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Exercise set 4 Solutions

1 A boundary value problem for the transport equation

a) We rewrite the scheme as :

1︸︷︷︸
αP

Un+1
m − (1− r)︸ ︷︷ ︸

αS

Unm − r︸︷︷︸
αSW

Unm−1 = 0, r = 3
k

h
,(S)

We have monotonicity if:
• αP ≥ 0, which is always true;
• αS ≥ 0, which is true if 1− r > 0→ r < 1→ k

h <
1
3 , which represents our

CFL condition;
• αp = 1 =

∑
Q,Q 6=P αQ, which is always true.

The same can be verified on the boundary.

b) I choose φ = t‖f‖L∞((0,1)×(0,T )) as comparison function. Following standard
arguments seen in class I have that:

(1) −LhV n
m −

(
−Lh

(
t‖f‖L∞((0,1)×(0,T ))

))
= fn+1

m − ‖f‖L∞((0,1)×(0,T )) ≤ 0,

The application of the maximum principle allows me to conclude that the
maximum of V n

m − tn‖f‖L∞((0,1)×(0,T )) (and, with analogous procedure −V n
m −

tn‖f‖L∞((0,1)×(0,T ))) is either on the boundary or 0. Since V n
m|∂IF Ω = 0 on the

boundaries and −tn‖f‖L∞((0,1)×(0,T )) is negative, we have that

max
[
±V n

m − tn‖f‖L∞((0,1)×(0,T ))

]
≤ 0

. Then:

max
Ω

[
±V n

m − tn‖f‖L∞((0,1)×(0,T ))

]
≤ 0→ ±V n

m ≤ tn‖f‖L∞((0,1)×(0,T ))

≤ T‖f‖L∞((0,1)×(0,T )).

and stability with respect to the right hand side is proved. As usual this same
procecure can be applied to the error equation enm = unm − Unm to prove enm ≤
T‖τ‖L∞((0,1)×(0,T )) where τnm is the truncation error.

c) The scheme uses just first order schemes, so we have that:

τnm =
un+1
m − unm

k
+ 3

unm − unm−1

h
− (ut + 3ux)

= ut +
k

2
utt +O(k2) + 3ux +

3h

2
uxx +O(h2)− (ut + 3ux)

=
k

2
utt(ξ1) +

3h

2
uxx(ξ2) ≤

k

2
‖utt‖L∞((0,1)×(0,T )) +

3h

2
‖uxx‖L∞((0,1)×(0,T )).

February 15, 2023 Page 1 of 3



Exercise set 4 Solutions

for some ξi. We thus have:

C1 =
1

2
‖utt‖L∞((0,1)×(0,T )), C2 =

3

2
‖uxx‖L∞((0,1)×(0,T )).

d) We define a grid with stepsize h = 1/M in the x direction and k = 1/N in the
y direction. We have to solve for points Pm,n = (mh, nk) with m = 1, . . . ,M
and n = 1, . . . , N . With reference to (S) we will have just one boundary case
(excluding the initial step):

1. Unm−1 is known, the scheme becomes:

Un+1
m − (1− r)Unm = kfnm + rf(Pm−1,n).

2 A variable coefficient transport equation

a) The Upwinding procedure is decided by the sign of a(xm, tn). If a(xm, tn) > 0
then the scheme is the same as in (S), but if a(xm, tn) < 0 then I have to take
the spatial difference in the other direction and I obtain:

if a(xm, tn) > 0 : Un+1
m − (1− rnm)Unm − rnmUnm−1 = 0,

if a(xm, tn) < 0 : Un+1
m − (1 + rnm)U

n
m + rnmU

n
m+1 = 0, rnm = a(xm, tn)

k

h
.

(S2)

b) To check Von Neumann stability we rewrite the scheme in a unified way as:

Un+1
m − (1− r+ − r−)Unm + r+Unm−1 + r−Unm+1 = 0

where:

r+ = max(r, 0), r− = (−r)+, r = r+ − r−.

We now identify Unm = ξneiβxm and the scheme above reads:

ξn+1eiβxm − (1− r+ − r−)ξneiβxm + r+ξneiβ(xm−h) + r−ξneiβ(xm+h) = 0

which simplifies to:

ξ = (1− r+ − r−)− r+e−iβh − r−eiβh

= (1− |r|)− |r| cos(βh)− ir sin(βh)

Taking the square of the modulus leads to:

|ξ|2 = 1 + r2 + r2 cos(βh)2 − 2|r| − 2|r| cos(βh) + 2r2 cos(βh) + r2 sin(βh)2

= 1 + 2r2 − 2|r|+ [2r2 − 2|r|] cos(βh) = 1 + (2r2 − 2|r|)(1 + cos(βh))

Von Neumann stability is given if:

|ξ|2 < 1→ (2r2 − 2|r|)(1 + cos(βh)) < 0→ 2r2 − 2|r| < 0→ −1 < r < 1

or, alternatively

k <
h

|a|
.
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To check if the scheme is dissipative or dispersive we similarly indetify Unm =
ρnei(ωtn+βxm) obtaining:

ρn+1ei(ωtn+βxm) − (1− r+ − r−)ρnei(ωtn+βxm)

+ r+ρnei(ωtn+β(xm−h)) + r−ρnei(ωtn+β(xm+h))

and simplifying:

ρ = (1− r+ − r−)− r+e−iβh − r−eiβh

= (1− |r|)− |r| cos(βh)− ir sin(βh) = 0

then

|ρ|2 = 1 + (2r2 − 2|r|)(1 + cos(βh))

and since ρ < 1 by the stability assumption made the scheme is dissipative.
Also, we have:

arg(ρ) = arctan

[
− r sin(βh)

(1− |r|)− |r| cos(βh)

]
which is nonlinear in βh and thus the scheme is also dispersive.

c) The Leap-frog scheme for the problem at hand reads:

Un+1
m − Un−1

m

2k
+ a(xm, tn)

Unm+1 − Unm−1

2h
= 0.

Rearranging:

Un+1
m − Un−1

m + rUnm+1 − rUnm−1 = 0.

We have now two types of boundary conditions. On x = 0:

Un+1
1 − Un−1

1 + rUn2 = rf(P0,n).

On x = 1, as suggested, we extend the value found for UnM−1 at the time step
before outside the domain and impose:

Un+1
M−1 − U

n−1
M−1 + rUnM−1 − rUnM−2 = 0.
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