
Project I – Helmoltz equation in two dimensions

The deadline for this assignment is 26. October 2018 and counts towards
15% of the final grade. The delivery consists of a report answering all the
questions and presenting the results, together with a source code in MATLAB.
Working in pairs is possible but not compulsory.

1 Problem formulation

Let us consider the Helmoltz equation posed on Ω = (0, 1)2,

u(x)−∆u(x) = f(x), ∀ x = (x, y) ∈ Ω (1)

with source term f(x) = (2π2 + 1) cos(πx) sin(πy), and supplemented with
boundary conditions,

u(x) = 0 , x ∈ ΓD = {x ∈ ∂Ω : y ∈ {0, 1}}
∇u ·n(x) = 0 , x ∈ ΓN = {x ∈ ∂Ω : x ∈ {0, 1}} (2)

with n the outward normal to the boundary ∂Ω.

The goal of this assignment is to write an algorithm to compute approxi-
mate solutions to Problem (1)–(2) using linear Lagrange Finite Elements on a
triangular mesh Th.

(a) Verify that ũ : (x, y) 7→ cos(πx) sin(πy) is solution to (1)–(2).
(b) Derive a weak formulation of (1)–(2), specify the function spaces.
(c) Is the solution ũ unique?

2 Finite Element space

The construction of the approximation space based on Lagrange P1 Finite Ele-
ments is now considered.

(a) Give the definition of the Lagrange P1 reference element on the unit tri-
angle K̂ with vertices {v̂0 = (0, 0), v̂1 = (1, 0), v̂2 = (0, 1)}, and associated
local shape functions (ϕ̂0, ϕ̂1, ϕ̂2), then implement it
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2 TMA4220 – Numerical Solution of PDEs Using Finite Element Methods

(b) Write a simple test showing that shape functions (ϕ̂0, ϕ̂1, ϕ̂2) form a nodal
basis, and that for any x̂ ∈ K̂, ϕ̂0(x̂) + ϕ̂1(x̂) + ϕ̂2(x̂) = 1.

(c) Implement the affine mapping TK : K̂ → K and verify that the determi-
nant of the Jacobian JTK is positive for triangleK0 = {(1, 0), (3, 1), (3, 2)}.
Interpret this result.

(d) Implement the inverse of JTK and verify that the Finite Element obtained
by transporting the reference Finite Element (K̂, P̂, Σ̂) to K0 is equivalent
to (K̂, P̂, Σ̂).

(e) Formulate the Galerkin problem corresponding to the weak formulation
derived at the preceding section, in particular define the approximation
space carefully.

3 Numerical integration

Unless efficient exact evaluation is possible, computation of integrals is per-
formed using quadrature rules. Such approximations are expressed as the weighted
sum of integrand values over Nq quadrature points {ζq},

IK =

∫
K
ψ(x) dx ≈

Nq∑
q=1

ψ(ζq) ωq

with real coefficients {ωq} called quadrature weights. The order kq of a quadra-
ture rule is the polynomial degree of the integrand for which the evaluation is
exact. In particular, Gauss–Legendre quadratures on a real interval gathered in
Table 3 satisfy the relation kq = 2Nq−1. Quadrature rules can be defined using
other polynomials and considering higher dimensions in space. In the frame of
Finite Elements, contributions on the reference simplex K̂ can be written as

∫
K̂
ψ̂(x̂) dx̂ ≈

Nq∑
q=1

ψ̂(ζq) ω̂q

with q the index of the quadrature point. Therefore any contribution on cell
K ∈ Th is obtained directly by composition with the affine change of coordinates
TK , ∫

K
ψ(x) dx ≈ |det(JTK )|

Nq∑
q=1

ψ ◦TK(ζq) ω̂q

with JTK elementwise constant. If ψ involves derivatives, the change of variable
should take into account that (f ◦ g)′ = (f ′ ◦ g) · g′.

(a) Implement Gauss–Legendre quadratures from Table 3 and plot the ap-
proximation error for

I =

∫ 2

1
ex dx
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kq Nq {ζ̂q} {ω̂q}

1 1 ζ̄ |I|

3 2 ζ̄ ± |I|
√

3
6

1
2 |I|

5 3 ζ̄ ± |I|
√

15
10

5
18 |I|

ζ̄ 8
18 |I|

7 4 ζ̄ ± |I|
√

525+70
√

30
70

18−
√

30
36 |I|

ζ̄ ± |I|
√

525−70
√

30
70

18+
√

30
36 |I|

Table 3: Gauss–Legendre quadratures on the interval [a, b] with ζ̄ = (a+ b)/2,
and |I| = |b− a|

kq Nq {ζ̂q} {ω̂q}

1 1
(

1
3 ,

1
3 ,

1
3

)
|K|

2 3
(

1
2 ,

1
2 , 0
)

3
1
3 |K|

3 4
(

1
3 ,

1
3 ,

1
3

) −9
16 |K|(

1
5 ,

1
5 ,

3
5

)
3

25
48 |K|

4 6
(

1
3 ,

1
3 ,

1
3

)
9
40 |K|

(ai, ai, 1− 2ai)3
155±

√
15

1200 |K|

ai = 6±
√

15
21

Table 3: Gauss–Legendre quadratures on a triangleK in barycentric coordinates
{ζ̂q} = (λ0, λ1, λ2), with ( · , · , · )k the k distinct tuples obtained by permuta-
tion, [1] page 360.
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(b) Implement Gauss–Legendre quadratures from Table 3 and plot the ap-
proximation error for

I =

∫
K0

log(x+ y) dx

with K0 = {(1, 0), (3, 1), (3, 2)}.
(c) Discuss why the choice of quadrature is important for the evaluation of

Finite Element contributions. Which properties of the problem should be
considered for terms corresponding to the left-hand side and right-hand
side of the equation?

4 Assembly of the linear system

For each cell K ∈ Th, elementwise contributions for the Helmoltz equation are
under the form of a sum of two submatrices, corresponding to contributions of
the mass matrix

MK =

[∫
K
ϕj(x)ϕi(x) dx

]
ij

and of the stiffness matrix

KK =

[∫
K
∇ϕj(x̂)∇ϕi(x) dx

]
ij

with j indices of the global shape functions (solution space), and i indices of
the global basis functions (test space) with support on K. For any K ∈ Th
assembling the local equation consists of computing the contributions for indices
ĵ = 1, · · · , NP of the local shape functions (solution space), and î = 1, · · · , NP
indices of the local basis functions (test space) with support on K, NP the
dimension of the Finite Element. The passage from one to another is performed
with a mapping from (cell) local indices (̂i, ĵ) to (mesh) global indices (i, j).
The obtained submatrix and subvector are then added to the global matrix and
load vector.

(a) Detail the assembly of the local matrix and the local vector for anyK ∈ Th.
(b) Describe the assembly of the Dirichlet and Neumann boundary conditions.

5 Convergence analysis

(a) Implement the computation of the L2 error norm given by

‖u− uh‖L2 =

(∫
Ω
|u(x)− uh(x)|2 dx

) 1
2

Why should you be careful with the evaluation of the integral?
(b) Solve the problem for different mesh sizes hT = 1/M with M = 4, 8, 16

and plot the L2 error norm with respect to the dimension of the problem.
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6 Extension to an evolution problem

Let us consider the evolution problem,

∂tu(x, t)− ν∆u(x, t) = f(x, t), ∀ (x, t) ∈ Ω× (0, 1) (3)

with u(x, 0) = u0 given initial data, and ν diffusivity.

(a) Describe how you would modify the algorithm developed for the Hel-
moltz problem to solve this equation for a given discretization in time.
For example use the Backward Euler scheme. The function ũ(x, t) =
e−νt sin

(
x cos(θ) + y sin(θ)

)
can be used to verify the implementation for

the homogeneous equation (optional); take ν = 1 and θ = π/4 for instance.
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