Chapter 3

Finite Element spaces

In the previous lectures we have studied the properties of coercive problems in
an abstract setting and described Ritz and Galerkin methods for the approx
imation of the solution to a PDE, respectively in the case of symmetric and
non symmetric bilinear forms.

The abstract setting reads:
Find wuy, € Vi, C H such that:
a(up,vp) = L(vy) , Yo €V
such that:

e 1}, is a finite dimensional approximation space characterized by a dis
cretization parameter h,

e a(-, ) is a continuous bilinear form on Vj;, x V},, coercive w.r.t || - ||v,
e [(-)is a continuous linear form.

Under these assumptions existence and uniqueness of a solution to the ap
proximate problem holds owing to the Lax Milgram Theorem and wuy, is called
discrete solution. Provided this abstract framework which allows us to seek
approximate solutions to PDEs, we need to chose the approximate space Vj,
and construct a basis B = (g1, ,¢n) of V;, on which the discrete solution is

decomposed:
Ny,

Up = E Uj Pj
J=1

with Ny, = dim(V}), {u;} a family of Ny, real numbers called global degrees of
freedom and {p;} a family of Ny, elements of V}, called global shape functions.

To construct the approximate space V}, we need two ingredients:
1. An admissible mesh 7, generated by a tesselation of domain 2.

2. A reference finite element (K, ﬁ, f]) to construct a basis of Vj,.
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3.1 Admissible mesh

Definition 3.1.1 (Mesh). Let © be polygonal (d = 2) or polyhedral (d = 3)
subset of R%, we define 7}, (a triangulation in the simplicial case) as a finite family
{K;} of disjoints non empty subsets of  named cells. Moreover N}, = {N;}
denotes the set a vertices of T, and e, = {0y = K N L} denotes the set of
edges.

Definition 3.1.2 (Mesh size).

h1 = glea%(l(dlam(K))

Definition 3.1.3 (Geometrically conforming mesh). A mesh is said geometri
cally conforming if two neighbouring cells share either exactly one vertex, exactly
one edge, or in the case d = 3 exactly one facet.

The meaning of the previous condition is that there should not be any “hang
ing node” on a facet. Moreover some theoretical results require that the mesh
satisfies some regularity condition: for example, bounded ratio of equivalent ball
diameter, Delaunay condition on the angles of a triangle, ...

3.2 Reference Finite Element

Definition 3.2.1 (Finite Element [4] page 19, [2] page 69). A Finite Element
consists of a triple (K, P,X), such that

e K is a compact, connected subset of R? with non empty interior and with
regular boundary (typically Lipshitz continuous),

e P is a finite dimensional vector space, dim(P) = N, of functions p : K —
R, which is the space of shape functions,

e Yisaset {o}; of linear forms,
oj: P —- R , Vje[l,N]
p = pj=04p)

which is a basis of £(P,R), the dual of P.

Practically, the definition constructs first the Finite Element on a cell K
which can be an interval (d = 1), a polygon (d = 2) or a polyhedron (d = 3)
(Example: triangle, quadrangle, tetrahedron, hexahedron). Then an approxi
mation space P (Example: polynomial space) and the local degrees of freedom
¥ are chosen (Example: value at N geometrical nodes {a;}, 0i(¢;) = ¢j(a;)).
The local shape functions {p;} are then constructed so as to ensure unisolvence.
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Proposition 3.2.2 (Determination of the local shape functions). Let {o;},;<n
be the set of local degrees of freedoms, the local shape functions are defined as
{¢i}i<icn @ basis of P such that,

Ui((pj) :51" s Vi,j S Hl,Nﬂ

Definition 3.2.3 (Unisolvence). A Finite Element is said unisolvent if for any
vector (aq,---,ay) € RV there exists a unique representant p € P such that
oi(p) =, ¥V € [1,N].

The unisolvence property of a Finite Element is equivalent to construct X
as dual basis of P, thus we can express any function p € P as

N
p=> o)
7=1

the unique decomposition on {¢;}, with p; = o;(p) the j th degree of freedom.
In other words, the choice of ¥ = {o;} ensures that the vector of degree of
freedoms (p1,---,pn) uniquely defines a function of P. Defining ¥ as dual
basis of P is equivalent to:

dim(P) = card(X) = N (3.1a)

VpeP, (0ilp) =0,1<i<N)=(p=0) (3.1b)
in which Property (3.1a) ensures that ¥ generates £(P,R) and Property (3.1b)
that {o;} are linearly independent.

Usually the unisolvence is part of the definition of a Finite Element since
chosing the shape functions such that o;(¢;) = d;; is equivalent.

Definition 3.2.4 (Local interpolation operator [4] page 20).

g V(K) —- P
N

v > Zaj(v) ©j
Jj=1

Remark 3.2.5. The notation using the dual basis can be confusing but with
the relation o;(p) = p(a;) in the nodal Finite Element case it is easier to under
stand that the set X of linear forms defines how the interpolated function 7, u
“represents” its infinite dimensional counterpart u through the definition of the
degrees of freedom. In the introduction, we defined simply u; = o;(u) without
expliciting it. A natural choice is the pointwise representation u; = u(a;) at
geometrical nodes {a;}, which is the case of Lagrange elements, but it is not the
only possible choice ! For example, o; can be:

e a mean flux trough each facet of the element (Raviart Thomas)

o;(v) = /U-ng ds
3
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e a mean value over each facet of the element (Crouzeix Raviart)

o;(v) = /gv ds

e a mean value of the tangential component over each facet of the element
(Nédelec)

oi(v) = /U~T§ ds
¢

A specific choice of linear form allows a control on a certain quantity: divergence
for the first two examples, and curl for the third. The approximations will then
not only be H® conformal but also include the divergence or the curl in the
space.

3.3 Transport of the Finite Element

In practice to avoid the construction of shape functions for any Finite Element
(K,P,X), K € Ty, the local shape functions are evaluated for a reference Finite
Element (K,ﬁ, 2) defined on a reference cell K and then transported onto
any cell K of the mesh. For example, in the case of simplicial meshes the
reference cell in one dimension is the unit interval [0, 1], in two dimension the
unit triangle with vertices {(0,0),(0,1),(1,0)}. In so doing, we can generate
any Finite Element (K,P,¥) on the mesh from (K, P, 32) provided that we can

construct a mapping such that (K,P,X) and (K,75, Y)) are equivalents.

Definition 3.3.1 (Equivalent Finite Elements). Two Finite Elements (K, P, X)

and (K,?S, i) are said equivalent if there exists a bijection Tk from K onto K
such that:

VpeP, poTk € P

and
Y =Txg(®)

By collecting the local shape functions and local degrees of freedom from all
the generated (K,P,%) on the mesh, we then construct global shape functions
and global degrees of freedom and thus the approximation space Vj,.

For Lagrange elements the transformation used to transport the Finite El

ement on the mesh is an affine mapping, but this is not suitable in general
!

3.4 Numerical integration

The contributions are integrated numerically, usually using quadrature rules.
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3.5 Method

Algorithm 3.5.1 (Finite Element Method). Solving a problem by a Finite
Element Method is defined by the following procedure:

1. Choose a reference finite element (K, P,3).

2. Construct an admissible mesh Ty, such that any cell K € Ty, is in bijection
with the reference cell K.

3. Define a mapping to transport the reference finite element defined on K
onto any K € Ty, to (K, P,X).

4. Construct a basis for Vi, by collecting all the finite element basis of finite
elements {(K,P,%X)} ke, sharing the same degree of freedom.

Remark 3.5.2. The Finite Element approximation is said H conformal if V}, C
H and is said non conformal is V;, ¢ H. In this latter case the approximate
problem can be constructed by building an approximate bilinear form

ah('v'):a('v')+5('7')

as described, for instance, in the case of stabilized methods for advection
dominated problems in Section ?77?.
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3.6 Exercises

Exercise 3.6.1.
Let us consider the Poisson problem posed on the domain Q = (0,1):

—u"(z) = f(z), Ve (3.2a)
with f € L?(Q), and satisfying the boundary condition on 95
u(z) =0, Ve o (3.2b)

The domain € is discretized into a family of subintervals [z;, 7;41],7 = 0,--- , N,
and Problem 3.2 is approximated by a linear Lagrange finite element method.
The approximation space is the space of continuous piecewise linear functions

Vi, = {%’}ogigN with

T — T .
Sl o <ae<a,i#0
Ti — Xi—1

‘Pl(x) = Ll 7 b . wi<ax<zig, i#£N (3.3)
Ti+1 — T4

0 otherwise

(a) Find the weak formulation of Problem 3.2.
(b) Prove that a(u —up,p;) =0, fori=1,--- /N — 1.
(c) Prove that for any v € H'([0,1]) N C°([0,1]), i =1,--- ,N — 1:

a(v, p;) = —(—v(@i—1 + 2v(z;) — v(zi41)) (3.4)

S =

Let us consider f(z) = z*:

(a) Find the expression of the solution to Problem 3.2.

(b) Give the expression of the linear system obtained by the suggested method
on a uniform grid, i.e. x; =ih,i=0,---, N.

(¢) Implement a program computing the discrete solution wuy using the sug
gested method.

(d) Plot the discrete solution up, the exact solution u, and the error |u — uyp|
with N = 8,16, 32.

(e) Implement a function computing the L? error norm [Ju—u||12(q) and plot
the value for different values of N.

(f) Modify the program to handle non uniform grids, given a list of node
coordinates {z;} ;< -

(g) Based on the error |u — uy| suggest a distribution of the nodes {Titocicns
repeat the same study, then compare the error values.



