
Norwegian University of Science
and Technology
Department of Mathematical
Sciences

TMA4215 Numerical
mathematics

Autumn 2014

Project 2

Last update: October 23, 2014

Instructions

This project counts for 20% of the final grade in the course.

Deadline: November 18, 23:59.

Group size: 3–4 students.

To be handed in

• A report of maximum 6 pages, using the given LaTeX-template (or as similar as
possible if another word-processing system is used). The report should be submitted
as a pdf-file.
• One (and only one) executable, well structured and well documented, self-contained

MATLAB file.
• Optionally, you can submit one data-file in an appropriate format that is used by

your program.

Send the files (maximum 3) to Lars within the deadline.

Use the student number (no name, no candidate number) in the report, and make sure
that we can identify your student numbers from the MATLAB-file.

Failure to meet the instruction above may cause the project to be dismissed!

Objective of the project

Develop, implement, test and document an algorithm for fitting shapes defined by a discrete
set of data points with a parametric piecewise cubic polynomial curve.

October 23, 2014 Page 1 of 5



Project 2

Some comments and advices

• In this project, you will use Bezier curves (in particular the cubic ones), and you
will have to solve least square problems. These topics are part the curriculum, but
have not been lectured. A very brief description of Bezier curves is provided, but
you are supposed to find out more by using whatever is available of resources (web,
the library, etc). Notice that NTNU has electronic access to a lot of books.

• In the evaluation, quite some emphasis will be given to the presentation. If it turns
out that you are not able to fulfill the project completely, or your final program do
not work, then focus on what you have done. In this case, the MATLAB file you
enclose may be one you have used for one of the subtasks. However, the same rule
apply, it should be self-contained and well documented.

We advice you to stop doing new stuff on Friday 15th, and spend the last days on
fine-tuning the report and the (one and only) Matlab-file to be handed in.

• With a well-documented and self-contained MATLAB file we mean that the file

– includes sufficient information in the initial comment lines to make it clear for
the user what the program does, and how to use it. This information should be
available by writing help filename.

– executes and provides the expected results without any problems.

• The tasks described below are there to help you learn and master the material. They
should be done, but the results should in general not be included in the report as
Task 1, Task 2, etc. However, you may want to include some of them as examples,
or to justify that the described procedure works.

We do not want you to present all the tasks in your MATLAB file. What we want
is to be able to reproduce the last result(s) you present in your report with that
program.

The LATEX template, including some instruction on how to write the report, as well as
some data files for the tasks, will be provided on the project webpage.

1 Bezier curves and Bernstein polynomials

0 100 200 300 400 500

0

100

200

300

400

500

600

Bezier curves are used in computer graphics to
construct smooth curves. The idea is to use
parametrized functions, e.g.

S(t) =

(
x(t), y(t)

)
, 0 ≤ t ≤ 1

and to construct pictures by gluing several of these
together. The letter T to the right is constructed
by 16 Bezier curves, of which some are just straight
lines.

October 23, 2014 Page 2 of 5



Project 2

Bezier curves are constructed from the Bernstein
polynomials, given by

Bn
i (t) =

(
n

i

)
ti(1−t)(n−i), i = 0, 1, . . . , n, t ∈ [0, 1].

A planar Bezier curve of degree n is a parametrized curve in R2, defined by

S(t) =
n∑

i=0

PiB
n
i (t), 0 ≤ t ≤ 1

where Pi ∈ R2, i = 0, 1, . . . n are called control points. Notice that S(0) = P0 and
S(1) = Pn are interpolation points, the others are not. In this project, we only consider
cubic Bezier curves, thus n = 3. For convenience, we will ignore the superscript. So unless
otherwise stated, Bi(t), i = 0, 1, 2, 3 refer to the cubic Bernstein polynomials.

There is plenty of information on Bezier curves on the web, see for instance the Wikipedia
page.

Task 1 Write down the 4 cubic Bernstein polynomials.

Choose 4 control points, for instance

P0 = (0, 0), P1 = (1, 2), P2 = (2,−1), P3 = (1, 0),

and write down and plot the corresponding Bezier curve. It may be useful to plot the control
points and the straight line between them as well. Play around with other points and see
what happens.

Notice that the straight line between the first two control points is tangential to the curve
in P0. Similarly, the straight line between the last two control points is tangential to the
curve in P3. Prove that this is true in general. What impact does this have if you want to
glue several Bezier curves into one smooth curve?

Task 2 Write a Matlab program which reads a set of control points from a file, and draws
the represented figure. Test the program on the test files on the webpage. One of them
should give you the T.

Each row in the datafile contains the control points of one Bezier curve on the format

P0,x P0,y P1,x P1,y P2,x P2,y P3,x P3,y

2 Curve fitting

Given a curve γ in R2, how can we approximate this curve by one Bezier curve? To be
more specific, how can we find the control points?

October 23, 2014 Page 3 of 5



Project 2

2.1 With a given, discrete parametrization

Assume we are given some points xi, i = 1, . . . ,m on the curve γ, with x1 and xm as the
endpoints. Let S(t) be a Bezier curve approximating γ. Choose a discrete parametrization
0 = t1 < t2 < · · · < tm = 1 and measure the distance between the curves by

E =
1

m

m∑
i=1

‖xi − S(ti)‖22. (1)

The main task is now to find S, defined by its control points, so that E becomes as small
as possible. We know two things which will be helpful:

• P0 and P3 are equal to the first and the last point on the curve.
• P1 and P2 are located somewhere along the tangents of the curve at the endpoints.

To be more specific, if v0 and v3 are the unit tangent vectors of γ at the endpoints,
then

P1 = P0 + α1v0, P2 = P3 + α2v3.

We are left with two unknowns, α1 and α2. Thus E = E(α1, α2).

Task 3 Set up the mean square problem, that is, minimize E(α1, α2). Use the data from
the test problem given on the webpage and solve the problem in MATLAB.
Plot the orignal curve as well as the Bezier curve, and compare them.

Task 4 Do some experiments:
Play a bit with the given data: Use less of them, and see how this influence the result.
Change the choices of parametrization points ti and see the impact of that on the result.

2.2 Choice of discrete parametrization

So far, we have assumed that the discrete parametrization {tj}mj=1 is given. However, this
is not part of the original curve γ, it has to be chosen somehow. In [1] a procedure for an
initial parametrization is given, as well as a procedure for improving this choice.

Task 5 Implement and test the procedure, both the initial parametrization and the improve-
ments. You may or may not want to make your own modifications. Use, for instance, the
test problem from Task 3, but with the new parametrization.

2.3 Code verification

To verify an implementation, it is common to apply it to a problem where the analytical
solution is known.

October 23, 2014 Page 4 of 5



Project 2

Task 6 Verify your code by testing it on the curve

y = sin(πx), x ∈ [0, 1].

Start by approximating the curve with one Bezier curve. Then, repeatedly divide the curve
in two, and construct a Bezier curve for each half. Make sure that the approximated curve
is sufficiently smooth, that is C1. Plot the total error against the number of curve segments
in a log-log plot and comment on the results. Include this figure in your report.

3 Finally

Write a MATLAB-program which converts shapes defined by a discrete set of data points
to a set of Bezier curves. MATLAB-routines for the detection of edges and corners of a
given bitmap picture is provided on the webpage. If the error measured by (1) is too large
for a segment, cut the segment in two and construct a Bezier curve for each half. You
will have to come up with a procedure for approximating the tangent vectors at start- and
endpoints of the Bezier curves.

Test your program on the bitmap picture given on the webpage and on at least one picture
of your own choice. Your program should plot the original curve and the Bezier curves in
the same figure. Furthermore, mark all corner points, and color adjacent curve segments
with two different colors.

References

[1] M. Plass and M. Stone, Curve-fitting with piecewise parametric cubics, Computer
Graphics, 17 (1983) pp. 229–239.

October 23, 2014 Page 5 of 5


