
Exercise set 2, TMA4220

September 15, 2015

1. The Poincaré inequality. In this exercise you will prove Poincaré’s inequality: If Ω ⊂ Rd is an open,
bounded domain then there exists a constant C > 0 such that

‖u‖L2 (Ω) 6 C |u|H1 (Ω) (1)

for every u ∈ H1(Ω). Here, |u|H1 (Ω) denotes the H1 seminorm
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Informally, in H1
0 on bounded domains, you can bound the size of a function by its derivative.

(a) We assume first thatΩ = [−M, M]2, the box in R2 with center 0 and side lengths 2M (for some M > 0).
Show that there is a C > 0 such that for all u ∈ H1

0 (Ω),
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dy1 ∀ x = (x1, x2) ∈ Ω.

Hint: Use the fundamental theorem of calculus and Cauchy’s inequality.
(b) Integrate over x2 and show that∫ M
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dy ∀ x1 ∈ [−M, M].

(c) Now integrate over x1 and conclude with (1).
(d) If Ω ⊂ R2 is a general open, bounded domain, you can find some M > 0 such that Ω ⊂ [−M, M]2

(why? Can you come up with an explicit candidate for such an M?). For a function u ∈ H1
0 (Ω), find

some function ū ∈ H1
0 ([−M, M]2) such that u = ū in Ω and

‖ū‖L2 ([−M,M ]2) = ‖u‖L2 (Ω) and |ū|H1 ([−M,M ]2) = |u|H1 (Ω) .

Explain why this implies that the Poincaré inequality also holds on Ω.

Remarks:

• The Poincaré inequality on bounded domains Ω ⊂ Rd is shown in an analogous fashion.
• Note that the constant C grows (linearly) as the box becomes larger.
• Ifu ∈ Hk

0 (Ω) for any k > 1 then ∂u
∂xi
∈ Hk−1

0 (Ω) for any i = 1, . . . , d, andmore generally, Dαu ∈ Hk−|α |
0

for any multiindex α of size |α | 6 k. Thus, we can iterate Poincaré’s inequality and find that there is a
constant C > 0 such that

‖u‖L2 (Ω) 6 C |u|H1 (Ω) 6 · · · 6 C |u|H k (Ω) ∀ u ∈ Hk
0 (Ω),

where |u|H k (Ω) is the Hk -seminorm,

|u|H k (Ω) :=
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(where the sum goes over all multiindices α of size equal to k).
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2. Exercises on elliptic problems.
For each of the following problems, find a weak formulation of the PDE and choose an appropriate test/trial
space V where u and v live. Show that the conditions of the Lax-Milgram theorem are satisfied, thus proving
that there exists a unique (weak) solution of the PDE. Unless otherwise stated, Ω ⊂ Rd is an open, bounded,
connected domain and f ∈ L2(Ω).

(a) The biharmonic equation:



∆2u = f in Ω,
u = ∂u

∂n = 0 on ∂Ω
(2)

where ∆2u = ∆(∆u).
(b) The convection-diffusion equation:




−∆u + a · ∇u = f in Ω,
u = 0 on ∂Ω

(3)

where a = a(x) : Ω → Rd is a given differentiable function, the velocity field, satisfying ∇ · a(x) = 0
for all x.

(c) The nonhomogeneous Laplace equation:




−∆u = f in Ω,
u = g on ∂Ω

(4)

where g : ∂Ω→ R is a given function.
Hint: We may assume that Ω and g are “nice enough” so that there exists a function ḡ : Ω → R such
that ḡ���∂Ω = g.

(d) Laplace’s equation with mixed, nonhomogeneous boundary conditions:




−∆u = f in Ω,
u = g on ΓD,
∂u
∂n = h on ΓN

(5)

where ΓD, ΓN are disjoint parts of the boundary of Ω such that ΓD ∪ ΓN = ∂Ω, and g : ΓD → R and
h : ΓN → R are given functions.

3. The Neumann problem
Consider the Laplace equation with Neumann boundary conditions,




−∆u = f in Ω,
∂u
∂n = 0 on ∂Ω.

(6)

(a) Find a condition on f that must be satisfied for (6) to make sense.
Hint: Integrate the PDE over x ∈ Ω and use the divergence theorem.

(b) There is no unique solution of (6). Why?
(c) Consider the one-dimensional problem




− d2

dx2
u = f in (a, b),

du
dx = 0 at x = a, b.

(7)

Find an explicit solution of (7) by using the fundamental theorem of calculus. Show that we can make
the solution unique by additionally fixing the value of u at one of the endpoints x = a or x = b.
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