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6 CONTENTS

Introduction

This document is a collection of short lecture notes written for the course “The
Finite Element Method” (SF2561), at KTH, Royal Institute of Technology dur-
ing Fall 2013, then updated for the course “Numerical Solution of Partial Dif-
ferential Equations Using Element Methods” (TMA4220) at NTNU, during Fall
2018. It is in not intended as a comprehensive and rigorous introduction to
Finite Element Methods but rather an attempt for providing a self-consistent
overview in direction to students in Engineering without any prior knowledge
of Numerical Analysis.

Content

The course goes through the basic theory of the Finite Element Method during
the first six lectures while the last three lectures are devoted to some applica-
tions.

1. Introduction to PDEs, weak solution, variational formulation.

2. Ritz method for the approximation of solutions to elliptic PDEs

3. Galerkin method and well-posedness.

4. Construction of Finite Element approximation spaces.

5. Polynomial approximation and error analysis.

6. Time dependent problems.

7. Mesh generation and adaptive control.

8. Stabilized finite element methods.

9. Mixed problems.

The intent is to introduce the practicals aspects of the methods without hid-
ing the mathematical issues but without necessarily exposing the details of the
proof. There are indeed two side of the Finite Element Method: the Engineering
approach and the Mathematical theory. Although any reasonable implementa-
tion of a Finite Element Method is likely to compute an approximate solution,
usually the real challenge is to understand the properties of the obtained solu-
tion, which can be summarized in four main questions:

1. Well-posedness: Is the solution to the approximate problem unique?

2. Consistency : Is the solution to the approximate problem close to the
continuous solution (or at least “sufficiently” in a sense to determine)?

3. Stability : Is the solution to the approximate problem stable with respect
to data and “well-behaved”?
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4. Maximum principle, Physical properties: Does the discrete solution repro-
duce features of the physical solution, like satisfying physical bounds or
energy/entropy inequalities?

Ultimately the goal of designing numerical scheme is to combine these properties
to ensure the convergence of the method to the unique solution of the continuous
problem (if hopefully it exists) defined by the mathematical model. In a way
the main message of the course is that studying the mathematical properties
of the continuous problem is a direction towards deriving discrete counterparts
(usually in terms of inequalities) and ensuring that numerical algorithms possess
good properties.

Answering these questions requires some knowledge of elements of numer-
ical analysis of PDEs which will be introduced throughout the document in a
didactic manner. Nonetheless addressing some technical details is left to more
serious and comprehensive works referenced in the bibliography.

Literature

At KTH the historical textbook used mainly for the exercises is Computational
Differential Equations [6] which covers many examples from Engineering but
is mainly limited to Galerkin method and in particular continuous Lagrange
elements.

The two essential books in the list are Theory and Practice of Finite Ele-
ments [4] and The Mathematical Theory of Finite Element Methods [2]. The
first work provides an extensive coverage of Finite Elements from a theoretical
standpoint (including non-conforming Galerkin, Petrov-Galerkin, Discontinuous
Galerkin) by expliciting the theoretical foundations and abstract framework in
the first Part, then studying applications in the second Part and finally ad-
dressing more concrete questions about the implementation of the methods in
a third Part. The Appendices are also quite valuable as they provide a toolset
of results to be used for the numerical analysis of PDEs. The second work is
written in a more theoretical fashion, providing to the Finite Element method
in the first six Chapters which is suitable for a student with a good background
in Mathematics. Section 2 about Ritz’s method is based on the lecture notes
[5] and Section 10.1 on the description of the Stokes problem in [7].

Two books listed in the bibliography are not concerned with Numerical Anal-
ysis but with the continuous setting. On the one hand, book Functional Anal-
ysis, Sobolev Spaces and Partial Differential Equations [3] is an excellent intro-
duction to Functional Analysis, but has a steep learning curve without a solid
background in Analysis. On the other hand, Mathematical Tools for the Study
of the Incompressible Navier–Stokes Equations and Related Models [1], while re-
taining all the difficulties of analysis, offers a really didactic approach of PDEs
for fluid problems in a clear and rigorous manner.





Chapter 1

Weak formulation of elliptic
Partial Differential Equations

1.1 Historical perspective

The physics of phenomena encountered in engineering applications is often mod-
elled under the form of a boundary and initial value problems. They consist of
relations describing the evolution of physical quantities involving partial deriva-
tives of physical quantities with respect to space and time, such relations are
called Partial Differential Equations (PDEs). Problems involving only varia-
tions in space on a domain Ω ⊂ Rd are called Boundary Value Problems (1.1) as
they involve the description of the considered physical quantities at the frontier
of the physical domain ∂Ω.∣∣∣∣∣∣∣∣∣

Find u : Rd → Rn such that:

Au(x) = f(x) , ∀ x ∈ Ω

+ Boundary conditions on ∂Ω

(1.1)

with A a differential operator, i.e. involving partial derivatives of u, like the
first derivatives with respect to each axis

∂

∂xi

for i = 1, · · · , d, or more generally

∂|α|

∂α1x1 · · · ∂αixi · · · ∂αdxd

given the multi-index α = (α1, · · · , αi, · · · , αd), and |α| the module of the multi-
index is the order of the derivative.

Equations describing the evolution in time of physical quantities required the
definition of an initial condition in time, and are therefore called Initial Value
Problems. They consist of the coupling of an Ordinary Differential Equation

9
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(ODE) in time, a Cauchy Problem (1.2), with a boundary value problem in
space. ∣∣∣∣∣∣∣∣∣

Find y : R→ Rn such that:

y′(t) = F (t, y(t)), ∀ t ∈ [0, T )

+ Intial condition at t = 0: y(t = 0) = y0

(1.2)

with F : R× Rn → Rn.

The term Finite Element Method denotes a family of approaches developed
to compute an approximate solution to boundary and initial value problems.

Example 1.1.1 (Partial Differential Equations). A few usual mathematical
models are listed below.

• Transfer of heat/mass by conduction/diffusion, “Fourier’s Law”:

−κ∆T = f

with κ constant conductivity/diffusivity, and for example T temperature.

• Unsteady heat equation:

∂T

∂t
− κ∆T = f

with κ thermal diffusivity, and T temperature.

• Transport of a passive scalar field:

∂c

∂t
+ β · ∇c = f

with β advective vector field, and for example c a concentration.

• Burgers equation in one dimension (Forsyth, 1906, and Burgers, 1948):

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0

with ν a viscosity, possibly zero in the inviscid case.

• Wave equation in one dimension (D’Alembert, 1747):

∂2u

∂t2
− c2∂

2u

∂x2
= 0

with c a celerity.

• Euler equations, inviscid and incompressible case (Euler, 1757):
∂u

∂t
+ (u ·∇)u+ ∇p = f

∇·u = 0

with ν a viscosity, possibly zero in the inviscid case.
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• Navier–Stokes equations, homogeneous, incompressible and isothermal case
(Navier, 1822, then 19th century):

∂u

∂t
+ (u ·∇)u−∇·

(
τ(u, p)

)
= f

∇·u = 0

with τ(u, p) = ν∇u− pI for a Newtonian fluid.

The study of equations involving derivatives of the unknown has led to re-
thinking the concept of derivation: from the idea of variation, then the study
of the Cauchy problem, finally to the generalization of the notion of deriva-
tive with the Theory of Distributions. The main motivation is the existence
of discontinuous solutions produced by classes of PDEs or irregular data, for
which the classical definition of a derivative is not suitable. The concept of
weak derivative introduced by L. Schwartz in his Theory of Distributions, was
used to seek solutions to Partial Differential Equations like general elliptic and
parabolic problems (J.-L. Lions) or Navier–Stokes (J. Leray). The idea is to
replace the pointwise approach of the classical (strong) derivative

lim
h→0

f(x+ h)− f(x)

h

which requires regularity (derivability, continuity) at any point in space and
time by the derivation in the distributional sense, i.e. by considering the action
of linear forms on smooth functions, such as

T : ϕ 7→
∫

Ω
fϕ

with ϕ a sufficiently regular function such that the integral is defined.

1.2 Weak solution to the Dirichlet problem

Let us consider the Poisson problem posed in a domain Ω, an open bounded sub-
set of Rd, d ≥ 1 supplemented with homogeneous Dirichlet boundary conditions:

−∆u(x) = f(x), ∀ x ∈ Ω (1.3a)

u(x) = 0, ∀ x ∈ ∂Ω (1.3b)

with f ∈ C0(Ω) and the Laplace operator,

∆ =

d∑
i=1

∂2

∂x2
i

(1.4)

thus involving second order partial derivatives of the unknown u with respect
to the space coordinates.

Definition 1.2.1 (Classical solution). A classical solution (or strong solution)
of Problem (1.3) is a function u ∈ C2(Ω) satisfying relations (1.3a) and (1.3b).
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Problem (1.3) can be reformulated so as to look for a solution in the distri-
butional sense by testing the equation against smooth functions. Reformulating
the problem amounts to relaxing the pointwise regularity (i.e. continuity) re-
quired to ensure the existence of the classical derivative to the (weaker) existence
of the distributional derivative which regularity is to be interpreted in term in
terms of Lebesgue spaces: the obtained problem is a weak formulation and a
solution to this problem (i.e. in the distributional sense) is called weak solu-
tion. Three properties of the weak formulation should be studied: firstly that
a classical solution is a weak solution, secondly that such a weak solution is
indeed a classical solution provided that it is regular enough, and thirdly that
the well-posedness of this reformulated problem, i.e. existence and uniqueness
of the solution, is ensured.

1.2.1 Formal passage from classical solution to weak solution

Let u ∈ C2(Ω) be a classical solution to (1.3) and let us test Equation (1.3a)
against any smooth function ϕ ∈ C∞c (Ω):

−
∫

Ω
∆u(x)ϕ(x) dx =

∫
Ω
f(x)ϕ(x) dx

Since u ∈ C2(Ω), ∆u is well defined. Integrating by parts, the left-hand side
reads:

−
∫

Ω
∆u(x)ϕ(x) dx = −

∫
∂Ω

∇u(x) ·nϕ(x) ds+

∫
Ω
∇u(x) ·∇ϕ(x) dx

For simplicity, we recall the one-dimensional case:

−
∫ 1

0

∂2u

∂x2
(x)ϕ(x)dx = −

[
∂u

∂x
(x)ϕ(x)

]1

0

+

∫ 1

0

∂u

∂x
(x)

∂ϕ

∂x
(x)dx

Since ϕ has compact support in Ω, it vanishes on the boundary ∂Ω, consequently
the boundary integral is zero, thus the distributional formulation reads∫

Ω
∇u(x) ·∇ϕ(x) dx =

∫
Ω
f(x)ϕ(x) dx , ∀ ϕ ∈ C∞c (Ω)

and we are led to look for a solution u belonging to a function space such that
the previous relation makes sense.

A weak formulation of Problem (1.3) consists in solving:∣∣∣∣∣∣∣
Find u ∈ H, given f ∈ V ′, such that:∫

Ω
∇u ·∇v dx =

∫
Ω
fv dx , ∀ v ∈ V

(1.5)

in which H and V are a function spaces yet to be defined, both satisfying
regularity constraints and for H boundary condition constraints. The choice of
the solution space H and the test space V is described Section 1.3.
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1.2.2 Formal passage from weak solution to classical solution

Provided that the weak solution to Problem (1.5) belongs to C2(Ω) then the
second derivatives exist in the classical sense. Consequently the integration by
parts can be performed the other way around and the weak solution is indeed
a classical solution.

1.2.3 About the boundary conditions

Boundary condition Expression on ∂Ω Property
Dirichlet u = uD “essential” boundary condition
Neumann ∇u · n = 0 “natural” boundary condition

Essential boundary conditions are embedded in the function space, while
natural boundary conditions appear in the weak formulation as linear forms.

1.3 Weak and variational formulations

1.3.1 Functional setting

Hilbert–Sobolev spaces Hs (Section C.4) are a natural choice to “measure” func-
tions involved in the weak formulations of PDEs as the existence of the integrals
relies on the fact that integrals of powers | · |p of u and weak derivatives Dαu
for some 1 ≤ p < +∞ exist:

Hs(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) , 1 ≤ α ≤ s

}
with the Lebesgue space of square integrable functions on Ω:

L2(Ω) =

{
u :

∫
Ω
|u(x)|2 dx < +∞

}
endowed with its natural scalar product

( u , v ) L2(Ω) =

∫
Ω
u v dx

Since Problem (1.5) involves first order derivatives according to relation,∫
Ω
∇u ·∇v dx =

∫
Ω
fv dx

then we should consider a solution in H1(Ω).

H1(Ω) =
{
u ∈ L2(Ω) : Du ∈ L2(Ω)

}
with the weak derivative Du i.e. a function of L2(Ω) which identifies with
the classical derivative (if it exists) “almost everywhere”, and endowed with the
norm,

‖ · ‖H1(Ω) = ( · , · )
1/2
H1(Ω)
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defined from the scalar product,

( u , v ) H1(Ω) =

∫
Ω
u v dx+

∫
Ω
∇u ·∇v dx

Moreover, the solution should satisfy the boundary condition of the strong
form of the PDE problem. According to Section 1.2.3 the homogeneous Dirichlet
condition is embedded in the function space of the solution: u vanishing on the
boundary ∂Ω yields that we should seek u in H1

0(Ω).

1.3.2 Determination of the spaces

We will now establish that any weak solution “lives” in H1
0(Ω) and that the

natural space for test functions is the same space.

Choice of test space

In order to give sense to the solution in a Hilbert–Sobolev space we need to
choose the test function ϕ itself in the same kind of space. Indeed C∞c (Ω) is
not equipped with a topology which allows us to work properly. If we chose
ϕ ∈ H1

0(Ω) then by definition, we can construct a sequence (ϕn)n∈N of functions
in C∞c (Ω) converging in H1

0(Ω) to ϕ, i.e.

‖ϕn − ϕ‖H1(Ω) → 0, as n→ +∞

For the sake of completeness, we show that we can pass to the limit in the
formulation, term by term for any partial derivative:∫

Ω
∂iu ∂iϕ

n →
∫

Ω
∂iu ∂iϕ

as ∂iϕn ⇀ Diϕ in L2(Ω), which denotes the weak convergence i.e. tested on
functions of the dual space (which, in case of L2(Ω), is L2(Ω) itself).∫

Ω
f ϕn →

∫
Ω
f ϕ

as ϕn → ϕ in L2(Ω). Consequently the weak formulation is satisfied if ϕ ∈
H1

0(Ω).

Choice of solution space

The determination of the function space is guided,

• firstly, by the regularity of the solution: if u is a classical solution then it
belongs to C2(Ω) which involves that u ∈ L2(Ω) and ∂iu ∈ L2(Ω), thus
u ∈ H1(Ω),

• secondly by the boundary conditions: the space should satisfy the Dirichlet
boundary condition on ∂Ω. This constraint is satisfied thanks to the
following trace theorem for the solution to the Dirichlet problem: since
Ker(γ) = H1

0(Ω), we conclude u ∈ H1
0(Ω).
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Lemma 1.3.1 (Trace Theorem). Let Ω be a bounded open subset of Rd with
piecewise C1 boundary, then there exists a linear application γ : H1(Ω) →
L2(∂Ω) continuous on H1(Ω) such that γ(u) = 0⇒ u ∈ Ker(γ).

The regularity of the solution itself depends on the nature of the differential
operators involved in the problem (e.g. up to which order should be derivatives
controlled?), but also on the data of the problem: regularity of the domain and
right-hand side.

The weak formulation of Problem (1.3) reads then:∣∣∣∣∣∣∣
Find u ∈ H1

0(Ω), such that:∫
Ω
∇u ·∇v dx =

∫
Ω
fv dx , ∀ v ∈ H1

0(Ω)
(1.7)

1.4 Abstract problem

The study of mathematical properties of PDE problems is usually performed on
a general formulation called abstract problem which reads in our case:∣∣∣∣∣∣

Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(1.8)

with a( · , · ) a continuous bilinear form on V × V and L( · ) a continuous linear
form on V .

Proposition 1.4.1 (Continuity). A bilinear form a( · , · ) is continuous on V ×
W if there exists a positive constant real number M such that

a(v, w) ≤M‖v‖V ‖w‖W , ∀ (v, w) ∈ V ×W

For example, in the previous section for Problem (1.7), the bilinear form
reads

a : V × V → R

(u, v) 7→
∫

Ω
∇u ·∇v dx

and the linear form,
L : V → R

v 7→
∫

Ω
f v dx

The continuity of these two forms comes directly from that they are respec-
tively the inner-product in H1

0(Ω), and the L2 inner-product with f ∈ L2(Ω):
the Cauchy–Schwarz inequality gives directly a continuous control of the image
of the forms by the norms of its arguments.
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Definition 1.4.2 (Topological dual space). The topological dual space V ′ of
a normed vector space V is the vector space of continuous linear forms on V
equipped with the norm:

‖f‖V ′ = sup
x∈V,x6=0

|f(x)|
‖x‖V

In the following chapters, we consider the case of elliptic PDEs, like the
Poisson problem, for which the bilinear form a( · , · ) is coercive.

Proposition 1.4.3 (Coercivity). A bilinear form is said coercive in V if there
exists a positive constant real number α such that for any v ∈ V

a(v, v) ≥ α‖v‖2V

This property is also know as V –ellipticity.

1.5 Well-posedness

In the usual sense, a problem is well-posed if it admits a unique solution which
is bounded in the V -norm by the data: forcing term, boundary conditions,
which are independent on the solution and appear at the right-hand side of
the equation. In this particular case of the Poisson problem the bilinear form
a( · , · ) is the natural scalar product in H1

0(Ω), thus it defines a norm in H1
0(Ω)

(but only a seminorm in H1(Ω) due to the lack of definiteness, not a norm !).

Theorem 1.5.1 (Riesz–Fréchet). Let H be a Hilbert space and H ′ its topological
dual, ∀ Φ ∈ H ′, there exists a unique representant u ∈ H such that for any
v ∈ H,

Φ(v) = ( u , v )H

and furthermore ‖u‖H = ‖Φ‖H′

This result ensures directly the existence and uniqueness of a weak solution
as soon as a( · , · ) is a scalar product and L is continuous for ‖ · ‖a. If the
bilinear form a( · , · ) is not symmetric then Theorem 1.5.1 (Riesz–Fréchet) does
not apply.

Theorem 1.5.2 (Lax–Milgram). Let H be a Hilbert space. Provided that a( · , · )
is a coercive continuous bilinear form on H×H and L( · ) is a continuous linear
form on H, Problem (1.8) admits a unique solution u ∈ H.

Now that we have derived a variational problem for which there exists a
unique solution with V infinite dimensional (i.e. for any point x ∈ Ω), we need
to construct an approximate problem which is also well-posed.
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1.6 Exercises

Exercises for this section cover some preliminary notions introduced for the weak
formulation of PDEs.

Exercise 1.6.1 (Based on Exercise 4 from [8]).
Answer the following questions.

(a) Discuss whether the set S =
{
v ∈ C∞c ((0, 1)) : v(1

2) = 1
}
is a vector space.

(b) For V = H1
0((0, 1)), show that L(v) =

∫ 1
0 xv dx defines a linear func-

tional. Recall the definition of the topological dual V ′ and show that L is
continuous for x ∈ V .

(c) For V ≡ R discuss whether ( u , v )V = |u||v| is an inner-product in V .
(d) Does |u|H1(Ω) = ‖∇u‖L2(Ω), Ω ∈ R2 define a norm in H1(Ω)? Explain why.
(e) Assess whether the function f(x) = x3/4 an element of the following

spaces: L2((0, 1)), H1((0, 1)), H2((0, 1)).
(f) For v = e−10x and Ω = (0, 1), is the relation |u|H1(Ω) = |u|H2(Ω) satisfied?

Exercise 1.6.2.
Let us consider the following problem posed on the domain Ω = (0, 1), with κ
a real coefficient, and f ∈ L2(Ω):∣∣∣∣∣∣∣

Find u ∈ H1
0(Ω) such that:∫

Ω
κ
∂u

∂x
v dx+

∫
Ω

∂u

∂x

∂v

∂x
dx+

∫
Ω
uv dx =

∫
Ω
fv dx, v ∈ H1

0(Ω)
(1.9)

(a) Formulate the strong problem corresponding to weak formulation (1.9).
(b) Discuss the existence and uniqueness of the solution to Problem (1.9).

Exercise 1.6.3.
Let us consider the biharmonic equation posed on the domain Ω = (0, 1):

∆2u(x) = f(x), ∀ x ∈ Ω (1.10a)

with f ∈ L2(Ω), and satisfying the boundary condition on ∂Ω

u(x) = u′(x) = 0, ∀ x ∈ ∂Ω (1.10b)

(a) For f ≡ 1 give a solution to Problem (1.10).
(b) Derive a weak formulation (WF) of Problem (1.10).
(c) Specify the solution space and the test space.
(d) Show that there exists a unique solution u to (WF) belonging to the chosen

solution space.

Exercise 1.6.4.
Let us consider the Helmholtz equation posed on the domain Ω = (0, 1), given
κ a real coefficient:

− u′′(x) + κu(x) = f(x), ∀ x ∈ Ω (1.11a)

with f ∈ L2(Ω),
u(x) = 0, ∀ x ∈ ∂Ω (1.11b)
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(a) Derive a weak formulation (WF) of Problem (1.11).
(b) Specify the solution and test spaces.
(c) What is the nature of the bilinear form for κ = 1?
(d) Prove that the problem is well-posed for κ = 0 and κ > 0.
(e) Comment on the difficulty posed by the case κ < 0.
(f) The boundary condition is now given by:

u(0)− u′(0) = 0, u′(1) = −1 (1.12)

Derive a weak formulation for the Problem (4.2a)–(1.12) and show that it
admits a unique solution. To prove the coercivity the following relation
can be used:

v(1) = v(x) +

∫ 1

x
v′(t) dt



Chapter 2

Ritz and Galerkin methods for
elliptic problems

In Section 1. we have reformulated the Dirichlet problem to seek weak solutions
and we showed its well-posedness. The problem being infinite dimensional, it is
not computable.

Question: Can we construct an approximation to Problem (1.3) which is
also well-posed?

2.1 Approximate problem

In the previous section we showed how a classical PDE problem such as Problem
(1.3) can be reformulated as a weak problem. The abstract problem for this class
of PDE reads then: ∣∣∣∣∣∣

Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(2.1)

with a( · , · ) a coercive continuous bilinear form on V ×V and L( · ) a continuous
linear form on V .

Since in the case of the Poisson problem the bilinear form is continuous,
coercive and symmetric, the well-posedness follows directly from Riesz–Fréchet
representation Theorem. If the bilinear form is still coercive but not symmetric
then we will see that the well-posedness is proven by the Lax–Milgram Theorem.

But for the moment, let us focus on the symmetric case: we want now to
construct an approximate solution un to the Problem (2.1) then prove that the
solution to the obtained approximate problem exists and is unique.

2.2 Ritz method for symmetric bilinear forms

2.2.1 Variational formulation and minimization problem

The idea behind the Ritz method is to replace the solution space V (which is
infinite dimensional) by a finite dimensional subspace Vn ⊂ V , dim(Vn) = n.

19
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Problem (2.2) is the approximate weak problem by the Ritz method:∣∣∣∣∣∣∣
Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) , ∀ vn ∈ Vn
(2.2)

with a( · , · ) a coercive symmetric continuous bilinear form on V × V and L( · )
a continuous linear form on V .

Provided that the bilinear form is symmetric, Problem (2.3) is the equivalent
approximate variational problem under minimization form:∣∣∣∣∣∣∣∣∣∣

Find un ∈ Vn, Vn ⊂ V , such that:

J(un) ≤ J(vn) ,∀ vn ∈ Vn

with J(vn) =
1

2
a(vn, vn)− L(vn)

(2.3)

Proposition 2.2.1 (Equivalence of weak and variational formulations). Prob-
lem 2.2 and 2.3 are equivalent.

Before moving to the well-posedness of the approximate variational problem
some definitions are introduced to characterize the solution of minimization
problems, then the equivalence of formulations for the Poisson problem with
homogeneous Dirichlet boundary conditions in one dimension of space is given
as example.

Definition 2.2.2 (Directional derivative). Let V be a Hilbert space, for any
u ∈ V the relation:

J ′(u;w) = lim
ε→0

1

ε

(
J(u+ εw)− J(u)

)
(2.4)

defines J ′(·; ·) : V × V → R derivative of the functional J at u in the direction
w.

Definition 2.2.3 (Fréchet derivative). Let V be a Hilbert space, J is Fréchet-
derivable at u if:

J(u+ v) = J(u) + Lu(v) + ε(v)‖v‖V (2.5)

with Lu a continuous linear form on V and ε(v)→ 0 as v → 0.

Proposition 2.2.4 (Optimality conditions). Let V be a Hilbert space and J a
twice Fréchet-derivable functional, u0 ∈ V is solution to

inf
v∈V

J(v) (2.6)

if the following conditions are satisfied:

1. J ′(u0) = 0 (Euler condition).
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2. ( J ′′(u)w , w ) ≥ 0 (Legendre condition).

Both conditions can be interpreted in terms of the simpler case of real func-
tions: the first one requires that the first derivative cancels so that u0 is an
extremum, while the second condition is a convexity argument. Moreover, a suf-
ficient condition is given by ( J ′′(ũ)w , w ) ≥ 0 for any ũ in a neighbourhood of u0

(strong Legendre condition). The coercivity of the bilinear form a(·, ·) is an even
stronger condition equivalent to: ∃α > 0 such that ( J ′′(ũ)w , w ) ≥ α(w,w).

Example 2.2.5. Equivalence of weak and variational formulations for the Dirich-
let problem posed on Ω = (0, 1). Let us derive the expression of J ′(u;w) defined
by (2.4) given ε > 0 and w ∈ V .

First let us verify that if u solves the minimization problem then it solves
the corresponding weak problem.

J(u+ εw) =
1

2

∫
Ω

[
(u+ εw)′

]2
dx−

∫
Ω
f(u+ εw) dx

=
1

2

∫
Ω

[
(u′)2 + 2εu′w′ + ε2(v′)2

]
dx−

∫
Ω
fu dx− ε

∫
Ω
fw dx

= J(u) + ε

[∫
Ω
u′w′ dx−

∫
Ω
fw dx

]
+

1

2
ε2

∫
Ω

(w′)2 dx

Writing the derivative gives,

lim
ε→0

1

ε

(
J(u+ εw)− J(u)

)
= lim

ε→0

[∫
Ω
u′w′ dx−

∫
Ω
fw dx+

1

2
ε|w|H1

0

]
so that the Euler condition holds if for any w ∈ V = H1

0(Ω)

J ′(u;w) =

∫
Ω
u′w′ dx−

∫
Ω
fw dx = 0

In this case the functional J is Fréchet-derivable as Lu is linear.

Secondly, the other way around considering that the weak formulation holds
for the test function εw ∈ V then in the relation

J(u+ εw) = J(u) + ε

[∫
Ω
u′w′ dx−

∫
Ω
fw dx

]
+

1

2
ε2

∫
Ω

(w′)2 dx

the second term of the right-hand side cancels, and the third term is non-
negative, then

J(u+ εw) ≥ J(u)

so that u is solution to the minimization problem.

The same result holds for the continuous problem in V and the approxima-
tion in Vn since only requirement is to work in a Hilbert space. Actually the
following result for the Dirichlet problem is due to Stampacchia which charac-
terizes the solution to the weak problem in term of minimization.
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Theorem 2.2.6 (Stampacchia). Let a(·, ·) be a bilinear coercive continuous
form on H a Hilbert space, and K be a convex closed non-empty subset of H.
Given φ ∈ H ′, ∃!u ∈ K such that

a( u , v − u ) ≥ 〈 φ , v − u 〉H′,H , ∀ v ∈ K

and if a is symmetric then

u = argmin
v∈K

{
1

2
a( v , v )− 〈 φ , v 〉H′,H

}
The solution can be seen as satisfying a minimization of energy, also called

Dirichlet principle.

2.2.2 Well-posedness

Theorem 2.2.7 (Well-posedness). Let V be a Hilbert space and Vn a finite di-
mensional subspace of V , dim(Vn) = n, Problem (2.2) admits a unique solution
un.

Proof. Given that the weak formulation differs only by introducing finite di-
mensional subspaces the proof could conclude directly with the Lax–Milgram
Theorem. Instead we show that there exists a unique solution to the equiv-
alent minimization problem (2.3) by explicitly constructing an approximation
un ∈ Vn decomposed uniquely on a basis (ϕ1, · · · , ϕn) of Vn:

un =
n∑
j=1

uj ϕj

In practice this basis is not any basis but the one constructed to define the
approximation space Vn: to one chosen approximation space will correspond one
carefully constructed basis. In so doing, the constructive approach paves the
way to the Finite Element Method and is thus chosen as a prequel to establishing
the Galerkin method.

Writing the minimization functional for un reads:

J(un) =
1

2
a(un, un)− L(un)

=
1

2
a(

n∑
j=1

ujϕj ,
n∑
i=1

uiϕi)− L(
n∑
j=1

uiϕi)

=
1

2

n∑
i=1

n∑
j=1

a(ujϕj , uiϕi)−
n∑
j=1

L(uiϕi)

=
1

2

n∑
i=1

n∑
j=1

ujuia(ϕj , ϕi)−
n∑
j=1

uiL(ϕi)

Collecting the entries by index i, the functional can be rewritten under
algebraic form:

J(u) =
1

2
u

T
Au− u

T
b
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where u is the vector of algebraic unknowns also calleddegrees of freedom

u
T

= (u1, . . . , un)

and A, b are respectively the stiffness matrix and the load vector:

Aij = a(ϕj , ϕi), bi = L(ϕi)

Proposition 2.2.8 (Convexity of a quadratic form).

J(u) = u
T

Ku− u
T

G + F

is a strictly convex quadratic functional iff K symmetric positive definite non-
singular.

As a consequence to Proposition 2.2.8 J is a strictly convex quadratic form,
then there exists a unique u ∈ Rn : J(u) ≤ J(v),∀ v ∈ Rn, which in turns
proves the existence and uniqueness of un ∈ Vn.

The minimum is achieved with u satisfying Au = b which corresponds to
the Euler condition J ′(un) = 0

The general setting for Galerkin methods will be to construct approximate
solutions of the form:

un =
n∑
j=1

ujϕj (2.8)

where {uj}1≤j≤n is a family of real numbers and B = (ϕ1, . . . , ϕn) a basis of Vn.
Since Vn is finite dimensional, there exist a unique decomposition (2.8) on the
basis. This basis can be chosen in a way that seems natural so that in practice
we will construct one basis for a given type of space Vn and which will define the
approximation properties (the basis itself is not unique but we need to choose
one that possesses good properties, in a similar fashion that it is more suitable
to work with the canonical basis in Euclidean spaces).

2.2.3 Convergence

The question in this section is: considering a sequence of discrete solutions
(un)n∈N, with each un belonging to Vn, can we prove that un → u in V as n→
∞? The ingredients are similar to the Lax principle: stability and consistency
implies convergence.

Lemma 2.2.9 (Estimate in the energy norm). Let V be a Hilbert space and Vn
a finite dimensional subspace of V . We denote by u ∈ V , un ∈ Vn respectively
the solution to Problem (2.1) and the solution to approximate Problem (2.2).
Let us define the energy norm ‖ · ‖a = a( · , · )1/2, then the following inequality
holds:

‖u− un‖a ≤ ‖u− vn‖a , ∀ vn ∈ Vn
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Proof. Using the coercivity and the continuity of the bilinear form, we have:

α‖u‖2V ≤ ‖u‖2a ≤M‖u‖2V

then ‖u‖a is norm equivalent to ‖u‖V , thus (V, ‖ · ‖a) is a Hilbert space.

a(u− PVn u, vn) = 0 ,∀ vn ∈ Vn

by definition of PVn as the orthogonal projection of u onto Vn with respect to
the scalar product defined by the bilinear form a.

‖u− un‖2a = a(u− un, u− vn) + a(u− un, vn − un) , ∀ vn ∈ Vn

Since the second term of the right-hand side cancels due to the consistency of
the approximation, we deduce un = PVn u, then un minimizes the distance from
u to Vn:

‖u− un‖2a ≤ ‖u− vn‖2a , ∀ vn ∈ Vn

which means that the error estimate is optimal in the energy norm.

Lemma 2.2.10 (Céa’s Lemma). Let V be a Hilbert space and Vn a finite dimen-
sional subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to
Problem (2.1) and the solution to approximate Problem (2.2) , then the following
inequality holds:

‖u− un‖V ≤
√
M

α
‖u− vn‖V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.

Proof. Using the coercivity and continuity of the bilinear form, we bound the
left-hand side of the estimate (2.2.9) from below and its right-hand side from
above:

α‖u− un‖2V ≤M‖u− vn‖2V ∀ vn ∈ Vn

Consequently:

‖u− un‖V ≤
√
M

α
‖u− vn‖V , ∀ vn ∈ Vn

Lemma (2.2.10) gives a control on the discretization error en = u−un which
is quasi-optimal in the V -norm (i.e. bound multiplied by a constant).

Lemma 2.2.11 (Stability). Any solution un ∈ Vn to Problem (2.2) satisfies:

‖un‖V ≤
‖L‖V ′
α
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Proof. Direct using the coercivity and the dual norm. First, the inequality

α‖un‖2V ≤ a(un, un) = L(un)

holds for some α > 0, and secondly by definition of the dual norm,

‖L‖V ′ = sup
v∈V,v 6=0

L(v)

‖v‖V

so that
α‖un‖V ≤ ‖L‖V ′

2.2.4 Method

Algorithm 2.2.12 (Ritz method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . , ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b as a minimization problem

2.3 Galerkin method

2.3.1 Formulation

We use a similar approach as for the Ritz method, except that the abstract
problem does not require the symmetry of the bilinear form. Therefore we
cannot endow V with a norm defined from the scalar product based on a( · , · ).

Problem (2.9) is the approximate weak problem by the Galerkin method:∣∣∣∣∣∣∣
Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) ,∀ vn ∈ Vn
(2.9)

with a( · , · ) a coercive continuous bilinear form on V ×V and L( · ) a continuous
linear form on V .

2.3.2 Convergence

The following property is merely a consequence of the consistency, as the con-
tinuous solution u is solution to the discrete problem (i.e. the bilinear form
is the “same”), but it is quite useful to derive error estimates. Consequently,
whenever needed we will refer to the following proposition:



26 CHAPTER 2. RITZ AND GALERKIN FOR ELLIPTIC PROBLEMS

Proposition 2.3.1 (Galerkin orthogonality). Let u ∈ V , un ∈ Vn respectively
the solution to Problem (2.1) and the solution to approximate Problem (2.9),
then:

a( u− un, vn ) = 0 , ∀ vn ∈ Vn
Proof. Direct consequence of the consistency of the method. The approximate
problem

a( un, vn ) = L(vn) , ∀ vn ∈ Vn (2.10)
is obtained by replacing V by a finite dimensional space Vn but the relation

a( u, v ) = L(v) , ∀ v ∈ V (2.11)

from the weak formulation is otherwise the same: a(·, ·) and L(·) are unchanged.
Since Vn ⊂ V , it is possible to choose v ∈ Vn in Equation (2.11), then

a( un, vn ) = a( u, vn ) , ∀ vn ∈ Vn (2.12)

which gives directly the orthogonality property.

Lemma 2.3.2 (Consistency). Let V be a Hilbert space and Vn a finite dimen-
sional subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to
Problem (2.1) and the solution to approximate Problem (2.9), then the following
inequality holds:

‖u− un‖V ≤
M

α
‖u− vn‖V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.

Proof. Using the coercivity:

α‖u− un‖2V ≤ a(u− un, u− un)

≤ a(u− un, u− vn) + a(u− un, vn − un)︸ ︷︷ ︸
0

≤ a(u− un, u− vn)

≤ M‖u− un‖V ‖u− vn‖V

‖u− un‖V ≤ M

α
‖u− vn‖V

The only difference with the symmetric case is that the constant is squared
due to the loss of the symmetry.

2.3.3 Method

Algorithm 2.3.3 (Galerkin method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . , ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b
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2.4 Boundary conditions
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2.5 Exercises

Exercise 2.5.1.
Given an abstract weak problem posed in a Hilbert space V :∣∣∣∣∣∣∣

Find u ∈ V , V , such that:

a(u, v) = L(v) ,∀ v ∈ V

and a minimization problem∣∣∣∣∣∣∣∣∣∣
Find u ∈ V , V , such that:

J(u) ≤ J(v) ,∀ v ∈ V

with J(v) =
1

2
a(v, v)− L(v)

(a) Show the equivalence of the formulations when a is bilinear symmetric
positive definite and L linear.

(b) Show that if V = Rn the minimization problem can be recast into a
strictly convex quadratic form J(u) = 1

2u
T

Au − u
T
b and the unique

solution satisfies Au = b.

Exercise 2.5.2.
Let us consider the Poisson problem posed on the domain Ω = (0, 1):

− u′′(x) = f(x), ∀ x ∈ Ω (2.13a)

with f ∈ L2(Ω), and satisfying the boundary condition on ∂Ω

u(x) = 0, ∀ x ∈ ∂Ω (2.13b)

(a) For f ≡ 1 give a solution to Problem (2.13).
(b) Find the weak formulation (WF) of Problem (2.13) and specify the func-

tion spaces.
(c) Is this problem well-posed?
(d) Justify that it is possible to reformulate this problem into a minimization

problem?
(e) Derive the minimization functional J(u).
(f) Let w1 = a1 sin(πx). Find the value of the amplitude a1 minimizes J(w1).

How does a1 compare with the maximum of the exact solution u?
(g) Show that J(w1) > J(u) and interpret.
(h) Let φi = sin

(
(2i − 1)πx

)
, i ∈ N. Verify that these function are infinitely

differentiable and satisfy φi(0) = φi(1) = 0. Compute coefficients

aij =

∫ 1

0
φ′i(x)φ′j(x) dx , bi =

∫ 1

0
f(x)φi(x) dx

(i) Given a finite dimensional space Vn = span{φi}1≤i≤n, express the linear
system obtained by the Galerkin method and give the solution.



Chapter 3

Finite Element spaces

In the previous lectures we have studied the properties of coercive problems in
an abstract setting and described Ritz and Galerkin methods for the approx-
imation of the solution to a PDE, respectively in the case of symmetric and
non-symmetric bilinear forms.

The abstract setting reads:∣∣∣∣∣∣
Find uh ∈ Vh ⊂ H such that:

a(uh, vh) = L(vh) , ∀ vh ∈ Vh

such that:

• Vh is a finite dimensional approximation space characterized by a dis-
cretization parameter h,

• a( · , · ) is a continuous bilinear form on Vh × Vh, coercive w.r.t ‖ · ‖V ,

• L( · ) is a continuous linear form.

Under these assumptions existence and uniqueness of a solution to the ap-
proximate problem holds owing to the Lax–Milgram Theorem and uh is called
discrete solution. Provided this abstract framework which allows us to seek ap-
proximate solutions to PDEs, we need now to define the discrete space Vh and
construct a basis (ϕ1, · · · , ϕNVh

) of Vh, NVh = dim(Vh), on which the discrete
solution is decomposed as

uh =

NVh∑
j=1

uj ϕj

with {uj} a family of NVh real numbers called global degrees of freedom and
{ϕj} a family of NVh elements of Vh called global shape functions.

Previously no assumption was made on the finite dimensional space Vn aside
from that Vn ⊂ V . The change of notation to Vh is to reflect that the discrete
space Vh will be characterized more carefully as an approximation space by
constructing the shape functions and by defining the degrees of freedom.

To construct the Finite Element space Vh, three ingredients are introduced:

29
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1. An admissible mesh Th generated by a tessellation of domain Ω.

2. A reference Finite Element (K̂, P̂, Σ̂) to construct a basis of Vh and define
the meaning of uj .

3. A mapping that generates a Finite Element (K,P,Σ) for any cell in the
mesh from the reference element (K̂, P̂, Σ̂).

As a preliminary step the approximation of the Poisson problem in one di-
mension by linear Lagrange Finite Elements is described to give an overview of
the methodology without hitting the technical difficulties. Concepts and nota-
tions for the discretization of the physical domain are then introduced. Provided
that all the requirements are identified, a framework for all the Finite Element
methods is introduced by stating the definition of a Finite Element. Finally, the
generation of the Finite Element space from a reference Finite Element will be
described. Some examples of Finite Element spaces are listed at the end of the
chapter.

3.1 A preliminary example in one dimension of space

For the sake of completeness, steps performed to derive a Galerkin method for
the Poisson Problem 1.3 on Ω = (0, 1) are sketched below to recapitulate the
methodology.

3.1.1 Weak formulation

A solution is sought in the distributional sense by testing the equation against
smooth functions,

−
∫

Ω
u′′(x)v(x) dx =

∫
Ω
f(x)v(x) dx , ∀ v ∈ C∞c (Ω)

then reporting derivatives on the test functions using the integration by part

−
∫

Ω
u′′(x)v(x) dx = − [u′(x)v(x)]10︸ ︷︷ ︸

=0

+

∫
Ω
u′(x)v′(x) dx

the weak formulation consists of finding u ∈ V such that∫
Ω
u′(x)v′(x) dx =

∫
Ω
f(x)v(x) dx , ∀ v ∈ V

given f ∈ L2(Ω). The choice of solution space and test space is guided by
the equation and the data: in this case V = H1

0(Ω) since v and v′ should
be controlled in L2(Ω), and homogeneous Dirichlet boundary conditions are
imposed.
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3.1.2 Galerkin method

The approximate problem by a Galerkin method consists of seeking a discrete
solution uh in a finite dimensional space Vh ∈ V , such that∫

Ω
uh
′(x)v′(x) dx =

∫
Ω
f(x)v(x) dx , ∀ v ∈ Vh

and given a basis {ϕj} of Vh any function w ∈ Vh can be written as

wh =

NVh∑
j=1

wj︸︷︷︸
∈R

ϕj

with NVh = dimVh, and moreover

w′h =

NVh∑
j=1

wj︸︷︷︸
∈R

ϕ′j

by simple application of the derivation on the linear combination. Bounds of
the sum will be omitted to simplify the notation,

NVh∑
j=1

∼
∑
j

when there is no possible confusion.

Inserting the Galerkin decomposition in the weak formulation and using the
commutativity of the derivation with the linear combinations,∫

Ω

(∑
j

uj ϕ
′
j(x)

)(∑
i

vi ϕ
′
i(x)

)
dx =

∫
Ω
f(x)

(∑
i

vi ϕi(x)
)

dx

and the integration can also commute with the linear combinations,∑
j

∑
i

ujvi

∫
Ω
ϕ′j(x)ϕ′i(x) dx =

∑
i

vi

∫
Ω
f(x)ϕi(x) dx

so that up to some cosmetic reordering, for any v ∈ V∑
i

∑
j

vi

∫
Ω
ϕ′i(x)ϕ′j(x) dxuj =

∑
i

vi

∫
Ω
f(x)ϕi(x) dx

the relation to the linear system of algebraic equations becomes evident,

v
T

A u = v
T
b

for any v = [vi] ∈ RNVh , with

A =

[∫
Ω
ϕ′j(x)ϕ′i(x) dx

]
ij

, b =

[∫
Ω
f(x)ϕi(x) dx

]
i

and the discrete solution is represented by the solution vector u = [uj ] ∈ RNVh .
Computing contributions Aij and bi is possible as soon as the basis {ϕ}j is
constructed explicitly.
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Remark 3.1.1. The choice of indices i and j in the previous expressions follows
the usual convention for row and column indices. The matrix A represents a
linear application from the solution space H to the trial space V : therefore the
solution space is the column space, while the trial space is the row space. In
the case of Galerkin approximations where H = V – and even more when the
bilinear form is symmetric – it is tempting to choose the indices arbitrarily, but
for the sake of consistency following the convention is recommended.

3.1.3 Construction of the discrete space

A discretization of the computational domain Ω̄ = [0, 1] is constructed by par-
titioning the interval into disjoints subintervals Ki = [xi, xi+1], 1 ≤ i ≤ NK .

Ω̄ =

NK⋃
i=1

Ki , K̊i ∩ K̊j = ∅

The family of cells {Ki} defines a mesh noted Th. A partition of [0, 1] into NK

subintervals [xi, xi+1] corresponds to a family of NK + 1 points {xi} which are
the vertices of the mesh Th.

In this example the approximation space is constructed with piecewise linear
Lagrange polynomials. The chosen discrete space is

Vh = {v ∈ C0(Ω̄) ∩H1
0(Ω) : ∀ K ∈ Th, v|K ∈ P1(K)} (3.1)

which consists of functions continuous over Ω̄ that are linear on each cell K,
and Vh ⊂ V so that the approximation is H1

0–conformal. A continuous piecewise
linear function vh ∈ Vh is the linear interpolate of v ∈ V on Th if vh = IVh with
the interpolation operator

IVh : V → Vh

v 7→
NVh∑
i=1

v(ξi)ϕi

(3.2)

such that NVh = dimVh and {ξi} is a family of NVh distinct nodes. In this
particular case of a linear interpolation NVh = NK + 1 and the family {ξi} is
identified with the vertices {xi}.

The construction of the basis {ϕj} of Vh should produce a linear system that
can be solved easily so the matrix should be as sparse as possible. Given the
expression of the contributions Aij the requirement is that functions ϕj overlap
as little as possible with each other: the support of ϕj should be reduced so
that contributions are non-zero only for neighbouring ϕi functions; this choice
is consistent with the locality of differential operators.

For any xi the shape function is defined as

ϕi(x) =


xi+1 − x
xi+1 − xi

= 1− x− xi
xi+1 − xi

, xi−1 ≤ x ≤ xi
x− xi
xi+1 − xi

, xi ≤ x ≤ xi+1

0 otherwise
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0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

v ∈ V

IVh v ∈ Vh

Figure 3.1: The function v(x) = 0.8 sin(2πx) − 0.32 sin(4πx) and its linear
interpolate IVh v with 6 equidistributed nodes.

0 xi−2 xi−1 xi xi+1 xi+2 1

1
ϕi−1 ϕi ϕi+1

Figure 3.2: Shape functions for Lagrange P1 on a unit interval discretized into
subintervals Ki = [xi, xi+1].

so that the support of constructed functions ϕi overlaps only with ϕi−1 and
ϕi+1, and the expression of all the functions can be obtained from one another
by an affine transformation; in the case of a uniform grid, |xi+1−xi| = h, shape
functions are obtained simply by translation. Therefore it would be convenient
to define shape functions on a reference interval, then apply an affine transfor-
mation to generate any ϕi. Shape functions are considered on a reference cell
K̂ which is the unit interval, then transported to any subinterval Ki using the
geometric transformation from K̂ to K.

In the reference cell K̂ = [0, 1] shape functions depicted in Figure 3.1.3 have
expressions {

ϕ̂0(x̂) = 1− x̂
ϕ̂1(x̂) = x̂
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0 1

1
ϕ̂0 ϕ̂1

Figure 3.3: Shape functions for Lagrange P1 on the interval K̂ = [0, 1].

and the affine mapping TK mapping K̂ to K in one dimension is given by
TK : x̂ 7→ b + ax̂, for some a, b ∈ R. The affine mapping to any subinterval Ki

is given by the change of coordinates

TK : x̂ ∈ K̂ 7→ x = xi + (xi+1 − xi)x̂ ∈ Ki

which is consistent with the definition of the global shape functions and reference
shape functions, since ϕ̂0(x̂) = 1− x̂

ϕi(x) =
xi+1 − x
xi+1 − xi

= 1− x− xi
xi+1 − xi

 ϕ̂1(x̂) = x̂

ϕi+1(x) =
x− xi
xi+1 − xi

so that x̂ = (x− xi)(xi+1 − xi)−1 as expected.

Remark 3.1.2 (Link to higher dimensions of space). The affine mapping in
Rd is given a relation of the type TK : x̂ 7→ bK + BKx̂, with bK ∈ Rd and
BK ∈ Rd×d. The matrix BK is the Jacobian of TK , noted JTK . In one dimension
of space JTK contains only one entry ∂TK/∂x̂ = (xi+1−xi) = |K|, and its inverse
J−1
TK

is obviously (xi+1 − xi)−1 = |K|−1.

3.1.4 Transport of Finite Element contributions

In the case of linear Lagrange elements the transport of Finite Element contri-
butions corresponds to the change of coordinates TK . The change of variable
x = TK(x̂) is sketched for the mass matrix and the stiffness matrix, given a cell
K = [xi+1 − xi].

Firstly, let us consider contributions to the mass matrix M,

Mij =

∫
K
ϕj(x)ϕi(x) dx
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which can be rewritten, given that x = TK(x̂ and dx = (xi+1 − xi)) dx̂,

Mij =

∫
K̂
ϕj(TK(x̂))ϕi(TK(x̂))(xi+1 − xi) dx̂

Since ϕi ◦ TK = ϕ̂i and (xi+1 − xi) = |K|, then

Mij = |K|
∫
K̂
ϕ̂j(x̂)ϕ̂i(x̂) dx̂

so that contributions for K ∈ Th to the mass matrix can obtained by a scaling
of the contribution on K̂.

Secondly, let us consider contributions to the stiffness matrix K,

Kij =

∫
K
∂xϕj(x) ∂xϕi(x) dx

which can be rewritten using the chain rule for the derivation of ϕi = ϕ̂i ◦ T−1
K ,

formally ∂xϕi = ∂x̂ϕ̂i ∂xT
−1
K with ∂xT−1

K = |K|−1

Kij =

∫
K̂

1

|K|
∂x̂ϕ̂j(x̂)

1

|K|
∂x̂ϕ̂i(x̂)|K| dx̂

therefore,

Kij =
1

|K|

∫
K̂
ϕ̂j(x̂)ϕ̂i(x̂) dx̂

so that contributions for K ∈ Th to the stiffness matrix can also obtained by a
scaling of the contribution on K̂.

3.1.5 Generalization of the methodology

The example of linear Lagrange in one dimension provides a good overview of
the methodology for constructing discrete spaces using Finite Elements. The
steps can be summarized as:

1. Choose a function space suggested by the weak formulation.

2. Discretize the computational domain into a mesh.

3. Choose a polynomial approximation space.

4. Define an interpolation operator.

5. Provide a definition of a reference element.

6. Construct a mapping to generate the discrete space.

The generalization of this approach can take different directions:

• Extending to multiple dimensions in space.

• Increasing the polynomial order.

• Using a different approximation space.

• Controlling the solution in other means than pointwise values.



36 CHAPTER 3. FINITE ELEMENT SPACES

3.2 Admissible mesh

Definition 3.2.1 (Mesh). Let Ω be polygonal (d = 2) or polyhedral (d = 3)
subset of Rd, we defineM (a triangulation Th in the simplicial case) as a finite
family {Ki} of disjoint convex non-empty subsets of Ω named cells. Moreover
V(Th) = {vi} denotes the set a vertices ofM, E(M) = {σKL = K ∩ L} denotes
the set of facets, which are edges (d = 2) or faces (d = 3).

Definition 3.2.2 (Mesh size).

hT = max
K∈Th

(diam(K))

with diam(K) with diameter of the cell, i.e. the maximum distance between
two points of K.

Definition 3.2.3 (Geometrically conforming mesh). A mesh is said geometri-
cally conforming if two neighbouring cells share either exactly one vertex, exactly
one edge in the case d = 2, or in the case d = 3 exactly one face.

The meaning of the previous condition is that there should not be any “hang-
ing node” on a facet. Moreover some theoretical results require that the mesh
satisfies some regularity condition: for example, bounded ratio of equivalent ball
diameter, Delaunay condition on the angles of a triangle, . . .

3.3 Definition of a Finite Element

In the frame of the Galerkin method, given a function space V , a discrete space
Vh = span {φj} ⊂ V was introduced, this section describes how to build such
space by constructing an abstraction called Finite Element.

Definition 3.3.1 (Finite Element – [4] page 19, [2] page 69). A Finite Element
consists of a triple (K,P,Σ), such that

• K is a compact, connected subset of Rd with non-empty interior and with
regular boundary (typically Lipshitz continuous),

• P is a finite dimensional vector space of functions p : K → R, which is
the space of shape functions; dim(P) = NP .

• Σ is a set {σ}j of linear forms,

σj : P → R , ∀ j ∈ [[1, NP ]]

p 7→ pj = σj(p)

which is a basis of L(P,R), the dual of P.
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Practically, the definition requires first to consider the Finite Element on
a cell K which can be an interval (d = 1), a polygon (d = 2) or a poly-
hedron (d = 3) (Example: triangle, quadrangle, tetrahedron, hexahedron),
then an approximation space P (Example: polynomial space) and the local
degrees of freedom Σ are chosen (Example: value at NP geometrical nodes {ξi},
σi(ϕj) = ϕj(ξi)). The local shape functions {ϕi} are then constructed so as
to ensure unisolvence. The dimension of P is usually called dimension of the
Finite Element.

Proposition 3.3.2 (Determination of the local shape functions). Let {σi}1≤i≤NP
be the set of local degrees of freedoms, the local shape functions are defined as
{ϕi}1≤i≤NP a basis of P such that,

σi(ϕj) = δij , ∀ i, j ∈ [[1, NP ]]

Definition 3.3.3 (Unisolvence). A Finite Element is said unisolvent if for any
vector (α1, · · · , αNP ) ∈ RNP there exists a unique representant p ∈ P such that
σi(p) = αi, ∀ i ∈ [[1, NP ]].

The unisolvence property of a Finite Element is equivalent to construct Σ
as dual basis of P, thus any function p ∈ P can be expressed as

p =
N∑
j=1

σj(p) ϕj

the unique decomposition on {ϕj}, with pj = σj(p) the j-th degree of freedom.
In other words, the choice of Σ = {σj} ensures that the vector of degree of
freedoms (p1, · · · , pNP ) uniquely represents a function of P. Defining Σ as dual
basis of P is equivalent to:

dim(P) = card(Σ) = NP (3.3a)

∀ p ∈ P, (σi(p) = 0, 1 ≤ i ≤ N)⇒ (p = 0) (3.3b)

in which Property (3.3a) ensures that Σ generates L(P,R) and Property (3.3b)
that {σi} are linearly independent. Usually the unisolvence is part of the defini-
tion of a Finite Element since chosing the shape functions such that σi(ϕj) = δij
is equivalent.

As a first step, the Galerkin decomposition of functions uh ∈ Vh was in-
troduced given a basis of Vh and degrees of freedom uj , but without giving a
proper definition of the latter; we just assumed that they are real coefficients.
In a second step, the Lagrange interpolation operator of Definition 3.2 was in-
troduced to interpolate functions in V as continuous piecewise linear functions
in Vh. Degrees of freedom uj were then defined as u(ξj) the value of the function
u at the Lagrange node ξj . Now that a definition a Finite Element was stated,
in a similar fashion a global interpolation operator can be defined for general
Finite Elements, i.e. with degrees of freedom defined by linear forms σj .
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Definition 3.3.4 (Global interpolation operator).

IVh : V → Vh

v 7→
NVh∑
j=1

σj(v) ϕj

Given that the Finite Element is defined on a cell K, the corresponding local
interpolation operator can be introduced.

Definition 3.3.5 (Local interpolation operator – [4] page 20).

IK,V : V (K) → P

v 7→
NP∑
j=1

σj(v) ϕj

Remark 3.3.6. The notation using the dual basis can be confusing but with the
relation σi(p) = p(ξi) in the nodal Finite Element case it is easier to understand
that the set Σ of linear forms defines how the interpolated function IK,V u
represents its infinite dimensional counterpart u through the definition of the
degrees of freedom. In the introduction, we defined simply ui = σi(u) without
expliciting it. A natural choice is the pointwise representation ui = u(ξi) at
geometrical nodes {ξi}, which is the case of Lagrange elements, but it is not the
only possible choice! For example, σi can be:

• a mean flux trough each facet of the element (Raviart–Thomas)

σi(v) =

∫
ξ
v ·nξ ds

• a mean value over each facet of the element (Crouzeix–Raviart)

σi(v) =

∫
ξ
v ds

• a mean value of the tangential component over each facet of the element
(Nédelec)

σi(v) =

∫
ξ
v · τ ξ ds

A specific choice of linear form allows a control on a certain quantity: divergence
for the first two examples, and curl for the third. The approximations will then
not only be Hs-conformal but also include the divergence or the curl in the
space.

Remark 3.3.7. The Finite Element approximation is said H-conformal if Vh ⊂
H and is said non-conformal is Vh 6⊂ H. In this latter case the approximate
problem can be constructed by building an approximate bilinear form

ah( · , · ) = a( · , · ) + s( · , · )

as described, for instance, in the case of stabilized methods for advection-
dominated problems in Section 8.3.
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3.4 Transport of the Finite Element

In practice to avoid the construction of shape functions for any Finite Element
(K,P,Σ), K ∈ Th, the local shape functions are evaluated for a reference Finite
Element (K̂, P̂, Σ̂) defined on a reference cell K̂ and then transported onto any
cell K of the mesh. For example, in the case of simplicial meshes the reference
cell in one dimension is the unit interval [0, 1], in two dimensions the unit triangle
with vertices {(0, 0), (1, 0), (0, 1)}, and in three dimensions the unit tetrahedron
with vertices {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Using this approach any Finite Element (K,P,Σ) on the mesh can be gen-
erated from (K̂, P̂, Σ̂) provided that a mapping can be constructed such that
(K,P,Σ) and (K̂, P̂, Σ̂) possess equivalent properties. In particular, an impor-
tant property is the unisolvence: if a Finite Element is equivalent to another
Finite Element which is unisolvent, then it is also unisolvent.

Definition 3.4.1 (Affine-equivalent Finite Elements). Two Finite Elements
(K,P,Σ) and (K̂, P̂, Σ̂) are said affine-equivalent if there exists a bijection TK
from K̂ onto K such that:

∀ p ∈ P, p ◦TK ∈ P̂

and
Σ = TK(Σ̂)

By collecting the local shape functions and local degrees of freedom from all
the generated (K,P,Σ) on the mesh, we then construct global shape functions
and global degrees of freedom and thus the approximation space Vh.

For Lagrange elements the transformation used to transport the Finite Ele-
ment on the mesh is the affine mapping TK but this is not suitable in general.
An auxiliary mapping is needed to transfer the approximation space on K̂ to
the approximation space on K. The following definition extends the affine-
equivalence to a general equivalence property between Finite Elements.

Definition 3.4.2 (Equivalent Finite Elements). Two Finite Elements (K,P,Σ)
and (K̂, P̂, Σ̂) are said equivalent if there exists a bicontinuous bijection ΦK from
V (K) onto V (K̂) such that (K,P,Σ) is generated from (K̂, P̂, Σ̂):

K = TK(K̂)

P = {Φ−1
K (p̂),∀ p̂ ∈ P̂}

Σ = {σK,j : σK,j(p̂) = σ̂K,j(Φ
−1
K (p̂)),∀ p̂ ∈ P̂}

Given that any Finite Element (K,P,Σ) can be generated from a reference
Finite Element (K̂, P̂, Σ̂), then global interpolation properties for the entire
space Vh (spanned by collecting all the shape functions) can be inferred from
local interpolation properties on K̂. More precisely, without going into the
details, the following result is specified in [4]:
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V (K) V (K̂)

P P̂

ΦK

IK,V IK̂,V
ΦK

which means that the interpolation operators and the transport of the elements
commute: IK̂,V ◦ΦK = ΦK ◦ IK,V .

Remark 3.4.3. Note that in the literature the mapping between spaces is
defined from V (K) to V (K̂), while the geometric mapping between cells is
defined from K̂ to K. The affine-equivalence consists in the case ΦK coinciding
with T−1

K . For Lagrange we defined ΦK : C0(K)→ C0(K̂) given by v 7→ v ◦TK .
In that case P = span

{
ϕ̂ ◦ T−1

K

}
and the degrees of freedom are defined by

Σ =
{
σi : σi(v) = σ̂i(ΦK(v)) = ΦK(v)(ξ̂i) = v ◦TK(ξ̂i)

}
. If ξi = TK(ξ̂i) then

the definition is consistent.

3.5 Method

Algorithm 3.5.1 (Finite Element Method). Solving a problem by a Finite
Element Method is defined by the following procedure:

1. Choose a reference Finite Element (K̂, P̂, Σ̂).

2. Construct an admissible mesh Th such that any cell K ∈ Th is in bijection
with the reference cell K̂.

3. Define a mapping to transport the reference Finite Element defined on K̂
onto any K ∈ Th to generate (K,P,Σ).

4. Construct a basis for Vh by collecting all the shape functions of Finite
Elements {(K,P,Σ)}K∈Th sharing the same degree of freedom.
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3.6 Exercises

Exercise 3.6.1.
Let us consider the Poisson problem posed on the domain Ω = (0, 1):

− u′′(x) = f(x), ∀ x ∈ Ω (3.4a)

with f ∈ L2(Ω), and satisfying the boundary condition on ∂Ω

u(x) = 0, ∀ x ∈ ∂Ω (3.4b)

The domain Ω̄ is discretized into a family of subintervals [xi, xi+1], i = 0, · · · , N ,
and Problem 3.4 is approximated by a linear Lagrange finite element method.
The approximation space is the space of continuous piecewise linear functions
Vh = {ϕi}0≤i≤N with

ϕi(x) =


x− xi−1

xi − xi−1
, xi−1 ≤ x ≤ xi, i 6= 0

xi+1 − x
xi+1 − xi

, xi ≤ x ≤ xi+1, i 6= N

0 otherwise

(3.5)

(a) Find the weak formulation of Problem 3.4.
(b) Prove that a(u− uh, ϕi) = 0, for i = 1, · · · , N − 1.
(c) Prove that for any v ∈ H1([0, 1]) ∩ C0([0, 1]), i = 1, · · · , N − 1:

a(v, ϕi) =
1

h

[
−v(xi−1) + 2v(xi)− v(xi+1)

]
(3.6)

Let us consider f(x) = x4:

(a) Find the expression of the solution to Problem 3.4.
(b) Give the expression of the linear system obtained by the suggested method

on a uniform grid, i.e. xi = ih, i = 0, · · · , N .
(c) Implement a program computing the discrete solution uh using the sug-

gested method.
(d) Plot the discrete solution uh, the exact solution u, and the error |u− uh|

with N = 8, 16, 32.
(e) Implement a function computing the L2 error-norm ‖u−uh‖L2(Ω) and plot

the value for different values of N .
(f) Modify the program to handle non-uniform grids, given a list of node

coordinates {xi}0≤i≤N .
(g) Based on the error |u−uh| suggest a distribution of the nodes {xi}0≤i≤N ,

repeat the same study, then compare the error values.





Chapter 4

Simplicial Lagrange Finite
Elements

4.1 Definitions

Vector spaces of polynomials are used as approximation spaces to construct
Finite Elements.

Definition 4.1.1 (Space of polynomials with real coefficients). LetK ⊂ Rd, k ∈
N, Pk(K) is the vector space of polynomials with real coefficients of degree k on
K, and the canonical basis is given by the family

{
xα1

1 · · ·x
αi
i · · ·x

αd
d : |α| = k

}
,

with xi the i-th coordinate of x ∈ Rd.

The dimension of the space is given by

dim(Pk(Rd)) =
1

d!

d∏
i=1

(k + i)

so that in particular dim(Pk(R1)) = k + 1, which means that such polynomials
will be uniquely defined by its values at k + 1 nodes.

Example 4.1.2. Linear and quadratic polynomials in different dimensions of
space are listed below.

P1(R1) = span {1, x}
P1(R2) = span {1, x, y}
P1(R3) = span {1, x, y, z}
P2(R1) = span

{
1, x, x2

}
P2(R2) = span

{
1, x, y, xy, x2, y2

}
P2(R3) = span

{
1, x, y, z, xy, yz, xz, x2, y2, z2

}
Simplicial Lagrange Finite Elements are considered, for which the approxi-

mation space P will be polynomials on K, a d-simplex. Simplices are a general-
ization of triangles to d dimensions, which consists of intervals (d = 1), triangles
(d = 2), or tetrahedra (d = 3).

43
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Definition 4.1.3 (Simplex). Let {vi}0≤i≤d be a family of d + 1 points of Rd
that do not belong to the same hyperplane, the associated d-simplex K is the
convex hull of these points. Points {vi} are called vertices of the simplex, and
pairs εij = (vi, vj), i 6= j, consist of the eddges. The diameter of the simplex is
the maximum Euclidean distance between two vertices,

diam(K) = max
0≤i,j≤d

‖vi − vj‖

The convex hull is the minimum convex subset of Rd enclosing the points.
The condition that all points are not in the same hyperplane means that the
convex hull does not degenerate into a lower-dimensional entity; for instance in
two dimensions, a triangle degenerates to a segment when points are aligned, and
in three dimensions, a tetrahedron degenerates if all points are in the same plane.
Therefore a degenerate simplex has a zero d-dimensional Lebesgue measure.

Consider the matrix Md of R(d+1)×(d+1) consisting of column vectors with
coordinates of vertices {vi} of K, and completed by a unit row.

M1 =

[
x0 x1

1 1

]
M2 =

x0 x1 x2

y0 y1 y2

1 1 1

 M3 =


x0 x1 x2 x3

y0 y1 y2 y3

z0 z1 z2 z3

1 1 1 1


The determinant of Md gives the signed d-dimensional measure (volume) of

the corresponding simplex K.

det(Md) = ±d!|K|

In particular, if all the points are contained in the same hyperplane then any
vertex is the linear combinations of others so that the determinant is zero.
Given that the sign of the determinant depends on permutations of the matrix
Md, in practice the meaning of the sign is the orientation of the simplex which
depends on how vertices are numbered. If one substract the first column from
all the other columns then the link to the Jacobian matrix of the affine mapping
TK introduced ealier is direct: the determinant of JTK is equal to d!|K| and a
negative determinant means that the simplex K is inverted with respect to K̂.

4.2 Polynomial interpolation in one dimension

Let Pk([a, b]) be the space of polynomials p =
∑k

i=0 αix
i of degree lower or equal

to k on the interval [a, b], with cixi the monomial of order i, ci a real number.

A natural basis of Pk([a, b]) consists of the set of monomials
{

1, x, x2, · · · , xk
}
.

Its elements are linearly independent but in the frame of Finite Elements we can
chose another basis which is the Lagrange basis

{
Lki
}

0≤i≤k of degree k defined
on a set of k + 1 points {ξi}0≤i≤k which are called Lagrange nodes.
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Definition 4.2.1 (Lagrange polynomials – [4] page 21, [6] page 76). The La-
grange polynomial of degree k associated with node ξm reads

Lkm(x) =

k∏
i=0
i 6=m

(x− ξi)

k∏
i=0
i 6=m

(ξm − ξi)

and
k∑
i=0

Lki (x) = 1

Proposition 4.2.2 (Nodal basis).

Lki (ξj) = δij , 0 ≤ i, j ≤ k

The following result gives a pointwise control of the interpolation error.

Theorem 4.2.3 (Pointwise interpolation inequality – [6] page 79). Let u ∈
Ck+1([a, b]) and πk u ∈ Pk([a, b]) its Lagrange interpolate of order k, with La-
grange nodes {ξi}0≤i≤k, then ∀ x ∈ [a, b]:

|u(x)− πk u(x)| ≤

∣∣∣∣∣
k∏
i=0

(x− ξi)

∣∣∣∣∣
(k + 1)!

max
s∈[a,b]

∣∣∣∂k+1u(s)
∣∣∣

4.3 Construction of the Finite Element space

4.3.1 A nodal element

Let us take {ξ1, · · · , ξN} a family of points of K such that σi(p) = p(ξi),
1 ≤ i ≤ N :

• {ξi}1≤i≤N is the set of geometric nodes,

• {ϕi}1≤i≤N is a nodal basis of P, i.e. ϕi(ξj) = δij .

We can verify, for any p ∈ P that:

p(ξj) =

N∑
i=1

σi(p) ϕi(ξi)︸ ︷︷ ︸
δij

, 1 ≤ i, j ≤ N

which reduces to:
p(ξj) = σi(p)

Remark 4.3.1 (Support of shape functions). The polynomial basis being de-
fined such that ϕj(ξi) = δij then any shape function ϕi has support on the
union of cells containing the node ξi.
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4.3.2 Reference Finite Element

To make the connection between the abstract Definition 3.3.1 and a simple
concrete example, the reference element for Lagrange P1 in one dimension is
given by the following triple (K̂, P̂, Σ̂).

Definition 4.3.2 ((K̂, P̂, Σ̂) for Lagrange P1 1D). The Finite Element space
Lagrange P1 1D approximating

Vh =
{
v ∈ C0(Ω̄) ∩H1(Ω) : v

∣∣
K
∈ P1(K), ∀ K ∈ Th

}
is given by

• K̂ is the unit interval [0, 1].

• P̂ is the space of linear polynomials P1([0, 1]) with the basis (ϕ̂0, ϕ̂1) by
Definition 4.2.1 of L1

i ,

ϕ̂0(x̂) = L1
0(x̂) = 1− x̂, ϕ̂1(x̂) = L1

1(x̂) = x̂

• Σ̂ is the set of linear forms evaluating the function at Lagrange nodes
ξ0 = 0 and ξ1 = 1, {σ̂0 : v 7→ v(ξ0), σ̂1 : v 7→ v(ξ1)}.

Consequently the local interpolation operator is

IK,V : V (K) → Vh(K)

v 7→ v(ξ0)ϕ0 + v(ξ1)ϕ1

Proposition 4.3.3. (K,P,Σ) by Definition 4.3.2 is a unisolvent H1-conformal
Finite Element.

Proof. During the lecture we proved that:

• Vh ⊂ H1(Ω), since piecewise linear and piecewise constant functions belong
to L2(Ω).

• (ϕi) is a basis of P1(K) since shape functions are linearly independent as
they satisfy ϕi(ξj) = δij , and they generate the space Vh as any piecewise
linear function coincides with its interpolate.

• (σi) is a dual basis of P1(K) since σi(ϕj) = δij .

4.3.3 Lagrange Pk elements

The extension to Lagrange Pk is natural as it boils down to construct a basis
of Pk using (Lki )0≤i≤k and choose the degrees of freedom at the corresponding
Lagrange nodes {ξi}0≤i≤k. Given that the unisolvence for Lagrange P1 is a
direct consequence of the construction from a nodal basis, the same argument
applies for higher polynomial order as long as degrees of freedom are located
at Lagrange nodes. As illustration Table 4.3.3 depicts the shape functions for
k = 1, 2, 3 in one dimension with equidistributed nodes (but other distributions
are possible and also other polynomials can be used to build nodal elements).
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P1

1

1
ϕ̂0 ϕ̂1

P2

1

1
ϕ̂0 ϕ̂1 ϕ̂2

P3

1

1
ϕ̂0 ϕ̂1 ϕ̂2 ϕ̂3

Table 4.1: Shape functions for Lagrange P1,P2,P3 on the interval K̂ = [0, 1].

4.4 Extension to multiple dimensions

4.4.1 Barycentric coordinates

Lagrange polynomials (4.2.1) construct directly one-dimensional shape func-
tions, while in higher dimensions they can be reformulated in terms of barycen-
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tric coordinates. High-order Lagrange basis can also be expressed as polynomials
of barycentric coordinates.

Definition 4.4.1 (Barycentric coordinates). Let us consider K a d-simplex
with vertices {vi}0≤i≤d, any point x ∈ K satisfies

x =
∑
i

λi(x)vi

where barycentric coordinates are obtained by relation

λi : Rd → R

x 7→ λi(x) = 1− (x− vi) · ni
(vf − vi) · ni

with ni the unit outward normal to the facet opposite to vi, and vf a vertex
belonging to this facet.

The geometric interpretation of barycentric coordinates is given by

λi(x) =
meas(Ki)

|K|

with meas(Ki) the signed measure ofKi(x) the d-simplex constructed with point
x and the facet opposite to vi. In particular, points located within Ki have non-
negative λi, and the point xg satisfying equal weight λi(xg) = (d+ 1)−1 is the
isobarycentre. In practice this property can be used to check if a point is inside
a simplex: if the signed measure of one λi is negative or if

∑
i |Ki(x)| > |K|

then the point is outside of the simplex.

Example 4.4.2 (Lagrange P1 1D). In one dimension of space, barycentric
coordinates on K = [x0, x1] are

λ0(x) = 1− x− x0

x1 − x0
=

x1 − x
x1 − x0

λ1(x) = 1− x− x1

x0 − x1
=

x− x0

x1 − x0

which is exactly the same expression as linear shape functions ϕ0 and ϕ1.

Example 4.4.3 (Lagrange P1 2D). In two dimensions of space, barycentric
coordinates on the unit triangle K̂ depicted Figure 4.4.3 are

λ0(x) = 1− (x̂, ŷ) · (1, 1)

(1, 0) · (1, 1)
= 1− x̂− ŷ

λ1(x) = 1− (x̂− 1, ŷ) · (−1, 0)

(−1, 0) · (−1, 0)
= x̂

λ2(x) = 1− (x̂, ŷ − 1) · (0,−1)

(0,−1) · (0,−1)
= ŷ

which is the linear Lagrange basis on K̂ (since the normal is at the numerator
and the denominator, there was no need to normalize the vector).
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v̂0 = (0, 0) v̂1 = (1, 0)

v̂2 = (0, 1)

K̂

n0

n1

n2

Figure 4.1: Unit triangle with outward facet normals

We can verify easily that shape functions
ϕ̂0(x̂) = 1− x̂− ŷ

ϕ̂1(x̂) = x̂

ϕ̂2(x̂) = ŷ

form a nodal basis and that ϕ̂0(x̂) + ϕ̂1(x̂) + ϕ̂2(x̂) = 1 for any x̂.

Lagrange elements of polynomial degree k = 1, 2, 3 can be expressed using
barycentric coordinates in higher dimensions, the shape functions are given by:

k = 1, λi , 0 ≤ i ≤ d

k = 2, λi (2λi − 1) , 0 ≤ i ≤ d

4 λi λj , 0 ≤ i < j ≤ d

k = 3,
1

2
λi (3λi − 1) (3λi − 2) , 0 ≤ i ≤ d

9

2
λi (3λi − 1) λj , 0 ≤ i, j ≤ d, i 6= j

27 λi λj λk , 0 ≤ i < j < k ≤ d

4.4.2 Affine transformation

In Chapter 3 the one-dimensional affine mapping between the unit interval and
any subinterval K = [xi, xi+1] of a one-dimensional mesh Th was given by Equa-
tion (3.1.3); the link to higher dimensions in space was then briefly discussed.
The following example describes how the affine mapping TK : K̂ → K is defined
for a triangle in R2.

The shape of the reference triangle K̂ is defined by vectors v̂1−v̂0 and v̂2−v̂0,
and in the same fashion the shape of any triangle K is defined by vectors v1−v0
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v̂0 = (0, 0) v̂1 = (1, 0)

v̂2 = (0, 1)

K̂
v0

v1

v2

K

TK

and v2−v0. The affine mapping is a simple change of coordinates but the detail
is given below for the sake of completeness.{

v1 = TK(v̂1) = v0 + (v1 − v0)
v2 = TK(v̂2) = v0 + (v2 − v0)

and any point x of K can be expressed in terms of the relation

x = v0 + λ(v1 − v0) + µ(v2 − v0)

with given λ and µ. The reference triangle is defined by the canonical basis of
R2 as (v̂1 − v̂0, v̂2 − v̂0) = (ex, ey) so that the affine mapping

x = v0 + BKx̂

satisfies TK(ex) = (v1 − v0) and TK(ey) = (v2 − v0). The matrix BK is then
the matrix of the corresponding change of basis composed of column vectors
vj − v0, thus

x = v0 +

[
v1,x − v0,x v2,x − v0,x

v1,y − v0,y v2,y − v0,y

]
x̂

Definition 4.4.4 (Affine mapping from reference simplex in Rd). The general-
ization of the affine mapping in Rd from the reference simplex K̂ = {v̂i}0≤i≤d
to K = {vi}0≤i≤d is given by x = v0 + JTK x̂, with

JTK =

[
∂T iK
∂xj

]
ij

given by column vectors (vj − v0).

While the change of coordinates for the mass matrix does not pose any dif-
ficulty, the case of the stiffness matrix requires some precisions. The derivation
of the composition of two functions reads

∇ϕ = ∇(ϕ̂ ◦ T−1
K ) = (∇ϕ̂ ◦ T−1

K ) · JT−1
K

which can be also written formally component by component

∂ϕ

∂xi
=
∑
j

∂ϕ

∂x̂j

∂x̂j
∂xi

=
∑
j

∂ϕ

∂x̂j

[
JT−1

K

]
ji
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and can be interpreted as the decomposition of variation dx along each axis
in terms of dx̂. Moreover the Jacobian matrix of the inverse mapping is the
inverse of the Jacobian matrix

JT−1
K

= (JTK ◦ T
−1
K )−1

so that
∇ϕ = [(JTK ◦ T

−1
K )−1]

T
(∇ϕ̂ ◦ T−1

K )

and since the Jacobian matrix is constant on each cell K, it can be simplified as

∇ϕ = [J−1
TK

]
T

(∇ϕ̂ ◦ T−1
K )

4.5 Local equation for Lagrange P1 in one dimension

The approximation of Problem (1.7) by Lagrange P1 elements on domain Ω =
(0, 1) reads: ∣∣∣∣∣∣∣

Find u ∈ Vh, given f ∈ L2(Ω), such that:∫
Ω
∇u ·∇v dx =

∫
Ω
fv dx , ∀ v ∈ Vh

(4.1a)

with the approximation space Vh chosen as:

Vh =
{
v ∈ C0(Ω̄) ∩H1

0(Ω) : v
∣∣
K
∈ P1(K), ∀ K ∈ Th

}
(4.1b)

The interval Ω̄ = [0, 1] is discretized by partitioning into disjoints subin-
tervals [xn, xn+1], 1 ≤ n ≤ NK of length h = 1/NK . Steps to obtain a weak
formulation and deriving a discrete problem were detailed in Section 3.1.

Expressing the local equation for any subinterval K = [xn, xn+1] consists of
assembling a matrix corresponding to contributions

Aij =

∫
K
∂xϕj(x) ∂xϕi(x) dx

for shape functions ϕj and ϕi which have support on K. Given that the di-
mension of the Lagrange P1 element in one dimension is two, with two shape
functions ϕn and ϕn+1, the local matrix is of dimension 2 × 2. The deriva-
tive of ϕn and ϕn+1 is constant on K and of opposite signs: ϕn(x) = −1 and
ϕn+1(x) = +1.

AK =
1

h

[
+1 −1
−1 +1

]
with row and column indices of the local matrix mapping to row and column
indices (n, n+ 1) of the global matrix. Therefore assembling the local equation
into the global matrix consists of adding entries of AK to the submatrix with row
and column indices (n, n+1). Since each node xn has two adjacent subintervals
[xn−1, xn] and [xn, xn+1], inner nodes (which are not on the boundary) will see
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two contributions +1 on the diagonal, one contribution −1 for columns n − 1,
and one contribution −1 for columns n+ 1, scaled by factor 1/h.

Ai =
1

h

[
0 · · · 0 −1 +2︸︷︷︸

aii

−1 0 · · · 0
]

If the partition of the interval is not uniform then the assembly of the local
equation should be modified,

AK =
1

|K|

[
+1 −1
−1 +1

]
with |K| = |xn+1 − xn|.
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4.6 Exercises

Exercise 4.6.1.
Let us consider the Helmholtz problem posed on the domain Ω = (0, 1), given
κ a real coefficient:

− u′′(x) + κu(x) = f(x), ∀ x ∈ Ω (4.2a)

with f ∈ L2(Ω),
u(x) = 0, ∀ x ∈ ∂Ω (4.2b)

Let us consider the analytic solution for κ = 1 and f(x) = sin(πx) given by

u(x) = sin(πx)/(1 + π2).

(a) Derive a weak formulation of Problem (4.2).
(b) Show that the problem solved by a Galerkin method using the discrete

space Vh = span {ϕi}, 1 ≤ i ≤ N , can be written under the form of a
linear system

(A + κM)u = b

(c) Express the linear system when the problem is approximated with Vh =
X1
h the space of linear Lagrange finite element on a uniform grid.

(d) Implement a program to solve the problem with Vh = X1
h and compare

the discrete solution with the suggested analytic solution.
(e) Express the linear system when the problem is approximated with Vh =

X2
h the space of quadratic Lagrange finite element on a uniform grid.

(f) Modify the linear system for a general non-uniform grid, and for testing
use vertices:

V = {0.0, 0.1, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0}

(g) Write a function computing integrals by the quadrature formula:∫ 1

0
g(x) dx ≈ 1

2

[
g(c1) + g(c2)

]
, c1 =

1

2
+

√
3

6
, c2 =

1

2
−
√

3

6

to approximate contributions for each element to the load vector b.
(h) Implement a program to solve the problem with Vh = X2

h and compare
the discrete solution with the suggested analytic solution.

(i) Modify the program to implement the boundary condition u(0) = 1,
u′(x) = 2. Which changes are required?





Chapter 5

Error analysis

The goal of this section is to bound the approximation error eh = u − uh in a
Sobolev or Lebesgue norm. To this purpose we have already two ingredients:

— on the one hand, in the analysis of Ritz and Galerkin methods, consis-
tency estimates like Céa’s Lemma give a control on the approximation error in
the solution space V in term of “distance” between the solution space and the
approximation space:

‖u− uh‖V ≤ C‖u− vh‖V , ∀ vh ∈ Vh

with C > 0 a constant real number,
— on the other hand, the pointwise interpolation inequality of Theorem

(4.2.3) gives a control on the interpolation error eπ = u− πk u, i.e. the difference
between any function and its interpolate by Lagrange polynomials of order k.

For consistency with the notation introduced in Chapter 3 for the Lagrange
interpolation operator in the Finite Element setting, Ihk will stand for the
Lagrange Pk interpolation operator in this section.

Question: Can we control the approximation error by bounding the right-
hand side of the consistency inequality using interpolation properties?

5.1 Preliminary discussion on the Poisson problem

In the previous chapters, the weak problem derived for the Poisson problem
with homogeneous Dirichlet boundary conditions and f ∈ L2(Ω),∣∣∣∣∣∣∣∣

Find u ∈ V = H1
0(Ω) such that:∫

Ω
∇u ·∇v dx =

∫
Ω
f v dx , ∀ v ∈ V

was approximated by a Galerkin problem,∣∣∣∣∣∣∣∣
Find uh ∈ Vh ⊂ H1

0(Ω) such that:∫
Ω
∇uh ·∇v dx =

∫
Ω
f v dx , ∀ v ∈ Vh

55
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by simply looking for a finite dimensional solution.

In a first stage, we verified that the weak problem is well-posed for the chosen
solution and test spaces, and that the exact solution u and discrete solution uh
satisfy both a relation of the type

|u|H1(Ω) ≤ C‖f‖L2(Ω)

with C > 0, which we denoted as a priori estimate.

In a second stage, without making any further assumption on the approx-
imation space Vh, a general result was introduced showing that the distance
between the exact solution and the approximate solution ‖u−uh‖V is bounded
by the distance of u to the best approximation of u in Vh; this is Céa’s Lemma.
For the sake of completeness, the estimate corresponding to Céa’s Lemma is
given in the case of the Poisson problem with homogeneous Dirichlet boundary
conditions.

E = |u− uh|2H1(Ω) =

∫
Ω
|∇(u− uh)|2 dx =

∫
Ω
∇(u− uh) ·∇(u− uh) dx

For any vh ∈ Vh

E =

∫
Ω
∇(u− uh) ·∇(u− vh) dx+

∫
Ω
∇(u− uh) ·∇(vh − uh) dx

and the second term cancels by virtue of consistency (Galerkin orthogonality),
so that Cauchy–Schwarz gives

E = |u− uh|2H1(Ω) ≤
(∫

Ω
|∇(u− uh)|2 dx

)1/2(∫
Ω
|∇(u− vh)|2 dx

)1/2

thus
|u− uh|H1(Ω) ≤ |u− vh|H1(Ω)

As introduced, the relation

|eh|H1(Ω) ≤ |u− vh|H1(Ω) (5.1)

means that the approximation error eh = u− uh is controlled as soon as we are
able to bound the distance between u and its best representant in Vh.

In a third stage, we introduced Finite Element approximation spaces based
on Lagrange polynomials, Definition 4.2.1. Their local interpolation operator
given here in one dimension,

IkK v =

k∑
j=0

v(ξj)Lkj

with Lagrange nodes {ξj}, satisfies Inequality (4.2.3) controlling the interpola-
tion error eı = v − IkK v pointwise on K.
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Inequality (5.1) can be written

|eh|H1(Ω) ≤ |eı|H1(Ω) (5.2)

which means that the approximation error is bounded by the interpolation error.
From pointwise polynomial interpolation estimates we need to derive inequalities
in Sobolev and Lebesgue norms, so that the right-hand side of Equation (5.2)
can be bounded by a function ε of the mesh size hT , such that ε(hT ) → 0 as
hT → 0; convergence of the approximation is then ensured.

Inequalities of the form
‖eh‖ ≤ Cε(hT )

for some constant C depending on the domain and the exact solution, are called a
priori error estimates. Usually ε(hT ) ∼ O(hrT ), with r > 0 the convergence rate
of the method, which represents the expected accuracy. In this case sequences
of approximate solution (uh)hT converge to the exact solution u, as fast as the
function ε allows, when hT tends to zero.

The goal of this section is to derive such error estimates after proving re-
quired interpolation inequalities. In particular the space of continuous linear
Lagrange elements

Vh = {v ∈ C0(Ω̄) ∩H1
0(Ω) : ∀ K ∈ Th, v

∣∣
K
∈ P1(K)} (5.3)

will be considered, then more general results will be stated without proof.

5.2 Stability of the Lagrange interpolation operator

Before moving to interpolation inequalities, the stability of the interpolation
operator should be proved: such estimate shows that the interpolate of any
function in V is also in V . The exposé is restricted to the one-dimensional case
and detailed so that anybody without prior experience in estimates should be
able to follow the procedure.

Interpolation properties need to be reformulated in terms of estimates in
L2 norms. First they are expressed elementwise, then on the entire domain by
collecting contributions over the mesh. To give a better idea, let us introduce
below an ingredient used for subsequent estimates, considering a function v ∈
H1(I) with I an interval, and two points ξ, x ∈ I.

|v(x)− v(ξ)| =

∣∣∣∣∫ x

ξ
v′(s) ds

∣∣∣∣
≤

∫ x

ξ

∣∣v′(s)∣∣ ds

≤ |x− ξ|1/2
(∫ x

ξ

∣∣v′(s)∣∣2 ds

)1/2

using Cauchy–Schwarz with |v′(s)| and 11[ξ,x], the indicator function on [ξ, x].
Since we assumed that v ∈ H1(I), then the right-hand side of

|v(x)− v(ξ)| ≤ |x− ξ|1/2|v|H1([ξ,x]) (5.4)
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is bounded.

Now let us consider that ξ realizes the minimum of |v| on I, then

|v(x)| ≤ |x− ξ|1/2|v|H1([ξ,x]) + |v(ξ)| , ξ = argmin
s∈I

|v(s)|

using the second triangle inequality.

Immediately if |v(ξ)| = 0 the estimate gives for any x ∈ I

|v(x)| ≤ |I|1/2|v|H1(I) (5.5)

but otherwise we can bound |v(ξ)| using

|v(ξ)| = |x− ξ|−1
∫ x

ξ
|v(s)| ds ≤ |x− ξ|−1/2‖v‖L2([ξ,x])

so that
|v(x)| ≤ |x− ξ|1/2|v|H1([ξ,x]) + |x− ξ|−1/2‖v‖L2([ξ,x])

thus for any x ∈ I

|v(x)| ≤ |I|1/2|v|H1(I) + |I|−1/2‖v‖L2(I) (5.6)

in other words
‖v‖L∞(I) ≤ |I|

1/2|v|H1(I) + |I|−1/2‖v‖L2(I) (5.7)

Proposition 5.2.1 (H1-stability of the Lagrange P1 interpolation operator).
There exists a constant C > 0 such that,

‖I1
h v‖H1(Ω) ≤ C ‖v‖H1(Ω) (5.8)

Proof. Since ‖ · ‖2H1 = ‖ · ‖2L2 + | · |2H1 then the L2 norm of the interpolate and
its derivative should be controlled. Since controlling the derivative of a function
in L2 gives a control on the function in L2 (Poincaré Inequality), it is natural
to start looking for an estimate of | · |H1 , then move to ‖ · ‖L2 .

(i) Estimate in | · |H1 :
Let us consider the restriction of the interpolation operator to any K =
[xi, xi+1] ∈ Th (

I1
h v
)′∣∣∣

K
=
(
I1
K v
)′

= h−1
K

(
v(xi+1)− v(xi))

which is constant over K. The elementwise H1 semi-norm of the interpo-
late can be bounded using Inequality (5.4)

|I1
K v|H1(K) =

(∫
K
h−2
K |v(xi+1)− v(xi)|2 dx

)1/2

≤ h
−1/2
K |v(xi+1)− v(xi)|

≤ h
−1/2
K h

1/2
K |v|H1(K)

≤ |v|H1(K)

Summing over K and using the definition of hT ,

|I1
h v|H1(Ω) ≤ |v|H1(Ω)
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(ii) Estimate in ‖ · ‖L2 :
In this case we do not need to prove an elementwise estimate first as we
already introduced a control of pointwise values in terms of the H1 semi-
norm and the L2 norm: it boils down to estimate the maximum attained
by the linear interpolate.

‖I1
h v‖L2(Ω) =

(∫
Ω

∣∣I1
h v
∣∣2 dx

)1/2

≤
(∫

Ω
‖I1

h v‖2L∞(Ω) dx

)1/2

≤ |Ω|1/2‖I1
h v‖L∞(Ω)

≤ |Ω|1/2‖v‖L∞(Ω)

the last line is given by the L∞ stability of the linear interpolation: the
function and its linear interpolate coincide at Lagrange nodes so that
‖I1

h v‖L∞(Ω) ≤ ‖v‖L∞(Ω). Therefore, using Inequality (5.7)

‖I1
h v‖L2(Ω) ≤ |Ω|

1/2|v|H1(Ω) + |Ω|−1/2‖v‖L2(Ω)

we can conclude using the Poincaré Inequality with constant cp,

‖I1
h v‖L2(Ω) ≤ (|Ω|+ c−1

p )|v|H1(Ω)

Inequality (5.8) is also called uniform continuity in zero of the interpolation
operator since C should not depend on Th; but possibly depends on Ω.

5.3 A priori error estimate with Lagrange P1

Proposition 5.3.1 (Interpolation Inequalities for Lagrange P1). There exists
two positive constants C1 and C0 such that for any v ∈ H2(Ω)

|v − I1
h v|H1(Ω) ≤ C1hT |v|H2(Ω) (5.9)

‖v − I1
h v‖L2(Ω) ≤ C0h

2
T |v|H2(Ω) (5.10)

with hT = maxK∈Th(hK)

Proof. The proof is sketched in one dimension, based on a decomposition of
the error per element and on the Mean-Value Theorem (also known as Rolle
Theorem). The global interpolation error is then recovered by summing over
the cells, given that

‖eı‖2L2(Ω) =
∑
K∈Th

∫
K
|eı(x)|2 dx =

∑
K∈Th

‖eı‖2L2(K)

This makes sense since the polynomial interpolation estimate is defined point-
wise, it is then a local property. In the same spirit as the stability of the
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interpolation operator of Proposition 5.2.1 which we proved first elementwise,
the estimate is derived in H1 semi-norm then in L2 norm.

The main technical ingredient is given by Inequality (5.4) for a given function
w ∈ H1(K),

|w(x)− w(ξ)| ≤ |x− ξ|1/2|w|H1([ξ,x]) (5.11)

with ξ, x ∈ K. If we choose ξ such that w(ξ) cancels and if we integrate the
square of the expression over any K ∈ Th, then we get a control of w in L2(K),

‖w‖L2(K) ≤ |x− ξ|
1/2

(∫
K
|w|2H1([ξ,x]) dx

)1/2

≤ hK |w|H1(K) (5.12)

(i) Estimate in | · |H1 :
The elementwise estimate on any K = [xi, xi+1] is obtained by taking
w = (v−I1

h v)′ in Inequality (5.11). Given that xi and xi+1 are Lagrange
nodes,

(
v − I1

h v
)
(xi) = 0 and

(
v − I1

h v
)
(xi+1) = 0, then by virtue of the

Mean-Value Theorem, there exists ξ ∈ [xi, xi+1] such that the derivative
cancels, (v − I1

h v)′(ξ) = 0. Moreover |(v − I1
h v)′|H1(K) = |v′|H1(K) since

(v − I1
h v)′′ = v′′ − (I1

h v)′′ by linearity and (I1
h v)′′ is identically zero, so

we get directly
‖(v − I1

h v)′‖L2(K) ≤ hK |v′|H1(K)

in the same fashion as Inequality (5.12), which can be rewritten under the
expected form

|v − I1
h v|H1(K) ≤ hK |v|H2(K) (5.13)

(ii) Estimate in ‖ · ‖L2 :
The elementwise estimate on any K = [xi, xi+1] is obtained by taking
w = (v − I1

h v) in Inequality (5.11). Given that
(
v − I1

h v
)
(xi) = 0 and(

v − I1
h v
)
(xi+1) = 0, a similar argument as for the H1 semi-norm can be

used with ξ = xi. Inequality (5.12) with w = (v − I1
h v) reads

‖v − I1
h v‖L2(K) ≤ hK |v − I1

h v|H1(K)

so that using Inequality (5.13)

‖v − I1
h v‖L2(K) ≤ h2

K |v|H2(K)

In both cases global estimates are obtained by summing over K ∈ Th and
factoring hT = maxK∈Th(hK).

Remark 5.3.2 (Convergence order in H1 norm). Using the definition of the
norm

‖v − I1
h v‖2H1(Ω) = ‖v − I1

h v‖2L2(Ω) + |v − I1
h v|2H1(Ω)

we get
‖v − I1

h v‖2H1(Ω) ≤ C
2
I (h4

T |v|2H2(Ω) + h2
T |v|2H2(Ω))

‖v − I1
h v‖H1(Ω) ≤ CI hT (1 + h2

T )
1/2|v|H2(Ω)

Thus we verify that the approximation is first order in H1 norm if |v|H2(Ω) is
bounded.
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A more general result Proposition 5.3.3 can be proved for Lagrange Pk Finite
Elements, which we verify is equivalent to Proposition 5.3.1 for s = 1, k = 1.

Proposition 5.3.3 (Interpolation Inequality for Lagrange Pk, [4]). Given 0 ≤
s ≤ k, there exists a positive constant C such that for any v ∈ Hs+1(Ω),

‖v − I1
h v‖L2(Ω) + hT |v − I1

h v|H1(Ω) ≤ Chs+1
T |v|Hs+1(Ω)

One important remark is that the convergence order depends on the regu-
larity of the solution since the order is s + 1 for a solution in Hs+1(Ω). Unfor-
tunately the Lagrange P1 Finite Element is only H1–conformal, so a priori it
cannot represent functions of H2 accurately. Given that the solution space is
H1 the interpolation inequality of Proposition 5.3.3 only applies with s = 0 so
that the convergence order is only one in L2 norm in the general case, and we
have only a weak convergence result in H1. In the next section we show that
the convergence rate for the Poisson problem approximated with Lagrange P1

is actually second order in L2 norm and first order in H1 semi-norm: this is one
order more than expected from interpolation inequalities.

5.4 Superconvergence

The following result shows the the convergence properties of the method is
not only limited by interpolation inequalities. Indeed, using a result by Aubin
and Nitsche, we show that even if the approximation is not H2-conformal, we
can improve the error estimate by one order: the convergence in L2 becomes
then second order in hT . The idea behind this result is that if u is the weak
solution to the Poisson equation then it is not only in H1

0(Ω) since the differential
operator involves second order derivatives: we say that u is regularized due to
the ellipticity of the operator.

Theorem 5.4.1 (Superconvergence). Let Ω be a convex polygonal subset of Rd,
d ≥ 1, f ∈ L2(Ω), u solution to the Dirichlet Problem (1.3) and uh approximate
solution, hT = maxK∈Th(hK):

‖u− uh‖H1(Ω) ≤ C1 hT and ‖u− uh‖L2(Ω) ≤ C0 h
2
T

Proof. If u ∈ H1
0(Ω) is solution to the Poisson problem, then by elliptic regularity

and density of H2(Ω) in H1(Ω)), u ∈ H2(Ω), thus ∃ Cu > 0 such that:

‖u‖H2(Ω) ≤ Cu ‖f‖L2(Ω)

Thus replacing the H2 semi-norm in the right-hand side of the error estimate,
we have

‖u− uh‖H1(Ω) ≤ Cu hT ‖f‖L2(Ω) (5.14)

Let us introduce the following auxiliary problem:

−∆ϕ(x) = eh(x) , x ∈ Ω (5.15a)

ϕ(x) = 0 , x ∈ ∂Ω (5.15b)
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obtained by a duality argument, formally

−( ∆v , w ) = ( ∇v , ∇w ) = −( v , ∆w )

by integration by parts; since the adjoint operator of the Laplace operator is
the Laplace operator itself, it is said self-adjoint. The motivation of introducing
this equation is to control the approximation error eh in L2:

( eh , eh ) = ( eh , −∆φ ) = ( ∇eh , ∇φ ) = ( −∆eh , φ )

for φ ∈ H1
0(Ω) called dual solution satisfying −∆φ = eh.

Similarly to the Poisson equation, the weak formulation of Problem 5.15
reads: ∣∣∣∣∣∣∣

Find ϕ ∈ H1
0(Ω), given eh ∈ L2(Ω), such that:∫

Ω
∇ϕ ·∇φ dx =

∫
Ω
ehφ dx , ∀ φ ∈ H1

0(Ω)
(5.16)

Since eh is bounded in L2(Ω) then the same regularity result holds for the
auxiliary Problem (5.15), ∃Cϕ > 0 such that:

‖ϕ‖H2(Ω) ≤ Cϕ ‖eh‖L2(Ω)

so we have from the interpolation inequality for ϕ

‖ϕ− ϕh‖H1(Ω) ≤ Cϕ hT ‖eh‖L2(Ω) (5.17)

Let us try to bound the L2 norm of the approximation error by noticing that
its amounts to take φ = eh in (5.16):

‖eh‖L2(Ω) =

∫
Ω
|eh|2 dx =

∫
Ω
∇ϕ ·∇eh dx

If we consider the approximate of Problem (5.16) by Galerkin method, with
ϕh ∈ Vh its solution, then the Galerkin orthogonality reads:∫

Ω
∇ϕh ·∇eh dx = 0

Thus we can subtract and add this latter to the previous expression:

‖eh‖L2(Ω) =

∫
Ω
∇(ϕ− ϕh) ·∇eh dx+

∫
Ω
∇ϕh ·∇eh dx︸ ︷︷ ︸

0

First we use Cauchy–Schwarz and make the H1 norm of the approximation errors
appear since we control them by Equation (5.14) and (5.17):

‖eh‖L2(Ω) ≤ ‖ϕ− ϕh‖H1(Ω)‖eh‖H1(Ω)

Replacing by the bounds from the interpolation inequalities we get:

‖eh‖L2(Ω) ≤ Cu Cϕ h2
T ‖f‖L2(Ω)

which concludes the proof. We have then a second order error estimate in
L2.
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The conclusion of this result is that the observed convergence order may be
different than the order suggested by the interpolation inequality. As seen in this
example it may be improved if the differential operator has a regularizing effect,
but can also be influenced by other factors like the regularity of the boundary
or the discretization of the computational domain.
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5.5 Exercises



Chapter 6

Time-dependent problems

The objective of this section is to introduce the a priori stability analysis of
time-dependent problems on several examples to obtain estimates similar to
Lemma 2.2.11.

6.1 Time marching schemes

In this section, problems describing the evolution in time of an unknown u will
be considered. Since the unknown depends on the space coordinates and on
the time, such evolution problem will be posed on a domain which is the open
cylinder Q = Ω× (0, T ).

The Initial and Boundary Value problem for a Partial Differential Equation
will therefore take a form such as∣∣∣∣∣∣∣∣∣

Find u(x, t) satisfying:

∂tu(x, t) + A u(x, t) = f(x, t) ,∀ (x, t) ∈ Q
u(x, t) = g(x, t) ,∀ x ∈ ∂Ω, t ∈ (0, T )
u(x, 0) = u0(x) ,∀ x ∈ ∂Ω

in the case of a Dirichlet problem which is first-order in time, and with A a
differential operator in space. The differential operator and the right-hand side
may depend on u, in which case the problem becomes non-linear.

The equation can be recast under the form of a Cauchy problem

u̇(x, t) = F (x, t;u) (6.1)

so that an evolution problem can be seen as the coupling between a partial
differential equation in space, and an ordinary differential equation in time.

This suggests that two discretizations may be considered: a Finite Element
discretization in space which was discussed for elliptic problems in Chapter 2 and
Chapter 3, and a time discretization. Similarly to the one-dimensional spatial
case, the time discretization consists of solving the problem on a partition of
(0, T ). Let us define a family {tn}0≤n≤N of N + 1 discrete times, with t0 <

· · · < tN , and integrate the equation on each subinterval [tn−1, tn], 1 ≤ n ≤ N ,

65
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characterized by the time-step δtn = tn − tn−1. Marching in time consists of
solving a succession of problems at discrete times tn, 1 ≤ n ≤ N given solutions
at previous discrete times.

For example, in the case of a first order approximation in time, the discrete
time-derivative is

∂t,n u =
un − un−1

δtn
(6.2)

for n = 1, . . . , N , so that Relation (6.1) reads

un = un−1 + δtnF (x, t;u) (6.3)

and the treatment of term F (x, t;u) is left to be determined as it can be ex-
pressed as a function of un but also of solutions un−k, k = 1, . . . , n at previous
time-steps.

The choice of the time-derivative and the way F (x, t;u) is expressed will
define the type of numerical scheme. For example, in Relation (6.3) F (x, t;u)
can be evaluated at time tn,

un = un−1 + δtnFn(x, t;u) (6.4)

or at time tn−1,
un = un−1 + δtnFn−1(x, t;u) (6.5)

which correspond respectively to Backward Euler and Forward Euler schemes.
The former is an implicit scheme as the term F (x, t;u) depends on the unknown
un, while the latter is an explicit scheme as the term F (x, t;u) is expressed in
terms of un−1 which is known. In a more general fashion, the theta-scheme
reads,

un = un−1 + δtn
[
θFn(x, t;u) + (1− θ)Fn−1(x, t;u)

]
(6.6)

with parameter θ ∈ [0, 1], so that Backward Euler is recovered for θ = 1, Forward
Euler is recovered for θ = 0, and Crank–Nicolson corresponds to the choice
θ = 1/2.

Stability and accuracy properties of the numerical scheme will depend on
which terms are chosen as implicit or explicit: without going into the details
and as a general rule implicit schemes tend to be more stable while explicit
schemes will be limited by a condition on the time-step. You can refer Von
Neumann stability analysis for ordinary differential equations, and the Courant–
Friedrichs–Levi (CFL) condition.

Regardless of the numerical scheme, properties of solutions will also depend
on the regularity of the initial condition and the nature of the differential oper-
ator. Parabolic equations involving an elliptic operator will enjoy a smoothing
property, given that energy dissipation is induce by diffusion-type operators,
while hyperbolic equations may give rise to discontinuities and see the propa-
gation of shocks.



6.2. A PRIORI STABILITY ESTIMATE 67

6.2 A priori stability estimate

In a similar fashion as elliptic problems, a priori estimates can be derived by a
careful choice of test function.

6.2.1 Heat equation

In the continuity of the Poisson problem the following unsteady problem is
considered ∣∣∣∣∣∣

∂tu(x, t)−∆u(x, t) = f(x, t)
u(x, t) = 0
u(x, 0) = u0(x)

which corresponds to the case A u = −∆ u.

( A u , v ) = −
∫

Ω
∆ uv dx =

∫
Ω
∇u ·∇v dx

Firstly, let us derive the energy estimate for the heat equation in the by
recalling the weak form and then taking the test function to be the unknown u:∫

Ω
∂t u v dx+ κ

∫
Ω
∇u ·∇v dx =

∫
Ω
f v dx

∫
Ω
∂t uu dx+ κ

∫
Ω
|∇u|2 dx =

∫
Ω
f u dx

1

2

∫
Ω
∂t |u|2 dx+ κ

∫
Ω
|∇u|2 dx =

∫
Ω
f u dx

1

2

d

dt

∫
Ω
|u|2 dx+ κ

∫
Ω
|∇u|2 dx =

∫
Ω
f u dx

1

2

d

dt
‖u‖2L2(Ω) + κ|u|2H1(Ω) dx =

∫
Ω
f u dx

In the case of an homogeneous equation, the latest relation is directly the
instantaneous conservation of energy

1

2

d

dt
‖u‖2L2(Ω) + κ|u|2H1(Ω) = 0 (6.7)

with the first term being the variation of kinetic energy and the second term
being the dissipation of energy with diffusion coefficient κ. Integrating over the
time interval, we get the energy budget over [0, T ]:

1

2
‖u‖2L2(Ω) + κ

∫ T

0
|u|2H1(Ω) dt = 0 (6.8)

Let us consider now a non-zero source term f , then using the Cauchy–
Schwarz inequality yields the following relation:

1

2

d

dt
‖u‖2L2(Ω) + κ|u|2H1(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) (6.9)
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Since the bound should depend only on the data, the name of the game is to
absorb any term involving the unknown in the left-hand side. To this purpose,
inequalities like Hölder, Korn, Sobolev injections are to be used in order to
get a power of the proper Lp or Hs norm of the unknown. In the case of
coercive problems, the diffusion term giving directly the H1 seminorm (to a
factor depending on the diffusive coefficient), we should try to make it pop from
the right-hand side. Using first the Poincaré inequality (Lemma D.1.8) and then
the Young inequality (Lemma D.1.3), we can bound the right-hand side by the
data and the H1 seminorm,

‖f‖L2(Ω)‖u‖L2(Ω) ≤
1

2γ2c2
P

‖f‖2L2(Ω) +
γ2

2
|u|2H1(Ω) (6.10)

with γ a positive real number which can be chosen arbitrarily. Therefore, as
soon as we choose γ <

√
2κ, it is possible to subtract the second term of (6.10)

to the left-hand side of the estimate, given that

1

2

d

dt
‖u‖2L2(Ω) +

2κ− γ2

2
|u|2H1(Ω) ≤

1

2γ2c2
P

‖f‖2L2(Ω) (6.11)

Consequently, taking γ =
√
κ there exists a constant C > 0 depending on

the Poincaré constant, such that

d

dt
‖u‖2L2(Ω) + κ|u|2H1(Ω) ≤ C(cP )‖f‖2L2(Ω) (6.12)

This inequality yields a control of the L2 norm and H1 seminorm of the
solution at any time t of the time interval [0, T ]. Similarly to Equation (6.8), if
we integrate over the time, we get

‖u(T )‖2L2(Ω) − ‖u(0)‖2L2(Ω) + κ

∫ T

0
|u|2H1(Ω) dt ≤ C(cP )

∫ T

0
‖f‖2L2(Ω) dt

which, by defining,

‖v‖Lr(0,T ;Lp(Ω)) =

(∫ T

0
‖v‖rLp(Ω) dt

)1/r

(6.13)

can be rewritten as

‖u(T )‖2L2(Ω) + κ‖u‖2L2(0,T ;H1
0(Ω)) ≤ C(cP )‖f‖2L2(0,T ;L2(Ω)) + ‖u(0)‖2L2(Ω)

The solution is said to be bounded in L∞(0, T ; L2(Ω)), i.e. u ∈ L2(Ω) for almost
every t ∈ [0, T ], and is it also bounded in L2(0, T ; H1(Ω)) by the data (provided
that f ∈ L2(0, T ; L2(Ω)) of course).

Now, if we turn to the discrete case the estimate is not different aside from
the the discrete time derivative. The term for the discrete time derivative in the
case of backward Euler reads

1

δt

∫
Ω

(u− u∗)u dx

with δt the current time step, u and u∗ respectively the solution at the current
and previous time stepping.



6.2. A PRIORI STABILITY ESTIMATE 69

H2

Take v = −t∆u.

−
∫

Ω

(
∂tu−∆u

)
t ∆u dx

∫
Ω
t∇(∂tu) ·∇u dx+

∫
Ω
t|∆u|2 dx

t

∫
Ω
∂t(∇u) ·∇u dx+ t

∫
Ω
|∆u|2 dx

t

2

d

dt
|u|2H1(Ω) + |u|2H2(Ω)

1

2

d

dt

(
t|u|2H1(Ω)

)
− 1

2
|u|2H1(Ω) + t|u|2H2(Ω)

T

2
|u(T )|2H1(Ω) +

∫ T

0
t|u|2H2(Ω) dt− 1

2

∫ T

0
|u|2H1(Ω) =

0

2
|u(0)|2H1(Ω)︸ ︷︷ ︸

0

+t|u|2H2(Ω) = +
1

2

∫ T

0
|u|2H1(Ω) −

T

2
|u(T )|2H1(Ω)

Using the previous control in H1 allows us to conclude.





Chapter 7

Adaptive error control

In Section 5. we derived a priori error estimates which give a control of the
discretization error for any approximate solution. The order of convergence
given by the exponent O(hαT ) is an indication on “how close” to the continuous
solution any approximate solution is expected to be. Provided that we are able
to compute an approximate solution uh, we want now to evaluate the “quality”
of this solution in the sense of the residual of the equation: such an estimate is
thus called a posteriori as it gives a quality measure of a computed solution.

Question: How can we evaluate the quality of an approximate solution com-
puted on a given mesh to improve the accuracy?

7.1 A posteriori estimates

In Chapter 5 interpolation inequalities were established, such as

|u− Ih u|H1(Ω) ≤ C1hT |u|H2(Ω)

‖u− Ih u‖L2(Ω) ≤ C0h
2
T |u|H2(Ω)

in order to bound the right-and side of Céa’s inequality

‖u− uh‖H1(Ω) ≤ ‖u− v‖H1(Ω)

for v ∈ Vh. As such this provides directly a control on the H1 norm of the
approximation error eh = u−uh: the obtained estimation is called a priori error
estimate. This type of result is important to indicate the optimal convergence
order of sequence of discrete solutions to the exact solution as the mesh size tends
to zero (which means that the dimension of the solution space tends to infinity).
Since a priori error estimates depend on the exact solution to the problem they
does not provide a quality measure of the discrete solution which is computable.
Instead we would like to derive an error estimate which would hep us determine
if the computed discrete solution is accurate. This type of estimation is called
a posteriori error estimate: it consists of computing error indicators depending
on the discrete solution uh and the discretization, providing a quality measure
of uh.
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As an introduction, let us consider the exact solution u ∈ V and its ap-
proximation uh ∈ Vh and observe that there exists a direct relation between
the approximation error eh = u − uh ∈ V and the residual of the equation
R(uh) ∈ V ′,

( R(uh) , v ) = L(v)− a(uh, v)

for v ∈ V so that by consistency of the Galerkin method

( R(uh) , v ) = a(u− uh, v)

and in the case v ∈ Vh the inner-product cancels.

In case a(·, ·) is a coercive continuous bilinear form we can write:

1. Coercivity:
α‖u− uh‖2V ≤ a(u− uh, u− uh) (7.1)

a(u− uh, u− uh) = ( R(uh) , u− uh )

α‖eh‖V ≤ ‖R(uh)‖V ′ (7.2)

2. Continuity:
a(u− uh, u− uh) ≤M‖u− uh‖V (7.3)

‖R(uh)‖V ′ = sup
v∈V
v 6=0

a(u− uh, v)

‖v‖V

‖R(uh)‖V ′ ≤M‖eh‖V (7.4)

Using only the coercivity (7.1) and the continuity (7.3) of the bilinear form,
it follows from relations (7.2) and (7.4) that estimating R(uh) is equivalent to
estimating the approximation error in the norm of V . Given that uh is know
the quantity R(uh) is computable and can be used to derive a posteriori error
estimators.

Different strategies can be used for improving the accuracy:

• h-adaptivity: cells with largest error indicators are refined, i.e. divided
into smaller cells so that the mesh size is decreased: the mesh topology is
changed as new cells are inserted.

• p-adaptivity: polynomial order is increased on the cell so that the exponent
becomes larger in the error estimate.

• r-adaptivity: points are moved to get smaller cells where error indicators
are large: the mesh topology is left unchanged as the transformation is
only geometric.
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7.2 Residual-based error estimator for Poisson

Let u and uh be respectively the solutions to Problem (1.7) and the approxi-
mate Problem (4.1) by a Lagrange P1 discretization. Therefore the ideas of the
previous section are applied with V = H1

0(Ω) and Vh the space of continuous
piecewise linear functions vanishing on ∂Ω.

The objective of this section is to exhibit a control of the H1 seminorm of
the error

|eh|2H1(Ω) =

∫
Ω
∇eh ·∇eh dx

in terms of the residual of the equation R(uh).

By Galerkin orthogonality a(eh, vh) = 0 for vh ∈ Vh, in particular testing
against vh = Ih eh is possible so that

|eh|2H1(Ω) =

∫
Ω
∇eh ·∇(eh − Ih eh) dx

The immediate motivation for introducing this test function is to be able to use
interpolation inequalities.

Following the ideas of the previous section,

|eh|2H1(Ω) =

∫
Ω
∇u ·∇(eh − Ih eh) dx−

∫
Ω
∇uh ·∇(eh − Ih eh) dx

so that by consistency of the Galerkin method

|eh|2H1(Ω) =

∫
Ω
f (eh − Ih eh) dx−

∫
Ω
∇uh ·∇(eh − Ih eh) dx (7.5)

with the first term being L(v) and the second term a(uh, v).

Similarly to interpolation inequalities we consider the expression per element
K ∈ Th. The second term is integrated the by part,∫
K
∇uh ·∇(eh−Ih eh) dx =

∫
∂K

∇uh ·n (eh−Ih eh) dx−
∫
K

∆uh (eh−Ih eh) dx

and combined with the first term to obtain the element residual

RK(uh) = (f + ∆uh)|K

Summing again over the domain yields

|eh|2H1(Ω) =
∑
K∈Th

[∫
K
RK(uh) ∇(eh − Ih eh) dx+

∫
∂K

∇uh ·n (eh − Ih eh) dx

]
with the first term being a volume integral involving the residual of the equation,
and the second term being a surface integral involving jump of the normal
gradient of uh across the cell facets.
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Using first the Cauchy–Schwarz inequality

|eh|2H1(Ω) ≤ ‖R(uh)‖L2(Ω)‖eh − Ih eh‖L2(Ω)

then the interpolation inequality with constant CI

|eh|2H1(Ω) ≤ CI‖R(uh)‖L2(Ω)|heh|H1(Ω)

Consequenlty, we conclude

|eh|H1(Ω) ≤ CIhT ‖R(uh)‖L2(Ω)

7.3 Dual weighted residual estimate

7.3.1 Adjoint operator

Definition 7.3.1 (Adjoint operator). Let us define A?, the adjoint operator of
A as:

( Au , v ) = ( u , A?v )

Example 7.3.2 (Matrix of MN (R)). Let A = A be a real square matrix of
dimension N ×N and x, y ∈ RN :

( Ax , y ) = ( Ax , y ) = ( x , ATy ) = ( x , A?y )

with ( · , · ) the scalar product of RN , then A? = AT .

Example 7.3.3 (Weak derivative). LetA = Dx and u, v ∈ L2(Ω), with compact
support on Ω:

( Au , v ) = ( Dxu , v ) = − ( u , Dxv ) = ( u , A?v )

with ( · , · ) the scalar product of L2(Ω), then A? = −Dx.

Example 7.3.4 (Laplace operator). Let A = −∆ and u, v ∈ H1
0(Ω):

( Au , v ) = ( −∆u , v ) = ( ∇u , ∇v ) = ( u , −∆v ) = ( u , A?v )

with ( · , · ) the scalar product of L2(Ω), then A? = −∆. The Laplace operator
is said self-adjoint.

7.3.2 Duality-based a posteriori error estimate

We define the dual problem as seeking η satisfying A?η = eh, which gives a
control on the discretization error, using the definition of the adjoint operator
A?:

‖eh‖2L2(Ω) = ( eh , eh )

= ( eh , A?η )

= ( Aeh , η )

= ( Au , η )− ( Auh , η )

= ( f −Auh , η )

= ( R(uh) , η )
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with R(uh) = f−Auh. Moreover, if the dual problem is stable then there exists
a constant S such that the dual solution η is bounded:

‖η‖L2(Ω) ≤ S‖eh‖L2(Ω)

with the stability factor S satisfying

S = max
θ∈L2(Ω)

|η|H2(Ω)

‖θ‖L2(Ω)

Thus we can obtain a bound of the form:

‖eh‖L2(Ω) ≤ S‖R(uh)‖L2(Ω)

Combining this estimate with an interpolation inequality in Hα, we can
bound the discretization error in terms of the residual and the stability factor.
For instance, if we control the second derivatives of the dual solution, i.e. α = 2,

‖eh‖L2(Ω) ≤ CI ‖h2R(uh)‖L2(Ω)

|η|H2(Ω)

‖eh‖L2(Ω)

Consequently,

‖eh‖L2(Ω) ≤ CI S‖h2R(uh)‖L2(Ω)

7.4 Method

Definition 7.4.1 (h-adaptivity). Given a tolerance parameter εtol > 0 defining
a quality criterion for the computed solution uh, adapt the mesh such that it
satisfies:

εT =
∑
K∈Th

εK < εtol

Algorithm 7.4.2 (Adaptive mesh strategy). The following procedure applies:

• Generate an initial coarse mesh T 0
h .

• Perform adaptive iterations for levels ` = 0, · · · , `max :

1. Solve the primal problem with solution uh0 ∈ V `
h .

2. Compute the residual of the equation R(uh
`).

3. If dual weighted, solve the dual problem with solution η ∈W`
h.

4. Compute error indicators εK , ∀ K ∈ T `h .
5. If (εT ≥ εtol) :
→ Generate mesh T `+1

h by refining cells with largest values of εK .
Else :
→ Terminate adaptive iterations, `max = `.
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7.5 Exercises

Exercise 7.5.1 (Diffusion–Reaction problem on the unit interval).

Consider the following one-dimensional problem:

−∂x
(
a(x) ∂x u(x)

)
+ c(x) u(x) = f(x) , ∀ x ∈ Ω = [0, 1]

with a > 0, c ≥ 0, and supplemented with homogeneous Dirichlet boundary
conditions

u(0) = u(1) = 0

1. Write the weak formulation for the given problem and its approximation
by piecewise linear Lagrange elements.

2. Write the dual problem for unknown η.

3. Obtain the following estimate:

‖eh‖L2(Ω) ≤ ‖h2R(uh)‖L2(Ω)‖h−2(η − I1
h η)‖L2(Ω)

with the discretization error eh = u − uh, the equation residual R(uh) =
f+∂x

(
a ∂x uh

)
−c uh and the Lagrange P1 interpolation operator I1

h. First
you should test the dual equation against eh, then write the expression
element-wise to be able to define the residual.

4. Conclude that the a posteriori error estimate holds

‖eh‖L2(Ω) ≤ CI S‖h2R(uh)‖L2(Ω)

with CI the interpolation constant and S a stability factor that you will
define.



Chapter 8

Stabilized methods for advection
dominated problems

8.1 An advection–diffusion problem in one
dimension

Let us consider the following one-dimensional advection–diffusion problem:

−∂x
(
ν(x) ∂x u(x)

)
+ ∂x u(x) = f(x) , ∀ x ∈ Ω = (0, 1)

with viscosity ν > 0, and supplemented with boundary conditions:

u(0) = 1 , u(1) = 0

8.2 Coercivity loss

8.3 Stabilization of the Galerkin method

Galerkin ( Au , v ) = ( f , v )

Galerkin–Least squares ( Au , v + δAv ) = ( f , v + δAv )

( Au , v ) + ( Au , δAv ) = ( f , v ) + ( f , δAv )

Streamline Diffusion ( Au , v + δAv ) + ( νh∇u , ∇v ) = ( f , v + δAv )

Entropy viscosity ( Au , v ) + ( νh∇u , ∇v ) = ( f , v )

8.4 Exercises
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Chapter 9

Iterative solvers and Multigrid

9.1 Iterative methods

As seen in the previous lecture, direct methods can theoretically compute exact
solutions xRN to linear systems in the form of:

Ax = b

with matrix with real coefficients A ∈ MN (R) and given data b ∈ RN , in a
determined finite number of steps.

As computing the inverse of the matrix is unrealistic, several methods were
introduced based on factorizations of the type A = P Q where P and Q have a
structure simplifying the resolution of the system: diagonal, banded, triangular.

Methods like LU, Cholevski take advantage of the existence of a decom-
position involving triangular matrices while QR for example, involves the con-
strucion of an orthogonal basis. All methods prove to be quite expensive, hard
to parallelize due to the sequential nature of the algorithm and prone to error
propagation.

Iterative methods have been developed for:

• solving very large linear systems with direct methods is in practice not
possible due to the complexity in term of computational operations and
data,

• taking advantage of sparse system for which the structure of the matrix
can result in dramatic speed-up (this is the case for numerical schemes for
PDEs),

• using the fact that some systems like PDEs discretizations are already
formulated in an iterative fashion.

In this section, we discuss briefly the computational properties of iterative
methods for solving linear systems. Computing the exact solution is not a
requirement anymore but instead the algorithm is supposed to converge asymp-
totically to the exact solution: the algorithm is stopped when the approximate
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solution is deemed close enough to the exact solution in a sense to be defined. A
parameter used as stopping criterion triggers the completion of the algorithm.

The general idea of these methods is to introduce a splitting of the form:

A = G−H

such the solution x satisfies:

Gx = b+ Hx

Similarly to fixed-point methods we can define a sequence of approximate
solutions

(
xk
)
satisfying relations of the form:

Gx̂k+1 = b+ Hx̂k

with G invertible.
The matrix viewed as a linear mapping in RN , the counterpart of such

approaches is given by the Brouwer Theorem in finite dimension, where a con-
tinuous mapping f : Ω → Ω with Ω compact of RN admits a fixed-point x?

satisfying f(x?) = x? and is contracting.

Methods introduced depend on the iteration defined by the splitting and call
for several questions regarding the computational aspects:

1. How can the convergence be ensure?

2. How fast is the convergence?

3. How expensive is each iteration?

4. How does the algorithm behave with respect to numerical error?

The question of the convergence is addressed by proving an estimate on error
vectors in terms of iteration error ε̂k = x̂k+1 − x̂k or global error: εk = x̂k − x.
The convergence rate α means that C > 0, |εk+1| ≤ C|εk|α.

For example, substituting x̂k+1 = G−1b+ G−1Hx̂k in ε̂k = x̂k+1 − x̂k gives
a relation between successive iteration errors:

ε̂k = G−1H ε̂k−1

with M = G−1H the iteration matrix, and recursively ε̂k = (G−1H)k+1ε̂0. Con-
vergence is then conditioned to the existence of a contraction factor K < 1 such
that ‖ε̂k‖∞ ≤ K ‖ε̂k−1‖∞ ensuring decrease of the error.

In terms of the matrix M, this translate for the spectral radius ρ(M) as
ρ(M) < 1 since in that case limk→∞M

kε̂0 = 0RN . The smaller the spectral
radius, the faster the convergence.

Each method is described briefly and qualitatively with just the necessary
ingredients to discuss practical implementations.



9.2. RELAXATION METHODS 81

9.2 Relaxation methods

Consider the relations for each row i = 1, . . . , N :

xi =
1

aii

(
bi −

∑
i 6=j

aijxj

)
(9.1)

Let us introduce two methods based on constructing sequences of approxi-
mate solutions

(
x̂k
)
, k ≥ 1 given an initial guess x̂0 ∈ RN and then associated

relaxation methods.

9.2.1 Jacobi, methods of simultaneous displacements

x̂k+1
i =

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(9.2)

Convergence: the global error εk is controlled by

‖εk+1‖ ≤
∑
i 6=j

∣∣∣aij
aii

∣∣∣ ‖εk‖ ≤ Kk ‖ε1‖

It is then enough if the matrix is strictly diagonally dominant. Expressing the
iteration error gives directly that M = G−1H such that ρ(M) < 1.

Algorithm: the splitting is

A = D−H

with D = diag(A), thus
x̂k+1 = D−1(b+ Hx̂k)

Implementation:

1. Parallelization component by component is possible since there is only
dependency on x̂k.

2. Memory requirement for storing both x̂k+1 and x̂k at each iteration.

9.2.2 Gauss–Seidel, methods of sucessive displacements

In Jacobi iterations, notice that sequential ordered computation of terms

x̂k+1
i =

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(9.3)

involves components x̂kj which are also computed for x̂k+1 if j < i.

x̂k+1
i =

1

aii

(
bi −

∑
i<j

aijx̂
k+1
j −

∑
i>j

aijx̂
k
j

)
(9.4)
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Algorithm: the splitting is

A = L− R0

with L = D + L0 lower-triangular matrix and R0 strict upper-triangular matrix,
thus

x̂k+1 = D−1(b− L0x̂
k+1 + R0x̂

k)

or
L x̂k+1 = D−1(b+ R0x̂

k)

Recast under the usual form:

x̂k+1 = L−1(b+ R0x̂
k)

and the iteration matrix is M̄ = L−1R0.

Convergence: the global error εk is controlled by

‖εk+1‖ ≤

∑
i>j

∣∣∣aij
aii

∣∣∣
1−

∑
i<j

∣∣∣aij
aii

∣∣∣ ‖εk‖ ≤ K̄k ‖ε1‖

If the Jacobi contraction factor K < 1 then K̄ < 1. Expressing the iteration
error gives directly that M̄ = L−1R0 such that ρ(M̄) < 1.

Implementation:

1. Parallelization component by component is not possible easily since there
is serialization for each row i due to the dependency on x̂k+1

j , j < i.

2. Memory requirement is only for storing one vector of RN at each iteration.

9.2.3 Relaxation of Jacobi and Gauss-Seidel

Relaxation methods consists of adding a linear combination of the approximate
solution at the previous iteration to minimize the spectral radius for conver-
gence, using the relaxation parameter γ ∈ (0, 1).

1. Jacobi Over-Relaxation (JOR):

x̂k+1
i = (1− γ) x̂ki + γ

1

aii

(
bi −

∑
i 6=j

aijx̂
k
j

)
(9.5)

which reads in matricial form

x̂k+1 = Mγx̂
k + γD−1 b

with Mγ = (1− γ)I + γD−1H
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2. Successive Over-Relaxation (SOR):

x̂k+1
i = (1− γ) x̂ki + γ

1

aii

(
bi −

∑
i<j

aijx̂
k+1
j −

∑
i>j

aijx̂
k
j

)
(9.6)

which reads in matricial form

x̂k+1 = Mγx̂
k + γC b

with Mγ = (1+γD−1L0
−1)−1

[
(1−γ)I+γD−1R0

]
and C = (1+γD−1L0

−1)−1D−1

The relaxation parameter γ cannot be known a priori and is usually deter-
mined by heuristics.

9.2.4 Parallelization of Gauss–Seidel

Overcoming the serialization in Gauss–Seidel is possible if the matrix is sparse.
Taking advantage of the fact that components does not all possess connectivities
with each other: such dependencies can be built from the sparsity pattern then
decoupled graphs identified:

1. Component Dependency-Graph: generate a graph to reorder entries such
that dependencies are avoided.

2. Red–Black coloring: special case for two-dimensional problems.

9.3 Krylov-subspace methods

The idea of these methods is that the solution is decomposed on a sequence of
orthogonal subspaces.

If A is symmetric definite positive it induces the corresponding scalar prod-
uct:

〈 x , y 〉 = ( Ax , y ) = yTAx

with ( A· , · ) canonical scalar product in RN . The vectors (e1, . . . , eN ) are said
A-conjugate if eTj Aei = 0 for i 6= j: they are orthogonal for the scalar-product
induced by A.

9.3.1 Principle of descent methods: Steepest Gradient

Minimisation of the residual:

x? = argminx J(x) =
1

2
〈 x , x 〉 − 〈 b , x 〉

Construct a sequence of solutions to approximate minimization problems,
given x̂k:

J(x̂k+1) ≤ J(x̂k)

where x̂k+1 = x̂k + αk+1e
k+1, with αk+1 a descent factor and ek+1 a direction.

For the Steepest Gradient:
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1. take the direction given by −∇J(x̂k) = b − Ax̂k which is the residual
rk = b−Ax̂k, thus x̂k+1 = x̂k + αk+1rk.

2. choose the descent factor αk+1 minimizing the functional J(x̂k +αk+1rk):

αk+1 =
rTk b

rTk Ark

The speed of convergence is bounded by O
(
1− C(A)−1

)
with C(A) the con-

ditioning of A. The gradient direction may not be optimal, Conjugate Gradient
methods improve the choice of

(
ek
)
.

9.3.2 Conjugate Gradient

The Conjugate Gradient (CG) is a Krylov-subspace algorithm for symmetric
positive definite matrices.

Given x̂0,
(
x̂k
)
is q sequence of solutions to approximate k-dimensional

minimisation problems.

For the Conjugate Gradient:

1. take the direction ek+1 such that
(
e1, . . . , ek, ek+1

)
is A-conjugate, thus

x̂k+1 = x̂k + αk+1ek+1.

2. choose the descent factor αk+1 minimizing the functional J(x̂k +αk+1rk),
which is defined by

αj =
eTj b

eTj Aej

and with eTj b 6= 0 (unless the exact solution is reached).

The construction of
(
e1, . . . , ek+1

)
is done by orthogonalization of residuals

by Gram–Schmidt:

ek+1 = rk −
eTk Ark−1

eTk Aek
ek

so that rk+1 = b−Ax̂k+1 = rk − αk+1Aek+1

After N steps, the A-conjugate basis of RN is done and the exact solution
is reached:

x =
N∑
j=1

αjx̂
j

For any k, the speed of convergence is bounded by

O

(
1−

√
C(A)

1 +
√
C(A)

)2k

in the norm induced by A, with C(A) the conditioning of A.

The Conjugate Gradient can therefore be seen as a direct methods but in
practice:
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• the iterative computation of the A-conjugate basis suffers from the same
issue of numerical error propagation as the QR factorization leading to a
loss of orthogonality,

• the convergence is slow, which makes it unrealistic to compute the exact
solution for large systems,

so it is used as an iterative method.

Example algorithm on first steps:

1. Given x̂0 = 0, set r0 = b−Ax̂0 and e1 = r0,

2. Take x̂1 = α1e1, then α1e
T
1 Ae1 = eT1 b, thus

α1 =
rT0 b

rT0 Ar0

3. Compute the residual:
r1 = b−Ax̂1

4. Compute the direction:

e2 = r1 −
eT1 Ar0

eT1 Ae1
e1

5. Compute the factor:

α2 =
eT2 b

eT2 Ae2

6. Update the solution:
x̂2 = x̂1 + α2e2

7. . . .

The algorithm iteration reads:

1. Compute the residual:
rk = b−Ax̂k

2. Compute the direction:

ek+1 = rk −
eTk Ark−1

eTk Aek
ek

3. Compute the factor:

αk+1 =
eTk+1b

eTk+1Aek+1

4. Update the solution:
x̂k+1 = x̂k + αk+1ek+1
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which requires two matrix-vector multiplications per loop, Ax̂k then Aek+1

Using rk+1 = rk − αk+1Aek+1 saves one matrix-vector multiplication.

While the residual norm %k = ‖rk‖22 is big:

1. Compute the projection:
βk =

%k
%k−1

2. Compute the direction:

ek+1 = rk + βkek

3. Compute the factor:

w = Aek+1; αk+1 =
%k

eTk+1w

4. Update the solution:
x̂k+1 = x̂k + αk+1ek+1

5. Update the residual:
rk+1 = rk − αk+1w

9.3.3 Preconditioners

While seeing the Conjugate Gradient as a pure iterative method relieves from
concerns regarding orthogonality loss, the convergence is still slow as soon as
the condition number of the matrix is bad.

Preconditioning the system consists in finding a non-singular symmetrix
matrix C such that Ã = C−1AC−1 and the conjugate gradient is applied to

Ãx̃ = b̃

with x̃ = C−1x and b̃ = C−1b.

With:

• M = C2

• ek = C−1ẽk

• x̂k = C−1 ˜̂xk

• zk = C−1r̃k

• rk = Cr̃k = b−Ax̂k

and M is a symmetric positive definite matrix called the preconditioner.

While the residual norm %k = ‖rk‖22 is big:

1. Solve:
Mzk = rk
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2. Compute the projection:

βk =
zTk rk

zTk−1rk−1

3. Compute the direction:

ek+1 = zk + βkek

4. Compute the factor:

αk+1 =
zTk rk

eTk+1Aek+1

5. Update the solution:
x̂k+1 = x̂k + αk+1ek+1

6. Update the residual:
rk+1 = rk − αk+1w

The linear system Mzk = rk should be easy to solve and can lead to fast
convergence, typically O (()

√
N). Since

Mzk = b−Ax̂k

Then an iterative relation appears:

x̂k+1 = M−1
(
b−Ax̂k

)
therefore iterative methods like Jacobi, Gauss-Seidel and relaxation methods
can be used.

9.4 Power method

This method is used for finding the dominant eigenvalues of a matrix A ∈
MN (R) of N eigenvectors

(
vi
)
with associated eigenvalues

(
λi
)
ordered in de-

creasing module. The eigenvalues are either real or conjugate complex pairs.

Given a random vector x0, construct a sequence of vectors
(
x̂k
)
such that

x̂k+1 = Ax̂k

then ∀k ≥ 0

x̂k =
N−1∑
i=0

λki ξivi

for some coefficients
(
vi
)
.

Assume that λ0 is a dominant real eigenvalue and ξ0 6= 0, then

x̂k = λk0
(
ξ0v0 + rk

)
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with the residual rk defined as

rk = λ−k0

N−1∑
i=1

λki ξivi

and limk→∞ rk = ORN . To the limit x̂k+1 ≈ λ0x̂
k ≈ λ0ξ0v0 almost parallel to

the first eigenvector.

• This method is fast to compute the spectral radius for the Jacobi method
and relaxation parameters.

• The convergence is geometric and the speed depends on the ratio |λ1/λ0|.

• If the matrix is symmetric, the convergence speed can be doubled.

• If λ0 is very large or very small then taking high powers lead to numerical
issues, the algorithm requires a normalization.

9.5 Multigrid methods

TBD



Chapter 10

Mixed problems

This section is an opportunity to describe step by step the methodology de-
scribed throughout the course by studying the Stokes problem and to give an
overview of the difficulties arising in mixed problems.

Question: In the case of a problem involving a pair of unknown (u, p), is
there a criterion to chose the approximation spaces ?

10.1 The Stokes equations

10.1.1 Position of the problem

Let us consider the equations governing the velocity ū and pressure p of an in-
compressible creeping flow, subject to the gravity, in a domain Ω, open bounded
subset of Rd. As the flow is supposed to be sufficiently slow to neglect the ad-
vection compared to the diffusion, the momentum balance equation reduces to

−∇·σ(x) = %(x)g(x) (10.1a)

with the stress tensor
σ = τ − p I (10.1b)

consisting of a viscous stress tensor τ and a pressure term with I the identity
matrix ofMd(R). The incompressibilty constraint

∇· ū(x) = 0 (10.1c)

represents the mass conservation for an incompressible continuum. Moreover,
the relations are supplemented with boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN .
Dirichlet boundary conditions are enforced on ∂ΩD

ū = uD (10.1d)

with uD while Neumann boundary conditions on ∂ΩN

σ ·n = σN (10.1e)

with σN a surface force acting on ∂ΩN .
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According to the method developed during the course, we would like first of
all to derive a weak formulation by testing Equations (10.1a) and (10.1c) against
smooth functions, such that we consider

−
∫

Ω
∇· τ ·v dx+

∫
Ω
∇p ·v dx =

∫
Ω
%g ·v dx , ∀ v ∈ V

and ∫
Ω
∇· ū q dx = 0 ,∀ q ∈M

Integrating by parts to report the derivatives on the tests functions:

−
∫

Ω
∇· τ ·v dx = −

∫
Ω
∇· (τTv) dx+

∫
Ω
τ : ∇v dx

which uses the tensor identity, given under repeated indices form:

∂j (τij)vi = ∂j (τjivi)− τij∂j vi

Owing to relation

−
∫

Ω
∇· τ ·v dx = −

∫
∂Ω
τ ·n ·v ds+

∫
Ω
τ : ∇v dx

and

−
∫

Ω
∇p ·v dx = −

∫
∂Ω
pn ·v ds+

∫
Ω
p∇·v dx

the weak formulation of Problem (10.1) reads:

∣∣∣∣∣∣∣∣∣∣∣

Find (ū, p) ∈W ×M such that:∫
Ω
τ : ∇v dx−

∫
Ω
p∇·v dx =

∫
Ω
%g ·v dx+

∫
∂ΩN

σN ·n ds , ∀ v ∈ V∫
Ω
∇· ū q dx = 0 , ∀ q ∈M

In the case of a Newtonian fluid the stress tensor reads

σ(ū, p) = 2νε(ū)− pI

with the strain rate tensor

ε(ū) =
1

2
(∇ū+ ∇T ū)

which is symmetric.
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10.1.2 Abstract weak formulation

As a first step we can reformulate the previous problem as:∣∣∣∣∣∣∣∣∣
Find (ū, p) ∈W ×M such that:

a(ū,v) + b(v, p) = L(v) ,∀ v ∈ V

b(ū, q) = 0 ,∀ q ∈M

defining a( · , · ) as the continuous bilinear form:

a : W × V → R

(ū,v) 7→
∫

Ω
τ : ∇v dx

b( · , · ) as the continuous bilinear form:

b : V ×M → R

(v, p) 7→ −
∫

Ω
p∇·v dx

and L( · ) as the continuous linear form:

L : V → R

v 7→
∫

Ω
%g ·v dx+

∫
∂ΩN

σN ·n ds

Choice of the functional spaces: — Regularity: as in Section 1 we chose
the test and solution space so that the integrals make sense. Owing to these
requirements, W and V should be subspaces of H1(Ω)d and M should be a
subspace of L2(Ω), — Boundary conditions: the boundary condition on ∂ΩN

appears in the weak formulation as a linear form so that the solution will satisfy
the constraint σ ·n = σN , while the boundary condition is included in the
definition of the functional space W :

W =
{
v ∈ H1(Ω)d : ū = uD , on ∂ΩD

}
By homogenizing the Dirichlet boundary condition, we can lift the solution ū
so that the problem is rewritten to seek a velocity u in V .

The generalized Stokes problem reads then:∣∣∣∣∣∣∣∣∣
Find (u, p) ∈ V ×M such that:

a(u,v) + b(v, p) = L(v) , ∀ v ∈ V

b(u, q) = 〈 Ψ , p 〉M ′,M , ∀ q ∈M

(10.2)

with (V ,M) a pair of Hilbert spaces to be determined, a( · , · ) bilinear form
continuous on V ×V , L( · ) linear form continuous on V and Ψ a given continuity
constraint in M ′.
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10.1.3 Well-posedness in the continuous setting

Let us change the space in which test functions are chosen to the space of
divergence-free functions of V to satisfy the continuity constraint:

V 0 = {v ∈ V : b(v, q) = 0 ,∀ q ∈M}

The bilinear form b is continuous on V 0 ×M , i.e. b(v, q) ≤ ‖v‖V 0‖q‖M , thus
Im(b) is closed and V = V 0 ⊕ V ⊥0 . The first relation of the Stokes problem
becomes then:

a(u,v) + b(v, p)︸ ︷︷ ︸
0

= L(v) ,∀ v ∈ V 0

Therefore, the new abstract problem with solenoidal test functions reads:∣∣∣∣∣∣∣∣∣
Find (u, p) ∈ V ×M such that:

a(u,v) = L(v) ,∀ v ∈ V 0

b(u, q) = 〈 Ψ , p 〉M ′,M ,∀ q ∈M

Theorem 10.1.1 (Well-posedness of constrained problem). Let us define the
space

V Ψ =
{
v ∈ V : b(v, q) = 〈 Ψ , p 〉M ′,M ,∀ q ∈M

}
supposed non-empty and consider a( · , · ) a bilinear form coercive on V . The
problem ∣∣∣∣∣∣

Find (u, p) ∈ V Ψ ×M such that:

a(u,v) = L(v) ,∀ v ∈ V 0

admits a unique solution.

Proof. The given problem satisfies the assumptions of the Lax–Milgram Theo-
rem.

We denote by L(V ×W;R), the space of bilinear form continuous on V ×W
which is a Banach space for the operator norm

‖a‖V,W = sup
v∈V
w∈W

a(v, w)

‖v‖V ‖w‖W

Proposition 10.1.2 (Babuska–Necas–Brezzi condition). The bilinear form a ∈
L(V ×W;R) satisfies the (BNB) condition if there exists β > 0 such that

inf
w∈W

sup
v∈V

a(v, w)

‖v‖V ‖w‖W
≥ β



10.2. THE DISCRETE INF-SUP CONDITION 93

Theorem 10.1.3 (Existence). If V Ψ is non-empty, a( · , · ) is a bilinear form
coercive on V with coercivity constant α, and the bilinear form b( · , · ) satisfies
Proposition (10.1.2), i.e.

∃β > 0 : inf
q∈M̃

sup
v∈V

b(v, q)

‖v‖V ‖q‖M
≥ β

then Problem (10.1.3) admits solution pairs (u, p) ∈ V × M such that u is
unique, satisfying

‖u‖V ≤
1

α
‖L‖V ′ +

1

α
(1 + ‖a‖V ,V ) ‖Ψ‖M ′

and any p ∈M can be written as p = p̃+M0, p̃ ∈M⊥0

‖p̃‖M ≤
(

1 +
‖a‖V ,V
α

)(
1

β
‖L‖V ′ +

1

β2
‖a‖V ,V ‖Ψ‖M ′

)

Indeed, p playing the role of a potential, it is defined up to a constant. Then
we can interpret the space M0 as the space of functions on which gradients are
vanishing which is the space of constants on Ω, so that we seek p̃ ∈ M̃, with
M̃ = M⊥0 defined as the equivalent class: ∀ p, q ∈M , p ≡ q ⇔ p = q + C : C ∈
R.

Consequently,

Theorem 10.1.4 (De Rham – [4] page 492). The continuous bilinear forms on
W1,p(Ω) which are zero on ker(∇· ) are gradients of functions in Lp

′∫
=0

(Ω).

10.2 The discrete Inf-Sup condition

10.2.1 Results

Let us consider an approximation of Problem 10.2 by a Galerkin method:∣∣∣∣∣∣∣∣∣
Find (uh, ph) ∈ V h × M̃h such that:

a(uh,vh) + b(vh, ph) = L(vh) ,∀ vh ∈ V h

b(uh, qh) = 〈 Ψ , ph 〉M ′,M ,∀ qh ∈Mh

with (V h, M̃h) a pair of approximation spaces to be chosen and the discrete
divergence operator Bh,

b(uh, qh) = ( Bhu , qh )

Theorem 10.2.1 (Well-posedness). If Ψh ∈ Im(Bh) then Problem (10.2.1)
admits solutions (uh, ph) ∈ V h × M̃h such that uh is unique and the pressure
can be written as ph = p̃h + ker(BT

h) with p̃h ∈ ker(BT
h)⊥ unique.
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Theorem 10.2.2 (Convergence – [7] page 21). Let (u, p) ∈ V × M̃ be the
solution of Problem (10.1) and (uh, ph) ∈ V h × M̃h the solution of discrete
Problem (10.2.1) and we denote by αh the coercivity constant of a( · , · ) on V 0,h

and by βh the constant of the discrete Inf-Sup condition. If Ψh ∈ Im(Bh) then
the following two consistency estimates hold:

‖u− uh‖V h
≤ C1 inf

vh∈V h

‖u− vh‖V + C2 inf
qh∈Mh

‖p− qh‖M

‖ph − ph‖M̃h
≤ C3 inf

vh∈V h

‖u− vh‖V + C4 inf
vh∈Mh

‖p− qh‖M

with constants

C1 =

(
1 +
‖a‖V ,V
αh

)(
1 +
‖b‖V ,M
βh

)

C2 =
‖b‖V ,M
αh

C3 =
‖a‖V ,M
βh

C1

C4 = 1 +
‖b‖V ,M
βh

+
‖a‖V ,M
βh

C2

The previous result shows then that satisfying the discrete Inf-Sup condi-
tion is crucial to ensure optimal convergence of the numerical scheme, i.e. the
discretization error decreases with the mesh size hT . Indeed, if the parameter
βh is not bounded from below then it is clear that values tending to zero will
degrade the consistency estimates.

10.2.2 Commonly used pairs of approximation spaces

Velocity space V h Pressure space Mh Inf-Sup stable Comment
P1 P1 No

P1 P0 No “Locking effect”

Pk+1 Pk Yes k ≥ 1, “Taylor–Hood”

10.3 Exercises



Appendix A

Definitions

A.1 Mapping

Definition A.1.1 (Mapping). Let E and F be two sets, a mapping

f : E → F
x 7→ f(x)

is a relation which, to any element x ∈ E, associates an element y = f(x) ∈ F .

Definition A.1.2 (Linear mapping). Let E and F be two K-vector spaces, the
mapping f : E → F is linear if:

1. ∀ x, y ∈ E, f(x+ y) = f(x) + f(y)

2. ∀ λ ∈ K, y ∈ E, f(λx) = λf(x)

A.2 Spaces

Definition A.2.1 (Vector space (on the left)). Let (K,+,×) be a field i.e.
defined such that (K,+) is an Abelian additive group and (K \ {0K},×) is an
Abelian multiplicative group, K = R or K = C.

(K,+) (K \ {0K},×)

“+” commutative and associative “×” commutative and associative
0K neutral for ‘+” 11K neutral for ‘×”

“+” admits an opposite “×” admits an inverse
“×” is distributive with respect to “+”

(E,+, · ) is a vector space on (K,×) if:

1. (E,+) is an additive Abelian group (same properties as (K,+)).

2. The operation · : K× E → E satisfies:

distributive w.r.t “+E” on the left λ · (u+ v) = λ ·u+ λ · v
distributive w.r.t “+K” on the right (λ+ µ) ·u = λ ·u+ µ ·u

associative w.r.t “×” (λ× µ) ·u = λ · (µ ·u)
11K neutral element on the left 11K ·u = u
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In short the vector space structure allows writing any u ∈ E as linear com-
binations of elements {vi} of E called vectors with elements {λi} of K called
scalars as coefficients,

u =
∑
i

λivi

and both the multiplications for vectors and scalars are distributive with respect
to the additions. In this document we only consider real vector spaces, K = R.

Definition A.2.2 (Norm). Let E be a K-vector space, the application

‖ · ‖ : E → R+

is a norm if the following properties are satisfied:

1. Separation: ∀ x ∈ E, ( ‖x‖E = 0 )⇒ ( x = 0E )

2. Homogeneity: ∀ λ ∈ K, ∀ x ∈ E, ‖λx‖E = |λ| ‖x‖E

3. Subadditivity: ∀ x, y ∈ E, ‖x+ y‖E ≤ ‖x‖E + ‖y‖E

Note A.2.3. The third property is usually called triangle inequality.

Definition A.2.4 (Equivalent norms). Let E be a K-vector space, norm ‖ · ‖EE
is said equivalent to ‖ · ‖E if there exist C1, C2 > 0 such that:

C1‖u‖E ≤ ‖u‖EE ≤ C2 ‖u‖E , ∀ u ∈ E

Definition A.2.5 (Seminorm). Let E be a K-vector space, the application

‖ · ‖ : E → R+

is a seminorm if it satisfies properties (A.2.2).2 and (A.2.2).3.

Definition A.2.6 (Scalar product). Let E be a R-vector space, the bilinear
mapping

( · , · ) : E × E → R

is a scalar (or inner) product of E if it satisfies the following three properties:

1. Symmetry: ∀ x, y ∈ E, ( x , y ) = ( y , x )

2. Positivity: ∀ x ∈ E, ( x , x ) ≥ 0

3. Definiteness: ( ( x , x ) = 0 )⇔ ( x = 0 )



Appendix B

Duality

B.1 In finite dimension

Definition B.1.1 (Dual space). Let E be a finite dimensional real vector space,
its dual E? is the space of linear forms on E, denoted by L(E;R).

Definition B.1.2 (Dual basis). Let E be a finite dimensional real vector space,
dim(E) = N and B = (e1, · · · , eN ) a basis of E. Let us denote, for any i, j ∈
[[1, N ]], by:

e?i : E → R
ej 7→ δij

the i-th coordinate. The dual family of B, B? = (e?1, · · · , e?N ) is a basis of E?.

Thus we can write any element u ∈ E as:

u =
N∑
i=1

e?i (u)ei

Proving that B? is a basis of E? requires that {ei} generates E? and that its
elements are linearly independent. The corollary of the first condition is that
dim(B?) = N .
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Function spaces

C.1 Banach and Hilbert spaces

Definition C.1.1 (Cauchy criterion). Let (E, ‖ · ‖E) be a normed vector space
and (vn)n∈N be a sequence of element of E which satisfies:

∀ ε > 0, ∃N such that ∀ p, q ≥ N , ‖vp − vq‖E ≤ ε

then (vn)n∈N is a Cauchy sequence in E.

Definition C.1.2 (Banach space). A Banach space (E, ‖ · ‖E) is a normed
vector space with is complete with respect to the norm ‖ · ‖E , i.e. Cauchy
sequences converge in E.

Definition C.1.3 (Hilbert space). Let E be a K-vector space and ( · , · ) be
a sesquilinear form on the left (or bilinear form if K = R),

( x1 + x2 , y ) = ( x1 , y ) + ( x2 , y )

( x , y1 + y2 ) = ( x , y1 ) + ( x , y2 )

( λx , y ) = λ( x , y )

( x , λy ) = λ̄( x , y )

which is also positive definite on E,

∀ x 6= 0E , ( · , · ) > 0

then (E, ( · , · )) is a pre-Hilbertian space. Moreover, if E is complete with
respect to the norm defined by ( · , · ), it is a Hilbert space.

Definition C.1.4 (Hilbertian norm).

1

2

(
‖x‖2E + ‖y‖2E

)
= ‖x+ y

2
‖2E + ‖x− y

2
‖2E
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Remark C.1.5. This is basically the parallelogram identity stating that the
sum of the square of the length diagonals is equal to the sum of the square of the
length of all the sides. This equality is useful to check that a norm is generated
from a scalar product. For Banach spaces like Lp, this becomes the Clarkson
inequality.

Theorem C.1.6 (Projection on a convex subset). Let H be a Hilbert space and
K ⊂ H be a convex closed non-empty subset, ∀ x ∈ H there exists a unique
x0 ∈ K such that

‖x− x0‖H = inf
y∈K
‖x− y‖H

with x0 the projection of x onto K and we denote it by x0 = PK x

C.2 Spaces of continuous functions

Ck(Ω) =
{
u ∈ C0(Ω) : u′ ∈ Ck−1(Ω)

}
C∞c (Ω) = {u ∈ C∞(Ω) with compact support in Ω}

C.3 Lebesgue spaces

Lp(Ω) =

{
u :

∫
Ω
|u(x)|p dx <∞

}
Remark C.3.1. Lebesgue spaces Lp, 1 ≥ p ≥ ∞ are Banach spaces for the
norm

‖ · ‖Lp(Ω) =

(∫
Ω
|u(x)|p

)1/p

and L2 is a Hilbert space endowed with the scalar product

( u , v ) L2(Ω) =

∫
Ω
u v dx (C.1)

C.4 Hilbert–Sobolev spaces

Hs(Ω) =
{
u ∈ L2(Ω) : Dαu ∈ L2(Ω) , 1 ≤ α ≤ s

}
C.5 Sobolev spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) , 1 ≤ α ≤ m}

Remark C.5.1. Hs spaces are Ws,2 spaces.
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Inequalities

D.1 Useful inequalities in normed vector spaces

Lemma D.1.1 (Cauchy–Schwarz). Let E be a K-vector space, any positive
sesquilinear form ( · , · ) on E satisfies the inequality:

|( u , v )E | ≤ ‖u‖E‖v‖E

Remark D.1.2. In particular any scalar product satisfies the Cauchy–Schwarz
inequality. For example:

( u , v ) L2(Ω) =

∫
Ω
u v dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω)

Lemma D.1.3 (Young). Let a, b > 0 be two real numbers:

ab ≤ 1

p

(a
γ

)p
+

1

q

(
bγ
)q

with
1

q
+

1

p
= 1 and γ > 0.

Remark D.1.4. In particular, the following inequality is commonly used for
energy estimates:

ab ≤ 1

2

(a
γ

)2
+

1

2
(bγ)2

Lemma D.1.5 (Generalized Hölder). Let u ∈ Lp(Ω), v ∈ Lq(Ω), with 1 ≤ p <
∞, then:

‖u v‖Lr(Ω) ≤ ‖u‖Lq(Ω)‖v‖Lq(Ω)

with
1

r
=

1

p
+

1

q

Lemma D.1.6 (Minkowski).

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω)
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Remark D.1.7. The previous result is basically the triangle inequality for the
Lp– norm.

Lemma D.1.8 (Poincaré). Let Ω be an open bounded subset, for any 1 ≤ p <∞
there exists a constant real number cP > 0 such that ∀ u ∈W1,p

0 (Ω):

cP ‖u‖Lp(Ω) ≤ ‖∇u‖Lp(Ω)

Remark D.1.9. As a Corollary usefull for the Poisson problem that we address,
we get that ‖∇u‖L2(Ω) defines an equivalent norm to ‖u‖H1(Ω) on H1

0(Ω).

Lemma D.1.10 (Clarkson). Let 1 < p < ∞, and u, v be two functions of
Lp(Ω), then:

1. for p ≥ 2

‖u+ v

2
‖2Lp(Ω) + ‖u− v

2
‖2Lp(Ω) ≤

1

2

(
‖u‖2Lp(Ω) + ‖v‖2Lp(Ω)

)
2. for p < 2

‖u+ v

2
‖2

Lp′ (Ω)
+ ‖u− v

2
‖2

Lp′ (Ω)
≤
(

1

2
‖u‖2Lp(Ω) +

1

2
‖v‖2Lp(Ω)

)1/(p−1)

Remark D.1.11. These inequalities are basically parallelogram inequalities
generalized to Lp spaces.
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Tensor formulæ

This short chapter is a reminder of tensor notations and identities that are useful
for usual partial differential equations.

E.1 Operators

A tensor of order p denotes an element of Rd1×···×dp , with di dimension on the
i-th axis: a zero-order tensor is a scalar, a first-order tensor is a vector, and a
second-order tensor is a matrix. The following operators are defined for second
order tensors.

E.1.1 Tensor product

(order p+ q)
(P⊗Q)ijkl = PijQkl ei⊗ej⊗ek⊗el (E.1)

E.1.2 Dot product (simple contraction)

(order p+ q − 2)
(P ·Q) = Tr(p,p+1)(P⊗Q) (E.2)

with Tr(p,p+1)(·) the Trace operator with respect to indices p and p+1. In index
notation, it consists of a summation on indices p and p+ 1 (contraction),

(P ·Q) =
∑
j

PijQjk (E.3)

Since summation occurs on a pair of indices, the order of the resulting tensor is
reduced by two.

E.1.3 Double-dot product (double contraction)

(order p+ q − 4)

(P : Q) = Tr(p−1,p+1)(Tr(p,p+2)(P⊗Q)) (E.4)
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with two contractions in this case, corresponding in index notation to summa-
tions over two pairs of indices,

(P : Q) =
∑
i

∑
j

PijQij (E.5)

so that the order of the resulting tensor is reduced by four. If P = Q this
corresponds to the Frobenius norm.

E.1.4 Gradient

The gradient of a scalar field is the first order tensor

∇f = [∂i f ]i (E.6)

while the gradient of a vector field is the second order tensor

∇v = [∂j vi]ij (E.7)

such that the derivative is applied to the last index.

E.1.5 Divergence

∇· (T) = ∇T : G = Tr(p,p+1)(∇T) (E.8)

with G the metric tensor, which entries are the scalar product of the chosen
basis vectors. If the canonical basis is chosen, it is simply the identity matrix,
therefore the divergence is simply the sum of diagonal entries of the gradient.

E.1.6 Curl (Rotational)

∇∧T = −∇T : H (E.9)

with H is the orientation tensor, which entries are the mixed product of the
chosen basis vectors. The curl operator is also denoted as ∇×.

E.2 Identities

E.2.1 First order tensors

• Gradient of a vector field:

∇(fv) = f∇v + v⊗∇f (E.10)

which corresponds to the expansion of the derivative of a product, as the
index notation shows

∂j (fvi) = f∂j vi + vi∂j f (E.11)
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• Divergence of a vector field:

∇· (fv) = f∇· (v) + v · ∇f (E.12)

which corresponds to the expansion of the derivative of a product, as the
index notation shows

∂i (fvi) = f∂i vi + vi∂i f (E.13)

• Identity of the advection operator:

(v · ∇)v =
1

2
∇(v · v) + (∇∧ v) ∧ v (E.14)

• Identity for the Laplace operator:

∆v = ∇(∇·v)−∇ ∧ (∇∧ v) (E.15)

• Divergence of a vector product:

∇· (u ∧ v) = v · (∇∧ u)− u · (∇∧ v) (E.16)

• Curl of of vector product:

∇∧ (u ∧ v) = (∇·v)u− (∇·u)v + (v · ∇)u− (u · ∇)v (E.17)

E.2.2 Second order tensors

• Dyadic/scalar mixed product:

(u⊗v) ·w = (v ·w)u (E.18)

• Gradient of a tensor field:

∇(T · v) = T · ∇v + v · ∇TT (E.19)

• Divergence of a tensor field:

∇· (v ·T) = v ·∇· (T) + T : ∇v (E.20)

which corresponds to the expansion of the derivative of a product, as the
index notation shows

∂j (viTij) = vi∂j Tij + Tij∂j vi (E.21)

• Divergence of a dyadic product:

∇· (u⊗v) = (∇·v)u+ (v · ∇)u (E.22)
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