
Chapter 2

Ritz and Galerkin methods for
elliptic problems

In Section 1. we have reformulated the Dirichlet problem to seek weak solutions
and we showed its well-posedness. The problem being infinite dimensional, it is
not computable.

Question: Can we construct an approximation to Problem (1.1) which is
also well-posed?

2.1 Approximate problem

In the previous section we showed how a classical PDE problem such as Problem
(1.1) can be reformulated as a weak problem. The abstract problem for this class
of PDE reads then: ������

Find u ∈ V , such that:

a(u, v) = L(v) , ∀ v ∈ V
(2.1)

with a( · , · ) a coercive continuous bilinear form on V ×V and L( · ) a continuous
linear form on V .

Since in the case of the Poisson problem the bilinear form is continuous,
coercive and symmetric, the well-posedness follows directly from Riesz–Fréchet
representation Theorem. If the bilinear form is still coercive but not symmetric
then we will see that the well-posedness is proven by the Lax–Milgram Theorem.

But for the moment, let us focus on the symmetric case: we want now to
construct an approximate solution un to the Problem (2.1) then prove that the
solution to the obtained approximate problem exists and is unique.

2.2 Ritz method for symmetric bilinear forms

2.2.1 Variational formulation and minimization problem

Ritz’s idea is to replace the solution space V (which is infinite dimensional) by
a finite dimensional subspace Vn ⊂ V , dim(Vn) = n.
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Problem (2.2) is the approximate weak problem by Ritz’s method:
�������

Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) , ∀ vn ∈ Vn
(2.2)

with a( · , · ) a coercive symmetric continuous bilinear form on V × V and L( · )
a continuous linear form on V .

Provided that the bilinear form is symmetric, Problem (2.3) is the equivalent
approximate variational problem under minimization form:

����������

Find un ∈ Vn, Vn ⊂ V , such that:

J(un) ≤ J(vn) , ∀ vn ∈ Vn

with J(vn) =
1

2
a(vn, vn)− L(vn)

(2.3)

Proposition 2.2.1. Equivalence of weak and variational formulations Problem
2.2 and 2.3 are equivalent.

Before moving to the well-posedness of the approximate variational prob-
lem some definitions are introduced to caracterize the solution of mimimization
problems, then the equivalence of formulations for the Poisson problem with
homogeneous Dirichlet boundary conditions in one dimension of space is given
as example.

Definition 2.2.2 (Directional derivative). Let V be a Hilbert space, for any
u ∈ V the relation:

J �(u;w) = lim
ε→0

1

ε

�
J(u+ εw)− J(u)

�
(2.4)

defines J �(·; ·) : V × V → R derivative of the functional J at u in the direction
w.

Definition 2.2.3 (Fréchet derivative). Let V be a Hilbert space, J is Fréchet-
derivable at u if:

J(u+ v) = J(u) + Lu(v) + ε(v)�v�V (2.5)

with Lu a continuous linear form on V and ε(v) → 0 as v → 0.

Proposition 2.2.4 (Optimality conditions). Let V be a Hilbert space and J a
twice Fréchet-derivable functional, u0 ∈ V is solution to

inf
v∈V

J(v) (2.6)

if the following conditions are satisfied:

1. J �(u0) = 0 (Euler condition).
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2. ( J ��(u)w , w ) ≥ 0 (Legendre condition).

Both conditions can be interpreted in terms of the simpler case of real func-
tions: the first one requires that the first derivative cancels so that u0 is an
extremum, while the second condition is a convexity argument. Moreover, a suf-
ficient condition is given by ( J ��(ũ)w , w ) ≥ 0 for any ũ in a neighbourhood of u0
(strong Legendre condition). The coercivity of the bilinear form a(·, ·) is an even
stronger condition equivalent to: ∃α > 0 such that ( J ��(ũ)w , w ) ≥ α(w,w).

Example 2.2.5. Equivalence of weak and variational formulations for the Dirich-
let problem posed on Ω = (0, 1). Let us derive the expression of J �(u;w) defined
by (2.5) given ε > 0 and w ∈ V .

First let us verify that if u solves the minimization problem then it solves
the corresponding weak problem.

J(u+ εw) =
1

2

�

Ω

�
(u+ εw)�

�2
dx−

�

Ω
f(u+ εw) dx

=
1

2

�

Ω

�
(u�)2 + 2εu�w� + ε2(v�)2

�
dx−

�

Ω
fu dx− ε

�

Ω
fw dx

= J(u) + ε

��

Ω
u�w� dx−

�

Ω
fw dx

�
+

1

2
ε2

�

Ω
(w�)2 dx

Writing the derivative gives,

lim
ε→0

1

ε

�
J(u+ εw)− J(u)

�
= lim

ε→0

��

Ω
u�w� dx−

�

Ω
fw dx+

1

2
ε|w|H1

0

�

so that the Euler condition holds if for any w ∈ V = H1
0(Ω)

J �(u;w) =
�

Ω
u�w� dx−

�

Ω
fw dx = 0

In this case the functional J is Fréchet-derivable as Lu is linear.

Secondly, the other way around considering that the weak formulation holds
for the test function εw ∈ V then in the relation

J(u+ εw) = J(u) + ε

��

Ω
u�w� dx−

�

Ω
fw dx

�
+

1

2
ε2

�

Ω
(w�)2 dx

the second term of the right-hand side cancels, and the third term is non-
negative, then

J(u+ εw) ≥ J(u)

so that u is solution to the minimization problem.

The same result holds for the continuous problem in V and the approxima-
tion in Vn since only requirement is to work in a Hilbert space. Actually the
following result for the Dirichlet problem is due to Stampacchia which charac-
terizes the solution to the weak problem in term of minimization.
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Theorem 2.2.6 (Stampacchia). Let a(·, ·) be a bilinear coercive continuous
form on H a Hilbert space, and K be a convex closed non-empty subset of H.
Given φ ∈ H �, ∃!u ∈ K such that

a( u , v − u ) ≥ � φ , v − u �H�,H , ∀ v ∈ K

and if a is symmetric then

u = argmin
v∈K

�
1

2
a( v , v ) − � φ , v �H�,H

�

The solution can be seen as satisfying a minimization of energy, also called
Dirichlet principle.

2.2.2 Well-posedness

Theorem 2.2.7 (Well-posedness). Let V be a Hilbert space and Vn a finite di-
mensional subspace of V , dim(Vn) = n, Problem (2.2) admits a unique solution
un.

Proof. Given that the weak formulation differs only by introducting finite di-
mensional subspaces the proof could conclude directly with the Lax–Milgram
Theorem. Instead we show that there exists a unique solution to the equivalent
minimisation problem (2.3) by explicitly constructing an approximation un ∈ Vn

decomposed uniquely on a basis (ϕ1, · · · ,ϕn) of Vn:

un =

n�

j=1

uj ϕj

In practice this basis is not any basis but the one constructed to define the
approximation space Vn: to one chosen approximation space will correspond one
carefully constructed basis. In so doing, the constructive approach paves the
way to the Finite Element Method and is thus chosen as a prequel to establishing
the Galerkin method.

Writing the minimisation functional for un reads:

J(un) =
1

2
a(un, un)− L(un)

=
1

2
a(

n�

j=1

ujϕj ,
n�

i=1

uiϕi)− L(
n�

j=1

uiϕi)

=
1

2

n�

i=1

n�

j=1

a(ujϕj , uiϕi)−
n�

j=1

L(uiϕi)

=
1

2

n�

i=1

n�

j=1

ujuia(ϕj ,ϕi)−
n�

j=1

uiL(ϕi)

Collecting the entries by index i, the functional can be rewritten under
algebraic form:

J(u) =
1

2
u

T
Au− u

T
b
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where u is the vector of algebraic unknowns also calleddegrees of freedom

u
T
= (u1, . . . , un)

and A, b are respectively the stiffness matrix and the load vector:

Aij = a(ϕj ,ϕi),bi = L(ϕi)

Proposition 2.2.8 (Convexity of a quadratic form).

J(u) = u
T
Ku− u

T
G+ F

is a strictly convex quadratic functional iff K symmetric positive definite non-
singular.

As a consequence to Proposition 2.2.8 J is a strictly convex quadratic form,
then there exists a unique u ∈ Rn : J(u) ≤ J(v), ∀ v ∈ Rn, which in turns
proves the existence and uniqueness of un ∈ Vn.

The minimum is achieved with u satisfying Au = b which corresponds to
the Euler condition J �(un) = 0

The general setting for Galerkin methods will be to construct approximate
solutions of the form:

un =

n�

j=1

ujϕj (2.8)

where {uj}1≤j≤n is a family of real numbers and B = (ϕ1, . . . ,ϕn) a basis of Vn.
Since Vn is finite dimensional, there exist a unique decomposition (2.8) on the
basis. This basis can be chosen in a way that seems natural so that in practice
we will construct a unique basis for a given type of space Vn and which will
define the approximation properties (the basis itself is not unique but we need
to choose one that possesses good properties).

2.2.3 Convergence

The question in this section is: considering a sequence of discrete solutions
(un)n∈N, with each un belonging to Vn, can we prove that un → u in V as n →
∞? The ingredients are similar to the Lax principle: stability and consistency
implies convergence.

Lemma 2.2.9 (Estimate in the energy norm). Let V be a Hilbert space and Vn

a finite dimensional subspace of V . We denote by u ∈ V , un ∈ Vn respectively
the solution to Problem (2.1) and the solution to approximate Problem (2.2).
Let us define the energy norm � · �a = a( · , · )1/2, then the following inequality
holds:

�u− un�a ≤ �u− vn�a , ∀ vn ∈ Vn
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Proof. Using the coercivity and the continuity of the bilinear form, we have:

α�u�2V ≤ �u�2a ≤ M�u�2V

then �u�a is norm equivalent to �u�V , thus (V, � · �a) is a Hilbert space.

a(u− PVn u, vn) = 0 , ∀ vn ∈ Vn

by definition of PVn as the orthogonal projection of u onto Vn with respect to
the scalar product defined by the bilinear form a.

�u− un�2a = a(u− un, u− vn) + a(u− un, vn − un) , ∀ vn ∈ Vn

Since the second term of the right-hand side cancels due to the consistency of
the approximation, we deduce un = PVn u, then un minimizes the distance from
u to Vn:

�u− un�2a ≤ �u− vn�2a , ∀ vn ∈ Vn

which means that the error estimate is optimal in the energy norm.

Lemma 2.2.10 (Céa’s Lemma). Let V be a Hilbert space and Vn a finite dimen-
sional subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to
Problem (2.1) and the solution to approximate Problem (2.2) , then the following
inequality holds:

�u− un�V ≤
�

M

α
�u− vn�V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.

Proof. Using the coercivity and continuity of the bilinear form, we bound the
left-hand side of the estimate (2.2.9) from below and its right-hand side from
above:

α�u− un�2V ≤ M�u− vn�2V ∀ vn ∈ Vn

Consequently:

�u− un�V ≤
�

M

α
�u− vn�V , ∀ vn ∈ Vn

Lemma (2.2.10) gives a control on the discretisation error en = u−un which
is quasi-optimal in the V -norm (i.e. bound multiplied by a constant).

Lemma 2.2.11 (Stability). Any solution un ∈ Vn to Problem (2.2) satisfies:

�un�V ≤ �L�V �

α

Proof. Direct using the coercivity and the dual norm.
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2.2.4 Method

Algorithm 2.2.12 (Ritz’s method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . ,ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b as a minimisation problem

2.3 Galerkin method

2.3.1 Formulation

We use a similar approach as for Ritz’s method, except that the abstract problem
does not require the symmetry of the bilinear form. Therefore we cannot endow
V with a norm defined from the scalar product based on a( · , · ).

Problem (2.9) is the approximate weak problem by Galerkin’s method:
�������

Find un ∈ Vn, Vn ⊂ V , such that:

a(un, vn) = L(vn) , ∀ vn ∈ Vn
(2.9)

with a( · , · ) a coercive continuous bilinear form on V ×V and L( · ) a continuous
linear form on V .

2.3.2 Convergence

The following property is merely a consequence of the consistency, as the con-
tinuous solution u is solution to the discrete problem (i.e. the bilinear form
is the “same”), but it is quite useful to derive error estimates. Consequently,
whenever needed we will refer to the following proposition:

Proposition 2.3.1 (Galerkin orthogonality). Let u ∈ V , un ∈ Vn respectively
the solution to Problem (2.1) and the solution to approximate Problem (2.9),
then:

a( u− un, vn ) = 0 , ∀ vn ∈ Vn

Proof. Direct consequence of the consistency of the method.

Lemma 2.3.2 (Consistency). Let V be a Hilbert space and Vn a finite dimen-
sional subspace of V . we denote by u ∈ V , un ∈ Vn respectively the solution to
Problem (2.1) and the solution to approximate Problem (2.9), then the following
inequality holds:

�u− un�V ≤ M

α
�u− vn�V , ∀ vn ∈ Vn

with M > 0 the continuity constant and α > 0 the coercivity constant.
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Proof. Using the coercivity:

α�u− un�2V ≤ a(u− un, u− un)

≤ a(u− un, u− vn) + a(u− un, vn − un)� �� �
0

≤ a(u− un, u− vn)

≤ M�u− un�V �u− vn�V
�u− un�V ≤ M

α
�u− vn�V

The only difference with the symmetric case is that the constant is squared
due to the loss of the symmetry.

2.3.3 Method

Algorithm 2.3.3 (Galerkin’s method). The following procedure applies:

1. Chose an approximation space Vn

2. Construct a basis B = (ϕ1, . . . ,ϕn)

3. Assemble stiffness matrix A and load vector b

4. Solve Au = b
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2.4 Exercises

Exercise 2.4.1. Given an abstract weak problem posed in a Hilber space V :
�������

Find u ∈ V , V , such that:

a(u, v) = L(v) , ∀ v ∈ V

and a minimization problem
����������

Find u ∈ V , V , such that:

J(u) ≤ J(v) , ∀ v ∈ V

with J(v) =
1

2
a(v, v)− L(v)

1. Show the equivalence of the formulation when a is bilinear s.p.d and L
linear.

2. Show that if V = Rn the minimization problem can be recast into a stricly
convex quadratic form J(u) = 1

2u
TAu − uT b and the unique solution

satisfies Au = b.

Exercise 2.4.2. Let us consider the Poisson problem posed on the domain
Ω = (0, 1):

−u��(x) = f(x), ∀ x ∈ Ω (2.10a)

with f ∈ L2(Ω), and satisfying the boundary condition on ∂Ω

u(x) = 0, ∀ x ∈ ∂Ω (2.10b)

1. For f ≡ 1 give a solution to Problem (2.10).

2. Find the weak formulation (WF) of Problem (2.10) and specify the func-
tion spaces.

3. Is this problem well-posed?

4. Justify that it is possible to reformulate this problem into a minimization
problem?

5. Derive the minimisation functional J(u).

6. Let w1 = a1 sin(πx). Find the value of the amplitude a1 minimizes J(w1).
How does a1 compare with the maximum of the exact solution u?

7. Show that J(w1) > J(u) and interpret.

8. Let φi = sin(2i − 1)πx), i ∈ N. Verify that these function are infinitely
differentiable and satisfy φi(0) = φi(1) = 0. Compute coefficients

aij =

� 1

0
φ�
i(x)φ

�
j(x) dx , bi =

� 1

0
φi(x) dx

9. Given a finite dimensional space Vn = span{φi}1≤i≤n, express the linear
system obtained by the Galerkin method and give the solution.




