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For the second part of the project, the aim is to study one of the PDEs below. You can ei-
ther ask a question on Piazza, or to Abdullah Abdulhaque (abdullah.abdulhaque@ntnu.no)
or Yuya Suzuki (yuya.suzuki@ntnu.no).

1 Biharmonic equation (Abdulhaque)
Consider the inhomogeneous Biharmonic equation with clamped boundary conditions
on the unit square Ω = [0, 1]2:

∇4u = f , (x, y) ∈ Ω (1a)

u = 0 , ∇2u = 0 , (x, y) ∈ ∂Ω (1b)

In this setting, we have two partial differential operators:

∇2 =
∂2

∂x2
+

∂2

∂y2
, ∇4 =

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

a) Justify that the solution of this BVP can be represented by a double Fourier
sine series on the form

u(x, y) =

∞∑
m=1

∞∑
n=1

Fmn sin(mπx) sin(nπy) (2)

Calculate the coefficient Fmn. How can you choose f such that the infinite series
collapse into a single expression? (Hint: Euler’s orthogonality relations.)

b) Transform (1) into a system of Poisson equations.

c) Consider the 5-point stencil (∇2
5u) and 9-point stencil (∇2

9u) for ∇2u = f :

ui−1,j + ui+1,j − 4uij + ui,j−1 + ui,j+1 = h2fij (3)
1

6
(ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1)

+
2

3
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)−

10

3
uij

= h2
[

2

3
fij +

1

12
(fi+1,j + fi−1,j + fi,j+1 + fi,j−1)

]
(4)

Describe in full detail what the system matrix, consisting of several blocks, will
look like. What are the eigenvalues of the TST-matrices in this system?
(Hint: TST is an abbreviation for Toeplitz, Symmetric and Tridiagonal. They
have many special properties you can take advantage of in the later numerical
computation process.)
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d) Prove that the 5-point stencil is stable and of order 2. Follow this procedure:

1. Discrete maximum principle: If ∇2
5v ≥ 0 on Ω, then the maximum value of

v on Ω attains its value on ∂Ω.
2. If vh is a discrete function that equals 0 on ∂Ω, then

‖v‖∞ ≤
1

8
‖∇2

5v‖∞

3. If ∇2u = f and ∇2
5v = f , then

‖u− v‖∞ ≤ Ch2|D4v|∞

e) Prove that the 9-point stencil is stable and of order 4. Follow this procedure:

1. Discrete maximum principle: If ∇2
9v ≥ 0 on Ω, then the maximum value of

v on Ω attains its value on ∂Ω.
2. If vh is a discrete function that equals 0 on ∂Ω, then

‖v‖∞ ≤
3

40
‖∇2

9v‖∞

3. If ∇2u = f and ∇2
9v = f , then

‖u− v‖∞ ≤ Ch4|D6v|∞

f) Describe how the Fast Poisson Solver method can be used, and give a concise
explanation of how it works. (Hint: Fast Fourier Sine Transform.)

g) Perform uniform mesh refinement with M = {8, 16, 32, 64, 128, 256} in order to
verify the order of the 5-point and 9-point stencils. Apply 1a) to choose an
analytical solution, and use the same number of grid points in both directions.

h) Consider the following BVP:

∇4u = f(x, y) (x, y) ∈ Ω

u = 0 , ∇2u = 0 (x, y) ∈ ∂Ω

where u(x, y) = (sin(πx) sin(πy))4e−(x−0.5)
2−(y−0.5)2 . Solve the given problem

as good as you can and report the results in the following loglog-graphs:

• x-axis with degrees of freedom, y-axis for relative l2-error.
• x-axis with degrees of freedom, y-axis for computational time.
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2 Sine-Gordon equation (Abdulhaque)
Consider the Sine-Gordon equation on Ω× I, where Ω = [a, b] and I = [0, T ]:

utt − uxx + sin(u) = 0 , (x, t) ∈ Ω× I (5a)
u(a, t) = f1(t) , u(b, t) = f2(t) , (x, t) ∈ ∂Ω× I (5b)
u(x, 0) = u0(x) , ut(x, 0) = u1(x) , x ∈ Ω× {t = 0} (5c)

a) Find the analytical solution with the following procedure:

1. Introduce s = x− ct and express the equation in terms of s.
2. Use the chain rule to integrate.
3. Choose 1 and 0 as the constants of integration.
4. Apply the following identities:

1 + cos(x)

2
= sin2

(x
2

)
,

∫
1

sin(x)
dx = ln tan

(x
2

)
+ C

b) Show that the energy is conserved when ux(a, t), ux(b, t) = 0, i.e. E(t) = E(0).
(Hint: Multiply the equation with ut and integrate with respect to x and t)

c) Use semi-discretization (2nd order stencil on uxx) on the equation. Show that
we have two systems of equations (1st and 2nd order in time).

d) Implement the following explicit Runge-Kutta schemes:

0 0 0
1 1 0

1
2

1
2

0 0 0 0
1
2

1
2 0 0

1 -1 2 0
1
6

2
3

1
6

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Table 1: RK2 (order 2), RK3 (order 3), RK4 (order 4).

Perform h- and t-refinement for each integrator (use analytical solution).

e) Implement the following explicit and symplectic Runge-Kutta-Nyström schemes:

0 0
bi

1
2

bi 1

1
2 − δ 0 0 0

1
2

1
24δ 0 0

1
2 + δ 1

12δ δ − 1
12δ 0

bi b1(1− c1) b2(1− c2) b3(1− c3)
bi

1
24δ2

1− 1
12δ2

1
24δ2

Table 2: RKN-12 (order 2), RKN-34 (order 4).

where the generating coefficient is δ = 1
12(2− 3

√
4− 3
√

16).
Perform h- and t-refinement for each integrator (use analytical solution).
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f) Consider the following BVP, where Ω = [−2, 2] and I = [0, 4]:

utt − uxx + sin(u) = 0 , (x, t) ∈ Ω× I (6a)
u(−2, t) = 0 , u(2, t) = 0 , (x, t) ∈ ∂Ω× I (6b)

u(x, 0) = sin(πx)2e−x
2

, x ∈ Ω× {t = 0} (6c)

ut(x, 0) = sin(πx)4e−x
2

, x ∈ Ω× {t = 0} (6d)

Apply the RK4 and RKN-34 integrators, solve the problem as best as you can and
report the results in the following two loglog-graphs:

• x-axis with degrees of freedom, y-axis for normalized energy difference, ∆E =
|E(4)− E(0)|/E(0).

• x-axis with degrees of freedom, y-axis for computational time.

Which integrator yields the best result, and what is the reason for this?
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3 Advection-Diffusion equation (Suzuki)
Consider the following convection-diffusion equation on x ∈ R, t > 0

ut = cux + duxx, u(x, 0) = g(x),

where c and d are positive constants, with a periodic boundary condition

u(x+ 1, t) = u(x, t),

for all x ∈ R and t > 0. Note that due to this periodic boundary condition, we only
need to consider one period [0, 1] for the spatial domain.

Consider equidistant points

x0 = 0, x1 =
1

M + 1
, ..., xM =

M

M + 1
, xM+1 = 1,

and let h = 1/(M + 1).

a) By using the central differences in x direction, and by making use of the periodic
boundary condition, construct a linear approximation

cUx + dUxx ≈ AU ,

where A is a circulant matrix which is of the following form:

A =


a0 a1 · · · aM−1 aM
aM a0 · · · aM−2 aM−1
. . . . . . . . . . . . . . .
a2 a3 · · · a0 a1
a1 a2 · · · aM a0

 .

We are going to denote this circulant matrix by Cir(a) where a = (a0, a1, · · · , aM ).
Now, consider the general θ method (θ ∈ [0, 1]) to solve the original equation

Un+1 − θkAUn+1 = Un + (1− θ)kAUn,

where k is the time step size. Rewrite this equation by Un+1 = BUn. Fix
r = k/h2 and consider specifically three cases of θ = 0, θ = 1/2, θ = 1. By
analyzing the eigenvalues of B. derive the stability condition depending on
r, θ, c and d.
You can make use of the following facts without proof:
[Fact 1 ] The eigenvalues of the circulant matrix Cir(a) is given by

λj = a0 + a1ω
j + ...aMω

Mj ,

where ω = exp(2πi/(M+1)) with i being the imaginary unit, j = 0, ...,M , with
the right eigenvectors:

pj =
1√

M + 1
(1, ωj , ..., ωMj)>.

[Fact 2 ] Circulant matrices are normal, this means that the spectral radius is
same as the l2 matrix norm:

ρ(Cir(a)) = ‖Cir(a)‖2.
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b) Implement a stable method of your own choice for c = 20, d = 1 and the initial
condition g(x) = sin(4πx). For this problem, the analytical solution is given by

u(x, t) = exp(−d(4π)2t) sin(4π(x+ ct)).

Make a convergence plot in terms of h where r = k/h2 being fixed for the
solution at time t = 0.01. Further, when the time t is sufficiently big, how does
the solution look like? First discuss from your analytical solution and then try
to observe numerically (make the plot from your numerical solution).

c) For the above problem, to compare with other groups, submit a code which
produces two graphs: x axis for the number of degree of freedom (M/k) and
y axis for the relative l2 error; and x axis for the number of degree of freedom
(M/k) and y axis for computational time.

d) Explore the problem in different settings of your own choice: different boundary
conditions such as Dirichlet or Neumann (then you only need to consider closed
interval [0, 1] for x), or construct your own finite difference scheme. Describe
your findings theoretically (such as stability analysis, convergence ,etc) and
numerically. This problem is the most important part of this project, so make
substantial amount of effort. Note that if it is difficult to derive an analytical
solution, you can create a reference solution instead, as you did in the problem
(2a) in the ptoject 1, where you calculate the numerical solution with much
bigger number of grids.
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4 Wave equation (Suzuki)
Consider the following wave equation on x ∈ R, t > 0

utt = c2uxx, u(x, 0) = g(x), ut(x, 0) = h(x),

where c is a positive constant, with a periodic boundary condition

u(x+ 1, t) = u(x, t),

for all x ∈ R and t > 0. Note that due to this periodic boundary condition, we only
need to consider one period [0, 1] for the spatial domain.

Consider equidistant points

x0 = 0, x1 =
1

M + 1
, ..., xM =

M

M + 1
, xM+1 = 1,

and let h = 1/(M + 1).

a) By using central differences on both directions x and t, we have

Un+1
j − 2Unj + Un−1j

k2
= c2

Unj+1 − 2Unj + Unj−1
h2

, (7)

where k is the time step size, for (n + 1)th time step and j = 0, 1, ...,M .
When n = 0, we need to know U−1j . Express U−1j from the initial condition
ut(x, 0) = h(x) by using central difference in time, then rewrite (7) for n = 0
without using U−1j .

b) Now, by fixing r = ck/h and by substituting in (7)

Unj = ξn exp

(
2πiβ

j

M + 1

)
,

where i is the imaginary unit and j = 0, ...,M , derive the condition for r such
that |ξ| ≤ 1 is satisfied for any β ∈ Z.
Implement the difference method for such r with c = 1 and initial condition
g(x) = cos(4πx), h(x) = 0. Derive the analytical solution for this problem by
using separation of variables. Then make a convergence plot of the relative l2
error in terms of h where r = ck/h being fixed for the solution at time t = 1.
Change the initial condition to initial condition g(x) = exp(−100(x − 1/2)2),
h(x) = 0. Observe the time development of the solution and describe it. Make
some plots of the solution for different time t.

c) Add one more dimension to the problem: consider for (x, y) ∈ R2

utt = c2(uxx + uyy), u(x, y, 0) = g(x, y), ut(x, y, 0) = h(x, y),

with the periodic boundary condition on both spatial direction

u(x+ 1, y, t) = u(x, y, t), u(x, y + 1, t) = u(x, y, t),

for all (x, y) ∈ R2 and t > 0. Again, due to this periodicity, we only need to
consider one unit square [0, 1]2 for the spatial domain. Consider equidistant
points for both direction, but they can be different step sizes:

x0 = 0, x1 =
1

M + 1
, ..., xM =

M

M + 1
, xM+1 = 1,
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y0 = 0, y1 =
1

N + 1
, ..., yN =

N

N + 1
, yN+1 = 1,

and let hx = 1/(M + 1), hy = 1/(N + 1). Generalize the difference method (7)
for this 2D setting.
Again, by fixing rx = ck/hx, ry = ck/hy and by substituting the following for
the obtained 2D scheme

Unj,l = ξn exp

(
2πiβ1

j

M + 1

)
exp

(
2πiβ2

l

N + 1

)
,

where l = 0, ..., N and j = 0, ...,M , derive the condition for rx and ry such that
|ξ| ≤ 1 is satisfied for any β1, β2 ∈ Z.
Implement the above difference method for c = 1 and the initial condition
g(x, y) = cos(4πx) sin(4πy), h(x, y) = 0. Derive the analytical solution for this
problem by using separation of variables. Then make a convergence plot of the
relative l2 error in terms of hx where rx = ck/hx and hx = hy being fixed, for
the solution at time t = 1. Also, make some 3D plots (x, y, u) of the numerical
solution for different time t.

d) For the above 2D problem, c = 1 and the initial condition g(x, y) = cos(4πx) sin(4πy),
h(x, y) = 0, and t = 1, to compare with other groups, submit a code which pro-
duces two graphs: x axis for the number of degree of freedom (MN/k) and y
axis for the relative l2 error; and x axis for the number of degree of freedom
(MN/k) and y axis for computational time.
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Appendix

Sparse matrices (all tasks)

Defining matrices in sparse format is useful for reducing memory storage and computational
running time when dealing with linear systems of equations. There are two essential
Python-modules for this task:
import scipy.sparse as sp
import scipy.sparse.linalg as sl

Matrices can be converted between full and sparse format:
A = sp.csc_matrix(A) # Sparse format.
A = A.todense () # Full format.

Banded matrices can be defined as follows:
A = sp.diags ([-1,2,-1],[1,0,-1],shape =[20 ,20], format=’csc’)
B = sp.diags ([1,-4,10,-4,1],[2,1,0,-1,-2], shape =[20,20] , format=’csc’)

Some typical operations with sparse matrices:
c = A*b # Matrix -vector multiplication , c = A*b
c = sl.spsolve(A,b) # Linear equation solving , c = A\b

Fast Fourier Transform (Task 1)

The Fast Fourier Transform and its variants are included in the Python-module scipy:
from scipy.fft import fft , ifft , dst , idst
y = fft(x) # Fast Fourier Transform
x = ifft(y) # Inverse Fast Fourier Transform
y = dst(x,type =2) # Fast Fourier Sine Transform
x = idst(y,type =2) # Inverse Fourier Sine Transform
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RK- and RKN-integrators (Task 2)

Runge-Kutta (RK) and Runge-Kutta-Nyström (RKN) integrators are defined as

c A

b

c A

b

b

Applying an RK-method to y′ = f(y) yields

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
, 1 ≤ i ≤ s (8)

yn+1 = yn + h

s∑
i=1

biki

Applying an RKN-method to y′′ = f(y) yields

ki = f

(
tn + cih, yn + cihy

′
n + h2

s∑
j=1

aijkj

)
, 1 ≤ i ≤ s (9)

y′n+1 = y′n + h
s∑
i=1

biki

yn+1 = yn + hy′n + h2
s∑
i=1

biki
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