Exercise set 2, TMA4220

September 15, 2015

1. The Poincaré inequality. In this exercise you will prove Poincaré's inequality: If $\Omega \subset \mathbb{R}^{d}$ is an open, bounded domain then there exists a constant $C>0$ such that

$$
\begin{equation*}
\|u\|_{L^{2}(\Omega)} \leqslant C|u|_{H^{1}(\Omega)} \tag{1}
\end{equation*}
$$

for every $u \in H^{1}(\Omega)$. Here, $|u|_{H^{1}(\Omega)}$ denotes the H^{1} seminorm

$$
|u|_{H^{1}(\Omega)}:=\|\nabla u\|_{L^{2}(\Omega)}=\left(\int_{\Omega} \sum_{i=1}^{d}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x\right)^{1 / 2} .
$$

Informally, in H_{0}^{1} on bounded domains, you can bound the size of a function by its derivative.
(a) We assume first that $\Omega=[-M, M]^{2}$, the box in \mathbb{R}^{2} with center 0 and side lengths $2 M$ (for some $M>0$). Show that there is a $C>0$ such that for all $u \in H_{0}^{1}(\Omega)$,

$$
|u(x)|^{2} \leqslant C \int_{-M}^{M}\left|\frac{\partial u}{\partial x_{1}}\left(y_{1}, x_{2}\right)\right|^{2} d y_{1} \quad \forall x=\left(x_{1}, x_{2}\right) \in \Omega .
$$

Hint: Use the fundamental theorem of calculus and Cauchy's inequality.
(b) Integrate over x_{2} and show that

$$
\int_{-M}^{M}\left|u\left(x_{1}, x_{2}\right)\right|^{2} d x_{2} \leqslant C \int_{\Omega}\left|\frac{\partial u}{\partial x_{1}}(y)\right|^{2} d y \quad \forall x_{1} \in[-M, M] .
$$

(c) Now integrate over x_{1} and conclude with (1).
(d) If $\Omega \subset \mathbb{R}^{2}$ is a general open, bounded domain, you can find some $M>0$ such that $\Omega \subset[-M, M]^{2}$ (why? Can you come up with an explicit candidate for such an M ?). For a function $u \in H_{0}^{1}(\Omega)$, find some function $\bar{u} \in H_{0}^{1}\left([-M, M]^{2}\right)$ such that $u=\bar{u}$ in Ω and

$$
\|\bar{u}\|_{L^{2}\left([-M, M]^{2}\right)}=\|u\|_{L^{2}(\Omega)} \quad \text { and } \quad|\bar{u}|_{H^{1}\left([-M, M]^{2}\right)}=|u|_{H^{1}(\Omega)} .
$$

Explain why this implies that the Poincaré inequality also holds on Ω.

Remarks:

- The Poincaré inequality on bounded domains $\Omega \subset \mathbb{R}^{d}$ is shown in an analogous fashion.
- Note that the constant C grows (linearly) as the box becomes larger.
- If $u \in H_{0}^{k}(\Omega)$ for any $k \geqslant 1$ then $\frac{\partial u}{\partial x_{i}} \in H_{0}^{k-1}(\Omega)$ for any $i=1, \ldots, d$, and more generally, $D^{\alpha} u \in H_{0}^{k-|\alpha|}$ for any multiindex α of size $|\alpha| \leqslant k$. Thus, we can iterate Poincare's inequality and find that there is a constant $C>0$ such that

$$
\|u\|_{L^{2}(\Omega)} \leqslant C|u|_{H^{1}(\Omega)} \leqslant \cdots \leqslant C|u|_{H^{k}(\Omega)} \quad \forall u \in H_{0}^{k}(\Omega),
$$

where $|u|_{H^{k}(\Omega)}$ is the H^{k}-seminorm,

$$
|u|_{H^{k}(\Omega)}:=\left(\int_{\Omega} \sum_{\alpha:|\alpha|=k}\left|D^{\alpha} u\right|^{2} d x\right)^{1 / 2}
$$

(where the sum goes over all multiindices α of size equal to k).

2. Exercises on elliptic problems.

For each of the following problems, find a weak formulation of the PDE and choose an appropriate test/trial space V where u and v live. Show that the conditions of the Lax-Milgram theorem are satisfied, thus proving that there exists a unique (weak) solution of the PDE. Unless otherwise stated, $\Omega \subset \mathbb{R}^{d}$ is an open, bounded, connected domain and $f \in L^{2}(\Omega)$.
(a) The biharmonic equation:

$$
\begin{cases}\Delta^{2} u=f & \text { in } \Omega, \tag{2}\\ u=\frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Delta^{2} u=\Delta(\Delta u)$.
(b) The convection-diffusion equation:

$$
\begin{cases}-\Delta u+a \cdot \nabla u=f & \text { in } \Omega, \tag{3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a=a(x): \Omega \rightarrow \mathbb{R}^{d}$ is a given differentiable function, the velocity field, satisfying $\nabla \cdot a(x)=0$ for all x.
(c) The nonhomogeneous Laplace equation:

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{4}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

where $g: \partial \Omega \rightarrow \mathbb{R}$ is a given function.
Hint: We may assume that Ω and g are "nice enough" so that there exists a function $\bar{g}: \bar{\Omega} \rightarrow \mathbb{R}$ such that $\left.\bar{g}\right|_{\partial \Omega}=g$.
(d) Laplace's equation with mixed, nonhomogeneous boundary conditions:

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{5}\\ u=g & \text { on } \Gamma_{D}, \\ \frac{\partial u}{\partial n}=h & \text { on } \Gamma_{N}\end{cases}
$$

where Γ_{D}, Γ_{N} are disjoint parts of the boundary of Ω such that $\overline{\Gamma_{D}} \cup \overline{\Gamma_{N}}=\partial \Omega$, and $g: \Gamma_{D} \rightarrow \mathbb{R}$ and $h: \Gamma_{N} \rightarrow \mathbb{R}$ are given functions.
3. The Neumann problem

Consider the Laplace equation with Neumann boundary conditions,

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{6}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

(a) Find a condition on f that must be satisfied for (6) to make sense.

Hint: Integrate the PDE over $x \in \Omega$ and use the divergence theorem.
(b) There is no unique solution of (6). Why?
(c) Consider the one-dimensional problem

$$
\begin{cases}-\frac{d^{2}}{d x^{2}} u=f & \text { in }(a, b), \tag{7}\\ \frac{d u}{d x}=0 & \text { at } x=a, b .\end{cases}
$$

Find an explicit solution of (7) by using the fundamental theorem of calculus. Show that we can make the solution unique by additionally fixing the value of u at one of the endpoints $x=a$ or $x=b$.

