = N + 1, implying that h = 1/(N+1). Also note that $v(x_0) = v(x_{N+1}) = 0$ due to the homogenous Dirichlet boundary conditions.

Using the nodal basis, the discrete eigenvalue problem (12) can be expressed as the following system of algebraic equations:

$$\underline{A}_h \, \underline{u}_h = \lambda_h \, \underline{M}_h \, \underline{u}_h \quad , \tag{21}$$

where

$$u_h(x) = \sum_{i=1}^{N} u_{hi} \,\phi_i(x) \tag{22}$$

and

$$\underline{u}_h = [u_{h1}, u_{h2},, u_{hN}]^T . (23)$$

Since the matrix elements are given as

$$(A_h)_{mn} = a(\phi_m, \phi_n) , \qquad (24)$$

the stiffness matrix \underline{A}_h can be written as the tridiagonal SPD matrix (e.g., in the case where N=5)

$$\underline{A}_{h} = \frac{1}{h} \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix} , \qquad (26)$$

while the mass matrix \underline{M}_h is given as

$$\underline{M}_{h} = \frac{h}{6} \begin{pmatrix} 4 & 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix} . \tag{27}$$

The algebraic eigenvalue problem (21) has N eigenvalues $(\lambda_h)_j$, j=1,...,N, with corresponding eigenvectors $(\underline{u}_h)_j$, j=1,...,N. In this particular one-dimensional case, the eigenvectors are the same as the continuous eigenfunctions $u_j(x)$ evaluated at the nodal points $x_i=ih$

$$(u_{hi})_j = u_j(x_i) = \sin(\pi j (ih)) \quad i = 1, ..., N, \quad j = 1, ..., N.$$
 (28)

Note that, in general, this results is *not* true. Also note that the eigenvectors are compatible with the homogeneous boundary conditions (i=0 and i=N+1). Operating with \underline{A}_h on the eigenvector $(\underline{u}_h)_j$, j=1,...,N, gives ¹

$$\frac{1}{h}[-\sin(\pi j (i-1)h) + 2\sin(\pi j ih) - \sin(\pi j (i+1)h)] = \\ \sin(\pi j ih) \cdot \frac{2}{h}[1 - \cos(\pi j h)] , i = 1, ..., N.$$
 (29)

Hence,

$$\lambda_j(\underline{A}_h) \equiv (\lambda_h)_j = \frac{2}{h} [1 - \cos(\pi j h)] , j = 1, ..., N.$$
 (30)

Note that $\lambda_j(\underline{A}_h)$ here denotes the eigenvalue corresponding to the eigenvalue problem

$$\underline{A}_h (\underline{u}_h)_j = (\lambda_h)_j (\underline{u}_h)_j , \qquad (31)$$

and not the generalized eigenvalue problem (21).

By a similar procedure, we can also show that

$$\lambda_j(\underline{M}_h) = \frac{h}{3}[2 + \cos(\pi j h)], j = 1, ..., N.$$
 (32)

where $\lambda_i(\underline{M}_h)$ denotes the eigenvalue corresponding to the eigenvalue problem

$$\underline{M}_h(\underline{u}_h)_i = (\lambda_h)_i(\underline{u}_h)_i . \tag{33}$$

We note that, in this particular case, $(\underline{u}_h)_j$, j=1,...,N are eigenvectors of both \underline{A}_h and \underline{M}_h ; in general, this will not be true.

¹Recall that $sin(\alpha - \beta) + sin(\alpha + \beta) = 2 sin \alpha cos \beta$

For the lowest eigenmodes, i.e., $jh \ll 1$ (or $j/N \ll 1$), we obtain

$$\lambda_j(\underline{A}_h) = \frac{2}{h} [1 - (1 - \pi^2 j^2 h^2 / 2 + ...)] \approx \pi^2 j^2 h$$
, (34)

while

$$\lambda_i(\underline{M}_h) \approx h$$
 . (35)

For large values of jh, $jh \sim \mathcal{O}(1)$, we obtain

$$\lambda_j(\underline{A}_h) \approx 4/h , \qquad (36)$$

$$\lambda_i(\underline{M}_h) \approx h/3$$
 (37)

It thus follows that the condition number of \underline{A}_h is

$$\kappa(\underline{A}_h) = \frac{\lambda_{\max}(\underline{A}_h)}{\lambda_{\min}(\underline{A}_h)} \approx \frac{4/h}{\pi^2 h} = \frac{4}{\pi^2} h^{-2} \sim \mathcal{O}(h^{-2})$$
 (38)

as advertised earlier.

Similarly, we obtain that the condition number of \underline{M}_h is

$$\kappa(\underline{M}_h) = \frac{\lambda_{\max}(\underline{M}_h)}{\lambda_{\min}(\underline{M}_h)} \approx \frac{h}{h/3} = 3 \sim \mathcal{O}(1) . \tag{39}$$

Finally, because \underline{A}_h and \underline{M}_h have the *same* set of eigenvectors $(\underline{u}_h)_j$, j=1,...,N in this particular one-dimensional case, we can easily find the eigenvalues of the generalized eigenvalue problem (21) as

$$(\lambda_h)_j = \lambda_j(\underline{M}_h^{-1}\underline{A}_h) = \frac{\lambda_j(\underline{A}_h)}{\lambda_j(\underline{M}_h)} = \frac{6}{h^2} \cdot \frac{(1 - \cos(\pi j h))}{(2 + \cos(\pi j h))} , j = 1, ..., N.$$
 (40)

For the lowest eigenmodes, $jh \ll 1$, we obtain

$$\lambda_j(\underline{M}_h^{-1}\underline{A}_h) \approx \pi^2 j^2 , \qquad (41)$$

while for the highest eigenmodes, $jh \sim \mathcal{O}(1)$, we obtain

$$\lambda_j(\underline{M}_h^{-1}\underline{A}_h) \approx 12/h^2 \approx 12 N^2 . \tag{42}$$

Since the eigenvalues for the continuous case (1) are

$$\lambda_j = \pi^2 j^2 \ , \ j = 1, 2, ..., \infty \,,$$
 (43)

the discrete eigenvalues $\lambda_j(\underline{M}_h^{-1}\underline{A}_h)$ agree very well for the low eigenmodes. However, the highest discrete eigenvalue is approximately $12 N^2$, while the corresponding continuous eigenvalue is $\pi^2 N^2 \approx 10 N^2$.

Figure 1: A comparison between the discrete eigenvalues (40) (\times) and the continuous eigenvalues (3) (\circ) in the case when N=20. Note that only the first N eigenvalues are plotted for the continuous case.

6 Remarks

- 1. Note that the result $\kappa(\underline{A}_h) \sim \mathcal{O}(h^{-2})$ is the relevant result when we want to estimate the number of iterations required in order to solve the system $\underline{A}_h \underline{u}_h = \underline{F}_h$ using the conjugate gradient method $(\mathcal{N}_{iter} \sim \mathcal{O}(\sqrt{\kappa(\underline{A}_h)}) \sim \mathcal{O}(h^{-1}))$.
- 2. The results $\kappa(\underline{A}_h) \sim \mathcal{O}(h^{-2})$ and $\kappa(\underline{M}_h) \sim \mathcal{O}(1)$ extend to the multi-dimensional case for linear elements (assuming the same discretization in each spatial direction).
- 3. The result for $\lambda_{max}(\underline{M}_h^{-1}\underline{A}_h)$ plays an important role when solving the unsteady heat equation using explicit time integration in combination with a finite element discretization is space. We will return to this case later.

7 Connection to physical applications

Consider a system consisting of a mass m attached to a spring of stiffness k. Assume that the point mass is in a position y = 0 at equilibrium; see Figure 2.

The governing equation for free, undamped vibrations about the equilibrium position follows from Newton's law of motion

$$m\ddot{y} + ky = 0 (44)$$

The solution will be of the form

$$y(t) \sim y_0 e^{i\omega_0 t} \tag{45}$$

with

$$\omega_0 = \sqrt{\frac{k}{m}} \ . \tag{46}$$

For a more complex system involving multiple masses and springs, the governing equation can be expressed as a system

$$\underline{M}\,\ddot{y} + \underline{A}\,y = \underline{0} \quad , \tag{47}$$

where \underline{M} is a matrix dependent upon the individual masses, and \underline{A} is a matrix dependent upon the spring stiffnesses. Again, we can assume that the solution will be of the form

$$\underline{y}(t) \sim \underline{y}_0 e^{i\omega_0 t} , \qquad (48)$$

implying that

$$-\omega_0^2 \underline{M} \underline{y}_0 + \underline{A} \underline{y}_0 = \underline{0} , \qquad (49)$$

or

$$\underline{A}\,\underline{y}_0 = \omega_0^2\,\underline{M}\,\underline{y}_0 \ . \tag{50}$$

This is an analogue to our discrete eigenvalue problem, with the eigenvalue representing the square of the eigenfrequency.

Note that, for our *discrete* approximation (12) to the continuous eigenvalue problem (1), we only expect the *lowest* eigenmodes (or eigenfunctions) and eigenvalues to be good approximations to the corresponding physical quantities. This is, indeed, the case.

Tigure missury. Saar

8 Exercises

- 1. For our one-dimensional sample problem, we found that \underline{A}_h and \underline{M}_h have the same set of eigenvectors. Show that, in this particular case, $\lambda_j(\underline{M}_h^{-1}\underline{A}_h) = \frac{\lambda_j(\underline{A}_h)}{\lambda_j(\underline{M}_h)}$, i.e., derive the results in (40).
- 2. For the lowest eigenmodes $(jh \ll 1)$, show that the discrete eigenvalues given in (40) have an error which is $\mathcal{O}(h^2)$ compared to the corresponding eigenvalues for the continuous case. Is the minimum discrete eigenvalue larger or smaller than the minimum eigenvalue for the continuous problem?
- 3. Let $\underline{M}_h \in \mathbb{R}^{N \times N}$ be the one-dimensional finite element mass matrix using linear elements. Consider solving the system $\underline{M}_h \, \underline{z} = \underline{r}$ using the conjugate gradient method. Estimate the number of iterations.
- 4. Prove (14) in the case when $\dim(X_h) = N$. Hint: Consider expanding $v \in X_h$ in terms of the eigenfunctions $(u_h)_j$, j = 1, ..., N.
- 5. Assume that the continuous eigenvalue problem (1) is discretized using a standard finite difference scheme on a uniform mesh with N internal nodes. What are the discrete eigenvalues in this case? Is the minimum discrete eigenvalue larger or smaller than the minimum eigenvalue for the continuous problem?
- 6. Prove (29) and (30).