
Exercise set 1, TMA4220

August 21, 2015

Notation:

• For a set Ω, we write L2(Ω) = {v : Ω → R such that ‖v‖L2 (Ω) < ∞}, where ‖v‖L2 (Ω) =
(∫
Ω
|v(x) |2dx

)1/2
.

If u,v ∈ L2(Ω) we write (u,v) =
∫
Ω

u(x)v(x) dx. The Cauchy-Schwartz inequality says that |(u,v) | 6
‖u‖L2 ‖v‖L2 .

• C(Ω) is the set of continuous functions defined in Ω. For k ∈ N, Ck (Ω) is the set of continuous functions
defined in Ω such that every derivative up to the k-th order is also continuous in Ω.

• If Ω is a bounded, open interval on R then H1(Ω) is the set of functions u ∈ C(Ω̄) such that du
dx is piecewise

continuous and bounded. It may be shown that this definition is equivalent to

H1(Ω) :=
{
u ∈ L2(Ω) such that its weak derivative du

dx lies in L2(Ω)
}

(see exercise 1.d for the definition of weak derivative).

• H1
0 (Ω) is the set of functions in H1(Ω) that vanish (i.e. are zero) on the boundary of Ω.

Exercises:

1. Exercises on Lebesgue and Sobolev spaces.

(a) For which α ∈ R does the function f (x) := |x |α lie in L2([−1,1])? What about L2([1,∞))? What
about L2(B1(0)), where B1(0) = {x ∈ R2 : |x | < 1} is the unit ball in R2?

(b) If D ⊂ R is a closed, bounded subset of R and f ∈ C(D), show that f ∈ L2(D).

(c) Let Ω ⊂ Rd be an open, bounded set and let u ∈ C(Ω), the space of continuous functions on Ω. Show
that if

∫
Ω

uvdx = 0 for all v ∈ C(Ω) then u ≡ 0 on Ω.

(d) Let Ω ⊂ R be some open interval. A weak derivative of a function u : Ω→ R is a function v : Ω→ R
such that ∫

Ω

u(x)ϕ′(x) dx = −

∫
Ω

v(x)ϕ(x) dx

for every ϕ ∈ C∞c (Ω), the set of infinitely differentiable functions with compact support inΩ. Show that
the weak derivative (if it exists) is unique. Show that if u is continuously differentiable (i.e. u ∈ C1(Ω)),
then du

dx is its weak derivative.

(e) Let

f1(x) :=



x if 0 < x < 1
1 if 1 6 x < 2,

f2(x) :=



x if 0 < x < 1
2 if 1 6 x < 2

for x ∈ Ω := (0,2). Show that f1, f2 ∈ L2(Ω). Show that f1 ∈ H1(Ω) by finding its weak derivative,
and that f1 < H2(Ω). Show that f2 < H1(Ω).

2. Classical and weak solutions.
Consider the equation




−u′′ + u = f in Ω := (0,1)
du
dx (0) = du

dx (1) = 0
(1)

1

for some f ∈ L2(Ω). We consider the following weak formulation of (1):

find u ∈ V such that (u′,v′) + (u,v) = (f ,v) ∀ v ∈ V, (2)

where V = H1(Ω). Show that if u is a weak solution of (1) (i.e., it satisfies (2)) and in addition u ∈ C2(Ω),
then u is a classical solution of (1) (i.e., it satisfies (1) pointwise). Note carefully that the Neumann boundary
condition does not appear explicitly in the weak formulation (2) – it is a natural boundary condition.

3. Finite difference and finite element methods for Poisson’s equation.
Consider the one-dimensional Poisson equation




−u′′ = f in (0,1)
u(0) = u(1) = 0

(3)

for some f ∈ L2((0,1)). Write down a finite difference method for (3) on a uniform mesh, and compare
with a P1 finite element method. What are the differences and similarities?

4. Optimal rate of convergence for Poisson’s equation. (Taken from C. Johnson, exercise 1.19.)
Consider the model problem (3). We discretize the domain Ω = (0,1) into nodes 0 < x1 < x2 · · · < xN < 1
with size h = maxi=1, ...,N+1(xi − xi−1) (here, we set x0 = 0, xN+1 = 1). For each i = 1, . . . ,N , let
Gi ∈ H1

0 (Ω) be the solution of the weak formulation∫
Ω

G′iv
′ dx = v(xi) ∀ v ∈ H1

0 (Ω) (4)

(note that the right-hand side point xi is fixed). It may be shown that Gi is given by

Gi (x) =



(1 − xi)x for 0 6 x 6 xi
xi (1 − x) for xi < x 6 1.

(Gi is called the Green’s function for (3) and satisfies (formally) −G′′i = δxi , where δxi is the Dirac delta
function at xi .)

(a) Consider a finite element approximation of (3) with the test space Vh = X1
h

. Show that in fact Gi ∈ X1
h

.

(b) Let u ∈ H1
0 be the weak solution of (3), and let uh ∈ X1

h
be the finite element approximation of (3).

Then also e := u − uh lies in H1
0 (Ω), so we can let v = e in (4). Show that in fact

e(xi) = (e′,G′i) = 0 ∀ i = 1, . . . ,N.

This remarkable fact – a special property of (3) – means that the finite element approximation is actually
exact at the nodes x1, x2, . . . , xN .

(c) Show that, as a consequence of the accuracy of linear interpolation, we have

‖u − uh ‖L2 (Ω) 6 Ch2‖u′′‖L2 (Ω)

for some C > 0. Note that this O(h2) accuracy is better than the O(h) result coming from Cea’s lemma.

5. Programming exercise.
In this exercise you will program a finite element code for the model problem (3). Although the assembly of
the stiffness matrix A in this particular case can be done directly, you should structure your code using local
stiffness matrices A(k)

α,β , the reference element K̂ , etc., as explained in class.

(a) Write a Matlab function
function I = quad1d(n, f)

that computes the numerical approximation∫ 1

0
f (x) dx ≈

n∑
q=1

wq f (xq)

2

n xq wq

1 1
2 1

2 ±

√
1
12 + 1

2
1
2

3
1
2

8
18

±

√
3
20 + 1

2
5
18

4 ±

√
3
28 −

1
7

√
6
5 + 1

2
18+
√

30
72

±

√
3
28 + 1

7

√
6
5 + 1

2
18−
√

30
72

Table 1: The Gauss integration points in K̂ := [0,1]

over the reference element K̂ := [0,1] using n Gauss quadrature points; see Table 1. The parameter n
is an integer equal to 1, 2, 3 or 4, and f is a Matlab function handle (consult the Matlab user manual).
Test your code for different choices of f . Recall that Gauss quadrature is exact when f is a polynomial
of degree 2n − 1 or less.

(b) We partition the domain Ω = (0,1) into N + 1 intervals K j = (x j−1, x j) with nodes 0 < x1 < x2 <
· · · < xN < 1. Consider the finite element space X1

h
on this mesh with basis ϕ1, . . . , ϕN consisting of

“witch hat” functions. Write a Matlab function

function [A,b] = stiffness(x, f)

that assembles the stiffness matrix A and the load vector b,

Ai, j =

∫
Ω

ϕ′i (x)ϕ′j (x) dx, bi =

∫
Ω

f (x)ϕi (x) dx.

(c) Collect the above pieces into a Matlab function

function poisson1d(x, f)

which approximates (3) on the given mesh with the given f , and plots the resulting solution. You can
test your code with the following data:

i. f1(x) = 2
ii. f2(x) = 6 x − 2

iii. f3(x) = −9π2 sin(3π x)

For the above functions f it’s easy to calculate the exact analytical solution of problem (3). You
can use this to check if your code is working. You can use a uniform mesh in (0,1], for instance,
x = linspace(0, 1, N+2) where N is the number of nodes x1, x2, . . . , xN ∈ (0,1) you want to use.
Try starting with few points (2, 3, . . .) and see how the solution improves adding more points (20, 50,
100, . . .).

3

