Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4212 Numerical Solution of Differential Equations by Difference

Exercise set 4 Solutions

1 A boundary value problem for the transport equation
a) We rewrite the scheme as:

$$
\begin{equation*}
\underbrace{1}_{\alpha_{P}} U_{m}^{n+1}-\underbrace{(1-r)}_{\alpha_{S}} U_{m}^{n}-\underbrace{r}_{\alpha_{S W}} U_{m-1}^{n}=0, \quad r=3 \frac{k}{h} \tag{S}
\end{equation*}
$$

We have monotonicity if:

- $\alpha_{P} \geq 0$, which is always true;
- $\alpha_{S} \geq 0$, which is true if $1-r>0 \rightarrow r<1 \rightarrow \frac{k}{h}<\frac{1}{3}$, which represents our CFL condition;
- $\alpha_{p}=1=\sum_{Q, Q \neq P} \alpha_{Q}$, which is always true.

The same can be verified on the boundary.
b) I choose $\phi=t\|f\|_{L^{\infty}((0,1) \times(0, T))}$ as comparison function. Following standard arguments seen in class I have that:
(1) $\quad-L_{h} V_{m}^{n}-\left(-L_{h}\left(t\|f\|_{L^{\infty}((0,1) \times(0, T))}\right)\right)=f_{m}^{n+1}-\|f\|_{L^{\infty}((0,1) \times(0, T))} \leq 0$,

The application of the maximum principle allows me to conclude that the maximum of $V_{m}^{n}-t^{n}\|f\|_{L^{\infty}((0,1) \times(0, T))}$ (and, with analogous procedure $-V_{m}^{n}-$ $\left.t^{n}\|f\|_{L^{\infty}((0,1) \times(0, T))}\right)$ is either on the boundary or 0 . Since $\left.V_{m}^{n}\right|_{\partial_{I F} \Omega}=0$ on the boundaries and $-t_{n}\|f\|_{L^{\infty}((0,1) \times(0, T))}$ is negative, we have that

$$
\max \left[\pm V_{m}^{n}-t^{n}\|f\|_{L^{\infty}((0,1) \times(0, T))}\right] \leq 0
$$

. Then:

$$
\begin{aligned}
\max _{\Omega}\left[\pm V_{m}^{n}-t^{n}\|f\|_{L^{\infty}((0,1) \times(0, T))}\right] \leq 0 \rightarrow \pm V_{m}^{n} & \leq t_{n}\|f\|_{L^{\infty}((0,1) \times(0, T))} \\
& \leq T\|f\|_{L^{\infty}((0,1) \times(0, T))}
\end{aligned}
$$

and stability with respect to the right hand side is proved. As usual this same procecure can be applied to the error equation $e_{m}^{n}=u_{m}^{n}-U_{m}^{n}$ to prove $e_{m}^{n} \leq$ $T\|\tau\|_{L^{\infty}((0,1) \times(0, T))}$ where τ_{m}^{n} is the truncation error.
c) The scheme uses just first order schemes, so we have that:

$$
\begin{aligned}
\tau_{m}^{n} & =\frac{u_{m}^{n+1}-u_{m}^{n}}{k}+3 \frac{u_{m}^{n}-u_{m-1}^{n}}{h}-\left(u_{t}+3 u_{x}\right) \\
& =u_{t}+\frac{k}{2} u_{t t}+\mathcal{O}\left(k^{2}\right)+3 u_{x}+\frac{3 h}{2} u_{x x}+\mathcal{O}\left(h^{2}\right)-\left(u_{t}+3 u_{x}\right) \\
& =\frac{k}{2} u_{t t}\left(\xi_{1}\right)+\frac{3 h}{2} u_{x x}\left(\xi_{2}\right) \leq \frac{k}{2}\left\|u_{t t}\right\|_{L^{\infty}((0,1) \times(0, T))}+\frac{3 h}{2}\left\|u_{x x}\right\|_{L^{\infty}((0,1) \times(0, T))}
\end{aligned}
$$

for some ξ_{i}. We thus have:

$$
C_{1}=\frac{1}{2}\left\|u_{t t}\right\|_{L^{\infty}((0,1) \times(0, T))}, \quad C_{2}=\frac{3}{2}\left\|u_{x x}\right\|_{L^{\infty}((0,1) \times(0, T))} .
$$

d) We define a grid with stepsize $h=1 / M$ in the x direction and $k=1 / N$ in the y direction. We have to solve for points $P_{m, n}=(m h, n k)$ with $m=1, \ldots, M$ and $n=1, \ldots, N$. With reference to (S) we will have just one boundary case (excluding the initial step):

1. U_{m-1}^{n} is known, the scheme becomes:

$$
U_{m}^{n+1}-(1-r) U_{m}^{n}=k f_{m}^{n}+r f\left(P_{m-1, n}\right) .
$$

2 A variable coefficient transport equation

a) The Upwinding procedure is decided by the sign of $a\left(x_{m}, t_{n}\right)$. If $a\left(x_{m}, t_{n}\right)>0$ then the scheme is the same as in (S), but if $a\left(x_{m}, t_{n}\right)<0$ then I have to take the spatial difference in the other direction and I obtain:
if $a\left(x_{m}, t_{n}\right)>0: \quad U_{m}^{n+1}-\left(1-r_{m}^{n}\right) U_{m}^{n}-r_{m}^{n} U_{m-1}^{n}=0$,
if $a\left(x_{m}, t_{n}\right)<0: \quad U_{m}^{n+1}-\left(1+r_{m}^{n}\right) U_{m}^{n}+r_{m}^{n} U_{m+1}^{n}=0, \quad r_{m}^{n}=a\left(x_{m}, t_{n}\right) \frac{k}{h}$.
b) To check Von Neumann stability we rewrite the scheme in a unified way as:

$$
U_{m}^{n+1}-\left(1-r^{+}-r^{-}\right) U_{m}^{n}+r^{+} U_{m-1}^{n}+r^{-} U_{m+1}^{n}=0
$$

where:

$$
r^{+}=\max (r, 0), \quad r^{-}=(-r)^{+}, \quad r=r^{+}-r^{-} .
$$

We now identify $U_{m}^{n}=\xi^{n} e^{i \beta x_{m}}$ and the scheme above reads:

$$
\xi^{n+1} e^{i \beta x_{m}}-\left(1-r^{+}-r^{-}\right) \xi^{n} e^{i \beta x_{m}}+r^{+} \xi^{n} e^{i \beta\left(x_{m}-h\right)}+r^{-} \xi^{n} e^{i \beta\left(x_{m}+h\right)}=0
$$

which simplifies to:

$$
\begin{aligned}
\xi & =\left(1-r^{+}-r^{-}\right)-r^{+} e^{-i \beta h}-r^{-} e^{i \beta h} \\
& =(1-|r|)-|r| \cos (\beta h)-i r \sin (\beta h)
\end{aligned}
$$

Taking the square of the modulus leads to:

$$
\begin{aligned}
|\xi|^{2} & =1+r^{2}+r^{2} \cos (\beta h)^{2}-2|r|-2|r| \cos (\beta h)+2 r^{2} \cos (\beta h)+r^{2} \sin (\beta h)^{2} \\
& =1+2 r^{2}-2|r|+\left[2 r^{2}-2|r|\right] \cos (\beta h)=1+\left(2 r^{2}-2|r|\right)(1+\cos (\beta h))
\end{aligned}
$$

Von Neumann stability is given if:

$$
|\xi|^{2}<1 \rightarrow\left(2 r^{2}-2|r|\right)(1+\cos (\beta h))<0 \rightarrow 2 r^{2}-2|r|<0 \rightarrow-1<r<1
$$

or, alternatively

$$
k<\frac{h}{|a|} .
$$

To check if the scheme is dissipative or dispersive we similarly indetify $U_{m}^{n}=$ $\rho^{n} e^{i\left(\omega t_{n}+\beta x_{m}\right)}$ obtaining:

$$
\begin{aligned}
& \rho^{n+1} e^{i\left(\omega t_{n}+\beta x_{m}\right)}-\left(1-r^{+}-r^{-}\right) \rho^{n} e^{i\left(\omega t_{n}+\beta x_{m}\right)} \\
& \quad+r^{+} \rho^{n} e^{i\left(\omega t_{n}+\beta\left(x_{m}-h\right)\right)}+r^{-} \rho^{n} e^{i\left(\omega t_{n}+\beta\left(x_{m}+h\right)\right)}
\end{aligned}
$$

and simplifying:

$$
\begin{aligned}
\rho & =\left(1-r^{+}-r^{-}\right)-r^{+} e^{-i \beta h}-r^{-} e^{i \beta h} \\
& =(1-|r|)-|r| \cos (\beta h)-i r \sin (\beta h)=0
\end{aligned}
$$

then

$$
|\rho|^{2}=1+\left(2 r^{2}-2|r|\right)(1+\cos (\beta h))
$$

and since $\rho<1$ by the stability assumption made the scheme is dissipative. Also, we have:

$$
\arg (\rho)=\arctan \left[-\frac{r \sin (\beta h)}{(1-|r|)-|r| \cos (\beta h)}\right]
$$

which is nonlinear in βh and thus the scheme is also dispersive.
c) The Leap-frog scheme for the problem at hand reads:

$$
\frac{U_{m}^{n+1}-U_{m}^{n-1}}{2 k}+a\left(x_{m}, t_{n}\right) \frac{U_{m+1}^{n}-U_{m-1}^{n}}{2 h}=0
$$

Rearranging:

$$
U_{m}^{n+1}-U_{m}^{n-1}+r U_{m+1}^{n}-r U_{m-1}^{n}=0
$$

We have now two types of boundary conditions. On $x=0$:

$$
U_{1}^{n+1}-U_{1}^{n-1}+r U_{2}^{n}=r f\left(P_{0, n}\right)
$$

On $x=1$, as suggested, we extend the value found for U_{M-1}^{n} at the time step before outside the domain and impose:

$$
U_{M-1}^{n+1}-U_{M-1}^{n-1}+r U_{M-1}^{n}-r U_{M-2}^{n}=0
$$

