Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4220 Numerical Solution of Partial Differential Equations Using Element Methods
 Høst 2014

1 Let $a(u, v)=\int_{\Omega} \nabla u \nabla v d \Omega$.
a) Find the element stiffness matrix $A_{h}^{K} \in \mathbb{R}^{3 \times 3}$ for an element with nodes (vertices) $x_{1}^{K}=(0,0), x_{2}^{K}=(h, 0)$ and $x_{3}^{K}(0, h)$.
b) Prove that your results applies to any right-triangular element with hypotenuse $\sqrt{2} h$ at any orientation or position. Hint: First prove it applies to a righttriangular element with hypotenuse $\sqrt{2} h$ and the right-angle corner in $(0,0)$.
c) The mass matrix M_{h} is given by $\left(M_{h}\right)_{i, j}=\int_{\Omega} \varphi_{j} \varphi_{i} d \Omega$. Find the element mass matrix M_{h}^{K} for any right-triangular element with hypotenuse $\sqrt{2} h$.

2 From the exam set 2006.

Figure 1: A one-dimensional quadratic element

Figure 1 shows a quadratic element with domain $\Omega_{T_{h}^{1 D}}=(0,1)$. The element has 3 local nodes: $x_{1}=0, x_{2}=0.5$ and $x_{3}=1$. The shape function $\psi_{1}^{1 D}$ for local node 1 , presented in the figure, is given by

$$
\psi_{1}^{1 D}(x)=2\left(x-\frac{1}{2}\right)(x-1) .
$$

a) Copy the figure to your own answer sheet, and draw the shape functions corresponding to node 2 and 3 . Write down the shape functions as functions of x.

Figure 2: A two-dimensional quadratic element

Figure 2 shows the domain $\Omega=(0,1) \times(0,1)$ discretized with one quadratic finite element. The element has 9 local nodes, each labelled as shown.
b) Write down the 9 quadratic basis functions as functions of x and y.

Hint: Use the basis functions from the one-dimensional example in point a).
Consider now the Poisson problem

$$
\begin{align*}
-\Delta u=1 & \text { in } \Omega=(0,1) \times(0,1) \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{align*}
$$

c) Derive the weak formulation of the problem, that is

$$
\text { Find } u \in X \text { such that } \quad a(u, v)=l(v), \quad \forall v \in X
$$

Determine the expressions of the function space X and the forms $a(\cdot, \cdot)$ and $l(\cdot)$. We now discretize the Poisson problem (1) from point \mathbf{c}) by one quadratic element as depicted in Figure 2. We express the the solution u_{h} by help of the basis functions, insert it into the weak formulation from point \mathbf{c}) and includes the boundary conditions. This will give the linear system

$$
\begin{equation*}
\mathbf{A}_{h} u_{h}=\mathbf{F}_{h} \tag{2}
\end{equation*}
$$

where $\left(A_{h}\right)_{i, j}=a\left(\psi_{j}, \psi_{i}\right)$ and $\left(\mathbf{F}_{h}\right)_{i}=l\left(\psi_{i}\right)$.
d) How many degrees of freedoms has the linear system of equations?

Parts of the local stiffness matrix for the quadratic 9-nodal element in point \mathbf{b}) is
given below.

$$
A_{h}^{T_{h}^{2 D}}=\left[\begin{array}{ccccccccc}
X & \frac{-1}{30} & \frac{-1}{45} & \frac{-1}{30} & \frac{-1}{5} & \frac{-1}{5} & \frac{1}{9} & \frac{1}{9} & \frac{-16}{45} \\
\frac{-1}{30} & \frac{28}{45} & \frac{-1}{30} & \frac{-1}{45} & \frac{-1}{9} & \frac{-1}{5} & \frac{-1}{5} & \frac{1}{9} & \frac{-16}{45} \\
\frac{-1}{45} & \frac{-1}{30} & \frac{28}{45} & \frac{-1}{30} & \frac{1}{9} & \frac{1}{9} & \frac{-1}{5} & \frac{-1}{5} & \frac{-16}{45} \\
\frac{-1}{30} & \frac{-1}{45} & \frac{-1}{30} & \frac{28}{45} & \frac{-1}{5} & \frac{1}{9} & \frac{1}{9} & \frac{-1}{5} & \frac{-16}{45} \\
\frac{-1}{5} & \frac{1}{9} & X & \frac{-1}{5} & \frac{88}{45} & \frac{-16}{45} & 0 & \frac{-16}{45} & \frac{-16}{15} \\
\frac{-1}{5} & \frac{-1}{5} & \frac{1}{9} & \frac{1}{9} & \frac{-16}{45} & \frac{88}{45} & \frac{-16}{45} & 0 & \frac{-16}{15} \\
\frac{1}{9} & \frac{-1}{5} & \frac{-1}{5} & \frac{1}{9} & 0 & \frac{-16}{45} & \frac{88}{45} & \frac{-16}{45} & \frac{-16}{15} \\
\frac{1}{9} & \frac{1}{9} & \frac{-1}{5} & \frac{-1}{5} & \frac{-16}{45} & 0 & \frac{-16}{45} & \frac{88}{45} & \frac{-16}{15} \\
\frac{-16}{45} & \frac{-16}{45} & \frac{-16}{45} & \frac{-16}{45} & \frac{-16}{15} & \frac{-16}{15} & \frac{-16}{15} & \frac{-16}{15} & \frac{256}{45}
\end{array}\right]
$$

e) The elements $\left(A_{h}^{T_{h}^{2 D}}\right)_{1,1}$ and $\left(A_{h}^{T_{h}^{2 D}}\right)_{5,3}$ are missing. Find them.

The local load vector is given by

$$
\mathbf{F}_{h}=\left[\frac{1}{36} \frac{1}{36} \frac{1}{36} \frac{1}{36} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{4}{9}\right]^{T}
$$

f) Solve the linear system (2) and find the numerical solution $u_{h}(x, y)$.

3 a) Prove that the finite element depicted in Figure 2 is a finite element, which forms a C^{0} finite element space.
b) Show that the finite element space constructed from triangular cubic Hermite elements (p. 75 in $\mathrm{B} \& \mathrm{~S}$) is C^{0} but not C^{1}.

