Exercise set 1, TMA4220

August 21, 2015

Notation:

1/2

e Foraset Q, we write L2(Q) = (v : @ — R such that [[vl|,2(q, < oo}, where [[vll2qy = (Jp, IW(x)Pdx)"".

If u,v € L*2(Q) we write (u,v) = fQu(x)v(x) dx. The Cauchy-Schwartz inequality says that |(u,v)| <
lleell L2 M1l 2

e C(Q) is the set of continuous functions defined in Q. For k € N, C¥(Q) is the set of continuous functions
defined in Q such that every derivative up to the k-th order is also continuous in €.

e If Qis a bounded, open interval on R then H 1(Q) is the set of functions u € C(Q) such that % is piecewise
continuous and bounded. It may be shown that this definition is equivalent to

H'(Q) := {u € L*(Q) such that its weak derivative 4% lies in L*(Q)}

(see exercise 1.d for the definition of weak derivative).
° H(; (Q) is the set of functions in H'(Q) that vanish (i.e. are zero) on the boundary of Q.
Exercises:
1. Exercises on Lebesgue and Sobolev spaces.
(a) For which @ € R does the function f(x) := |x|? lie in L>([-1,1])? What about L?([1,00))? What
about L2(B;(0)), where B;(0) = {x € R? : |x| < 1} is the unit ball in R2?
(b) If D c Ris a closed, bounded subset of R and f € C(D), show that f € L*(D).

(c) Let Q c RY be an open, bounded set and let u € C(€2), the space of continuous functions on Q. Show
that if fQ uvdx = 0 for all v € C(Q) thenu = 0 on Q.

(d) Let Q c R be some open interval. A weak derivative of a function u : Q — R is a functionv : Q - R
such that

/ u(x)p’(x) dx = —/ v(x)p(x) dx
Q Q

forevery ¢ € C°(Q), the set of infinitely differentiable functions with compact support in Q. Show that
the weak derivative (if it exists) is unique. Show that if u is continuously differentiable (i.e. u € C L)),
then % is its weak derivative.

(e) Let

x if0<x<1

2 ifl<x<?2

x if0<x<1
1 ifl<x<?2,

filx) = { falx) = {

for x € Q :=(0,2). Show that fi, f, € L2(Q). Show that f; € H Q) by finding its weak derivative,
and that f| ¢ H2(Q). Show that fr ¢ H(Q).

2. Classical and weak solutions.
Consider the equation

—u +u= f inQ:= (0’1) (1)
HO = FMDH=0



for some f € L*(Q). We consider the following weak formulation of (1):
find u € V such that (u’,v") + (u,v) = (f,v) YveYy, 2)

where V = H!(Q). Show that if u is a weak solution of (1) (i.e., it satisfies (2)) and in addition u € C2(Q),
then u is a classical solution of (1) (i.e., it satisfies (1) pointwise). Note carefully that the Neumann boundary
condition does not appear explicitly in the weak formulation (2) — it is a natural boundary condition.

. Finite difference and finite element methods for Poisson’s equation.
Consider the one-dimensional Poisson equation

{—u" =f in (0,1)

u(0)=u(1)=0 3

for some f € L?((0,1)). Write down a finite difference method for (3) on a uniform mesh, and compare
with a P; finite element method. What are the differences and similarities?

. Optimal rate of convergence for Poisson’s equation. (Taken from C. Johnson, exercise 1.19.)

Consider the model problem (3). We discretize the domain Q = (0,1) into nodes 0 < x| < xp--- < xy <1
with size & = max;=; . n+1(x; — x;—1) (here, we set xo = 0, xny4+; = 1). Foreachi = 1,...,N, let
G; € H& (Q) be the solution of the weak formulation

/ G dx=v(x;) VYveH) Q) 4)
Q

(note that the right-hand side point x; is fixed). It may be shown that G; is given by

(I -x;)x for0<x<x;

xi(1-x) forx; <x<1.

Gi(x) = {

(G, is called the Green’s function for (3) and satisfies (formally) ~G" = &,,, where dy, is the Dirac delta
function at x;.)

(a) Consider a finite element approximation of (3) with the test space V;, = X }l Show that in fact G; € X }12
(b) Letu € Hé be the weak solution of (3), and let u, € X }l be the finite element approximation of (3).
Then also e := u — uy, lies in H& (©), so we can let v = e in (4). Show that in fact
e(x;) =(e',G))=0 Vi=1,...,N.
This remarkable fact — a special property of (3) — means that the finite element approximation is actually
exact at the nodes x1,x2,...,XN.

(c) Show that, as a consequence of the accuracy of linear interpolation, we have
llu = unllz2@y < CR2 U2y
for some C > 0. Note that this O (h?) accuracy is better than the O(h) result coming from Cea’s lemma.

. Programming exercise.
In this exercise you will program a finite element code for the model problem (3). Although the assembly of
the stiffness matrix A in this particular case can be done directly, you should structure your code using local

stiffness matrices Ag‘)ﬁ, the reference element K, etc., as explained in class.

(a) Write a Matlab function
function I = quadld(n, £)

that computes the numerical approximation

1 n
/ f(x) dszwqf(xq)
0 a=1
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Table 1: The Gauss integration points in K= [0,1]

over the reference element K := [0, 1] using n Gauss quadrature points; see Table 1. The parameter n
is an integer equal to 1, 2, 3 or 4, and £ is a Matlab function handle (consult the Matlab user manual).
Test your code for different choices of f. Recall that Gauss quadrature is exact when f is a polynomial
of degree 2n — 1 or less.

We partition the domain Q = (0,1) into N + 1 intervals K; = (x;_1,x;) with nodes 0 < x; < x <
.-+ < xn < 1. Consider the finite element space X /11 on this mesh with basis ¢, ...,¢xN consisting of
“witch hat” functions. Write a Matlab function

function [A,b] = stiffness(x, f)

that assembles the stiffness matrix A and the load vector b,

Aij = / @i ()¢} (x) dx, b; = / F(xX)pi(x) dx.
Q Q
Collect the above pieces into a Matlab function

function poissonld(x, f)

which approximates (3) on the given mesh with the given f, and plots the resulting solution. You can
test your code with the following data:

i filx)=2
ii. fo(x)=6x-2
iii. f3(x) = =972 sin(37 x)

For the above functions f it’s easy to calculate the exact analytical solution of problem (3). You
can use this to check if your code is working. You can use a uniform mesh in (0,1], for instance,
x = linspace(®, 1, N+2) where N is the number of nodes x1,x»,...,xy € (0,1) you want to use.

Try starting with few points (2, 3, ...) and see how the solution improves adding more points (20, 50,
100, ...).



