Exercise set 1, TMA4220

August 21, 2015

Notation:

- For a set Ω , we write $L^2(\Omega) = \{v : \Omega \to \mathbb{R} \text{ such that } \|v\|_{L^2(\Omega)} < \infty\}$, where $\|v\|_{L^2(\Omega)} = \left(\int_{\Omega} |v(x)|^2 dx\right)^{1/2}$. If $u, v \in L^2(\Omega)$ we write $(u, v) = \int_{\Omega} u(x)v(x) dx$. The Cauchy-Schwartz inequality says that $|(u, v)| \leq \|u\|_{L^2} \|v\|_{L^2}$.
- C(Ω) is the set of continuous functions defined in Ω. For k ∈ N, C^k(Ω) is the set of continuous functions defined in Ω such that every derivative up to the k-th order is also continuous in Ω.
- If Ω is a bounded, open interval on \mathbb{R} then $H^1(\Omega)$ is the set of functions $u \in C(\overline{\Omega})$ such that $\frac{du}{dx}$ is piecewise continuous and bounded. It may be shown that this definition is equivalent to

$$H^1(\Omega) := \{ u \in L^2(\Omega) \text{ such that its weak derivative } \frac{du}{dx} \text{ lies in } L^2(\Omega) \}$$

(see exercise 1.d for the definition of weak derivative).

• $H_0^1(\Omega)$ is the set of functions in $H^1(\Omega)$ that vanish (i.e. are zero) on the boundary of Ω .

Exercises:

1. Exercises on Lebesgue and Sobolev spaces.

- (a) For which $\alpha \in \mathbb{R}$ does the function $f(x) := |x|^{\alpha}$ lie in $L^2([-1,1])$? What about $L^2([1,\infty))$? What about $L^2(B_1(0))$, where $B_1(0) = \{x \in \mathbb{R}^2 : |x| < 1\}$ is the unit ball in \mathbb{R}^2 ?
- (b) If $D \subset \mathbb{R}$ is a closed, bounded subset of \mathbb{R} and $f \in C(D)$, show that $f \in L^2(D)$.
- (c) Let $\Omega \subset \mathbb{R}^d$ be an open, bounded set and let $u \in C(\Omega)$, the space of continuous functions on Ω . Show that if $\int_{\Omega} uv dx = 0$ for all $v \in C(\Omega)$ then $u \equiv 0$ on Ω .
- (d) Let $\Omega \subset \mathbb{R}$ be some open interval. A *weak derivative* of a function $u : \Omega \to \mathbb{R}$ is a function $v : \Omega \to \mathbb{R}$ such that

$$\int_{\Omega} u(x)\varphi'(x) \ dx = -\int_{\Omega} v(x)\varphi(x) \ dx$$

for every $\varphi \in C_c^{\infty}(\Omega)$, the set of infinitely differentiable functions with compact support in Ω . Show that the weak derivative (if it exists) is unique. Show that if *u* is continuously differentiable (i.e. $u \in C^1(\Omega)$), then $\frac{du}{dx}$ is its weak derivative.

(e) Let

$$f_1(x) := \begin{cases} x & \text{if } 0 < x < 1 \\ 1 & \text{if } 1 \leqslant x < 2, \end{cases} \qquad f_2(x) := \begin{cases} x & \text{if } 0 < x < 1 \\ 2 & \text{if } 1 \leqslant x < 2 \end{cases}$$

for $x \in \Omega := (0,2)$. Show that $f_1, f_2 \in L^2(\Omega)$. Show that $f_1 \in H^1(\Omega)$ by finding its weak derivative, and that $f_1 \notin H^2(\Omega)$. Show that $f_2 \notin H^1(\Omega)$.

2. Classical and weak solutions.

Consider the equation

$$\begin{cases} -u'' + u = f & \text{in } \Omega := (0,1) \\ \frac{du}{dx}(0) = \frac{du}{dx}(1) = 0 \end{cases}$$
(1)

for some $f \in L^2(\Omega)$. We consider the following weak formulation of (1):

find
$$u \in V$$
 such that $(u', v') + (u, v) = (f, v) \quad \forall v \in V,$ (2)

where $V = H^1(\Omega)$. Show that if *u* is a weak solution of (1) (i.e., it satisfies (2)) and in addition $u \in C^2(\Omega)$, then *u* is a classical solution of (1) (i.e., it satisfies (1) pointwise). Note carefully that the Neumann boundary condition does *not* appear explicitly in the weak formulation (2) – it is a *natural* boundary condition.

3. Finite difference and finite element methods for Poisson's equation.

Consider the one-dimensional Poisson equation

$$\begin{cases} -u'' = f & \text{in } (0,1) \\ u(0) = u(1) = 0 \end{cases}$$
(3)

for some $f \in L^2((0,1))$. Write down a finite difference method for (3) on a uniform mesh, and compare with a \mathbb{P}_1 finite element method. What are the differences and similarities?

4. Optimal rate of convergence for Poisson's equation. (Taken from C. Johnson, exercise 1.19.)

Consider the model problem (3). We discretize the domain $\Omega = (0, 1)$ into nodes $0 < x_1 < x_2 \cdots < x_N < 1$ with size $h = \max_{i=1,\dots,N+1}(x_i - x_{i-1})$ (here, we set $x_0 = 0$, $x_{N+1} = 1$). For each $i = 1,\dots,N$, let $G_i \in H_0^1(\Omega)$ be the solution of the weak formulation

$$\int_{\Omega} G'_i v' \, dx = v(x_i) \qquad \forall \, v \in H^1_0(\Omega) \tag{4}$$

(note that the right-hand side point x_i is fixed). It may be shown that G_i is given by

$$G_i(x) = \begin{cases} (1 - x_i)x & \text{for } 0 \le x \le x_i \\ x_i(1 - x) & \text{for } x_i < x \le 1. \end{cases}$$

(G_i is called the *Green's function* for (3) and satisfies (formally) $-G''_i = \delta_{x_i}$, where δ_{x_i} is the Dirac delta function at x_i .)

- (a) Consider a finite element approximation of (3) with the test space $V_h = X_h^1$. Show that in fact $G_i \in X_h^1$.
- (b) Let $u \in H_0^1$ be the weak solution of (3), and let $u_h \in X_h^1$ be the finite element approximation of (3). Then also $e := u - u_h$ lies in $H_0^1(\Omega)$, so we can let v = e in (4). Show that in fact

$$e(x_i) = (e', G'_i) = 0 \quad \forall i = 1, \dots, N.$$

This remarkable fact – a special property of (3) – means that the finite element approximation is actually *exact* at the nodes x_1, x_2, \ldots, x_N .

(c) Show that, as a consequence of the accuracy of linear interpolation, we have

$$|u - u_h||_{L^2(\Omega)} \le Ch^2 ||u''||_{L^2(\Omega)}$$

for some C > 0. Note that this $O(h^2)$ accuracy is better than the O(h) result coming from Cea's lemma.

5. Programming exercise.

In this exercise you will program a finite element code for the model problem (3). Although the assembly of the stiffness matrix A in this particular case can be done directly, you should structure your code using local stiffness matrices $A_{\alpha,\beta}^{(k)}$, the reference element \hat{K} , etc., as explained in class.

(a) Write a Matlab function

function I = quad1d(n, f)

that computes the numerical approximation

$$\int_0^1 f(x) \, dx \approx \sum_{q=1}^n w_q f(x_q)$$

п	x_q	w_q
1	$\frac{1}{2}$	1
2	$\pm \sqrt{\frac{1}{12}} + \frac{1}{2}$	$\frac{1}{2}$
3	$\frac{1}{2}$	$\frac{8}{18}$
	$\pm \sqrt{\frac{3}{20}} + \frac{1}{2}$	$\frac{5}{18}$
4	$\pm \sqrt{\frac{3}{28} - \frac{1}{7} \sqrt{\frac{6}{5}}} + \frac{1}{2}$	$\frac{18+\sqrt{30}}{72}$
	$\pm\sqrt{\frac{3}{28}+\frac{1}{7}}\sqrt{\frac{6}{5}}+\frac{1}{2}$	$\frac{18-\sqrt{30}}{72}$

Table 1: The Gauss integration points in $\hat{K} := [0, 1]$

over the reference element $\hat{K} := [0,1]$ using *n* Gauss quadrature points; see Table 1. The parameter n is an integer equal to 1, 2, 3 or 4, and f is a Matlab function handle (consult the Matlab user manual). Test your code for different choices of *f*. Recall that Gauss quadrature is *exact* when *f* is a polynomial of degree 2n - 1 or less.

(b) We partition the domain $\Omega = (0,1)$ into N + 1 intervals $K_j = (x_{j-1}, x_j)$ with nodes $0 < x_1 < x_2 < \cdots < x_N < 1$. Consider the finite element space X_h^1 on this mesh with basis $\varphi_1, \ldots, \varphi_N$ consisting of "witch hat" functions. Write a Matlab function

that assembles the stiffness matrix A and the load vector b,

$$A_{i,j} = \int_{\Omega} \varphi'_i(x) \varphi'_j(x) \, dx, \qquad b_i = \int_{\Omega} f(x) \varphi_i(x) \, dx.$$

(c) Collect the above pieces into a Matlab function

function poisson1d(x, f)

which approximates (3) on the given mesh with the given f, and plots the resulting solution. You can test your code with the following data:

i.
$$f_1(x) = 2$$

ii. $f_2(x) = 6x - 2$
iii. $f_3(x) = -9\pi^2 \sin(3\pi x)$

For the above functions f it's easy to calculate the exact analytical solution of problem (3). You can use this to check if your code is working. You can use a uniform mesh in (0,1], for instance, $\mathbf{x} = \texttt{linspace}(\mathbf{0}, \mathbf{1}, \mathbb{N}+2)$ where N is the number of nodes $x_1, x_2, \ldots, x_N \in (0, 1)$ you want to use. Try starting with few points (2, 3, ...) and see how the solution improves adding more points (20, 50, 100, ...).