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1 Strong form
Consider the one-dimensional eigenvalue problem
~Ugz =AU in Q=(0,1), u(0)=u(l)=0. (1)
The eigenfunctions
uiz) = sin(rja) (2)
and eigenvalues
A= mt? (3)

satisfy the eigenvalue problem (1) for j = 1,2,...., c0.
2 Weak form

The weak form of (1) is: Find u € X = H}(Q) and X € IR such that

1 1
/ uxvzdx:)\/ uvdr YwelX . 4)
0 0

We can also express this weak form as: Find (u, A) € X x IR such that

a{u,v) = Au,v) YvelX (5)
where
a(w,v) = /1 Welg AT (6)
0
(w,v) = /1wvdsc (7N
0

Note that a(w, v) and (w, v) are both symmetric, positive-definite bilinear forms.

3 Rayleigh quotient
From the weak formulation of the eigenvalue problem, it follows that

Yo e X = HHQ), /\:%)—>O (8)

since a(-,-) and (-, -) are SPD bilinear forms. In particular,

a{uj, us) .
Aj= 2L 50, §=1,2,..,00. 9
' ) )



Note that

with

a(v,v)
>
wo) = Amin > 0, (10)
. afv,v)
Amin = min 0.0) (11)

4 Discrete eigenvalue problem

Following the standard Galerkin procedure, we can express the discrete eigen-
value problem as: Find up € X C X = H}(Q) and Ap, € IR such that

alup,v) = M(up,v) Yo e Xy . (12)

The discrete eigenfunctions and eigenvalues are denoted as (uz); and (An)j,
respectively. If dim(Xx) = N, we immediately observe that

(An); =
In particular,
Vv € Xp,
Since
while

a(un)j, (un);)

we obtain the important result that

(s > 00 7 =121 (13)
0 < ()min < “(Sf)) < (O )mex - (14)
- .
in = mig 72 (16)
(Mmin 2 A - (17)

In other words, the minimum eigenvalue for the discrete problem is always
greater than or equal to the minimum eigenvalue for the continuous problem.



5 One-dimensional example

We consider here the numerical solution of (1) using linear finite elements. In
particular, we assume that we use K equal elements, each of length (mesh size)
h = 1/K. Our discrete space X}, can then be defined as

Xn = {veX=HyQ) |y, € P(Ty), k=1,.,K} (18)
= span{p1, P2, ..., dN} . (19)

As usual, we assume that we use a nodal basis for X, that is,
N
Yy € Xp, v(z) = Zvi o: (), (20)
i=1

where the basis coefficients v; = v(z;), 7 = 1,2,..,N. Note that K = N + 1,
implying that A = 1/(INV + 1). Also note that v(zo) = v(zny+1) = 0 due to the
homogenous Dirichlet boundary conditions.

Using the nodal basis, the discrete eigenvalue problem (12) can be expressed
as the following system of algebraic equations:

Ah_uh = Athll_h ) (21)
where
N
un(z) = uni di(x) (22)
=1
and
Uy = {Uthhz,----,UhN]T . (23)

Since the matrix elements are given as

(Ah)mn = a(¢m»¢n) 3 (24)
(Mh)mn = (¢ma¢n) B 1< m,n < N (25)

the stiffness matrix A; can be written as the tridiagonal SPD matrix (e.g., in
the case where N = 5)

2 -1 0 0 0
-1 o2 -1 0 0
A=3| 0 -1 2 -1 04, (26)
0 0 -1 2 -1
0 0 0 -1 2



while the mass matrix M, is given as

5
i

(27)

o
OO O =
OO =
O o= O
o e OO
== O OO

The algebraic eigenvalue problem (21) has N eigenvalues (An)j;, j = 1,..., N,
with corresponding eigenvectors (u,);, 7 = 1,..,N. In this particular one-
dimensional case, the eigenvectors are the same as the continuous eigenfunctions
uj(z) evaluated at the nodal points z; = ih

(uhi)j = uj(:):,) == sin(wj (’Lh)) 1= l, ..,N, ] = 1, ...,N. (28)

Note that, in general, this results is not true. Also note that the eigenvectors are
compatible with the homogeneous boundary conditions (i = 0 and i = N + 1).
Operating with 4, on the eigenvector (u);, 7 =1, ..., N, gives !

%[—sz’n(ﬂ 56— 1)h) + 2 sin(r j ih) — sin(rj (i + 1)h)] =
sin(wjih)-%{l—cos(wj ) ,i=1,..,N. (29)
Hence,
A(As) = W)y = 21— cosmjh)] ,j=1,... . (30)

Note that A;(A;) here denotes the eigenvalue corresponding to the eigenvalue
problem

Ap (un)j = (An); (wn); 81)

and not the generalized eigenvalue problem (21).
By a similar procedure, we can also show that

MNi(My) = -g—[2+cos(7rjh)] ,j=1,..,N. (32)

where A; (M) denotes the eigenvalue corresponding to the eigenvalue problem

M, (ug); = (An)j (wn); - (33)

We note that, in this particular case, (u);, j = 1,..., N are eigenvectors of both
A;, and M,,; in general, this will not be true.

*Recall that sin (o — B) + sin (o + 8) = 2sinacos B



For the lowest eigenmodes, i.e., jh < 1 (or j/N <« 1), we obtain
2 ) )
M4 = 211 = (1= 722K /2 + )] = r b

while
Aj(Mp) ~ b .

For large values of jh, jh ~ O(1), we obtain
N(My) ~ h/3.

It thus follows that the condition number of 4, is

= Amax(éh) 4/h - 4 -2 —2
=3 ay SR o)
as advertised earlier.

Similarly, we obtain that the condition number of M, is

)\max (Mh) ~ h

’@(Mh)szvm:

3~ 0O(1) .

Finally, because A, and M, have the same set of eigenvectors

(35)

(36)
37)

(38)

(39)

(up)j,J =

1,..., N in this particular one-dimensional case, we can easily find the eigenvalues

of the generalized eigenvalue problem (21) as

N(4n) _ 6 (1-cos(njh)

(An)j = X (ML Ay) = o = 5 ot = 1

N (M) h? (2+4cos(mjh)) '7
For the lowest eigenmodes, jh < 1, we obtain
XMy Ay) = 75
while for the highest eigenmodes, jh ~ O(1), we obtain
MN(M7PA) = 12/h? = 12 N?
Since the eigenvalues for the continuous case (1) are

No=7m252 j=1,2,..,00,

N, (40)

(41)

(42)

(43)

the discrete eigenvalues A\;(M;'A,) agree very well for the low eigenmodes.
However, the highest discrete eigenvalue is approximately 12 N2, while the cor-

responding continuous eigenvalue is 72 N? ~ 10 N2,
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Figure 1: A comparison between the discrete eigenvalues (40) (x) and the
continuous eigenvalues (3) (o) in the case when N = 20. Note that only the
first N eigenvalues are plotted for the continuous case.

6 Remarks

1. Note that the result K(A,) ~ O(h™2) is the relevant result when we want
to estimate the number of iterations required in order to solve the system
Apuy, = F}, using the conjugate gradient method (Nier ~ O(y/k(4})) ~
O(h™1)).

2. The results k(A4,) ~ O(h™%) and k(M) ~ O(1) extend to the multi-
dimensional case for linear elements (assuming the same discretization in
each spatial direction).

3. The result for Amqz (M ;1;411) plays an important role when solving the
unsteady heat equation using explicit time integration in combination with
a finite element discretization is space. We will return to this case later.



7 Connection to physical applications

Consider a system consisting of a mass m attached to a spring of stiffness k.
Assume that the point mass is in a position y = 0 at equilibrium; see Figure 2.

The governing equation for free, undamped vibrations about the equilibrium
position follows from Newton’s law of motion

my+ky=0. (44)

The solution will be of the form

y(t) ~ yo e ! (45)
with
k
=4/ — 4
wo m (46)

For a more complex system involving multiple masses and springs, the governing
equation can be expressed as a system

where M is a matrix dependent upon the individual masses, and A is a matrix
dependent upon the spring stiffnesses. Again, we can assume that the solution
will be of the form

y(t) ~y et (48)
implying that
~wp My +Ay, =0, (49)
or
Ay, =wiMy, . (50)

This is an analogue to our discrete eigenvalue problem, with the eigenvalue
representing the square of the eigenfrequency.

Note that, for our discrete approximation (12) to the continuous eigenvalue
problem (1), we only expect the lowest eigenmodes (or eigenfunctions) and eigen-
values to be good approximations to the corresponding physical quantities. This
is, indeed, the case.






Exercises

. For our one-dimensional sample problem, we found that A4, and M,
have the same set of eigenvectors. Show that, in this particular case,

N(MTTAL) = %’%ﬁ%, i.e., derive the results in (40).
. For the lowest eigenmodes (jh <« 1), show that the discrete eigenvalues
given in (40) have an error which is O(h?) compared to the corresponding
eigenvalues for the continuous case. Is the minimum discrete eigenvalue
larger or smaller than the minimum eigenvalue for the continuous prob-
lem? '

. Let M), € RV*" be the one-dimensional finite element, mass matrix using
linear elements. Consider solving the system M, z = r using the conjugate
gradient method. Estimate the number of iterations.

. Prove (14) in the case when dim(X}) = N. Hint: Consider expanding
v € X4 in terms of the eigenfunctions (uz);, j=1,...,N.

. Assume that the continuous eigenvalue problem (1) is discretized using
a standard finite difference scheme on a uniform mesh with N internal
nodes. What are the discrete eigenvalues in this case? Is the minimum
discrete eigenvalue larger or smaller than the minimum eigenvalue for the
continuous problem?

. Prove (29) and (30).
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