Norwegian University of Science
and Technology
Department of Mathematical

1 Consider the following heat equation on $x \in[0,1]$,

$$
u_{t}=u_{x x}, u(0, t)=u(1, t)=0, u(0, x)=\left\{\begin{array}{l}
2 x, 0 \leq x \leq 1 / 2 \\
2-2 x, \quad 1 / 2 \leq x \leq 1
\end{array}\right.
$$

for $t>0$ as we considered in Section 4.2.
a) Implement the Crank-Nicolsons method on your computer. Since this is a voluntary exercise, use any language you like. If you choose to use Matlab, the code is given in Section 4.2.4. Observe time evolution of the solution. When time t is sufficiently large, how the solution look like?
[Solution] When time is sufficiently large, the solution converges to zero. Look at the first animation in the supplementary file.
b) The heat equation is known to have smoothing property: even if the initial condition is discontinuous (but in L_{2}), the solution at any $t>0$ is in C^{∞}. Check this property numerically by choosing your own discontinuous initial condition.

[Solution] Look at the second animation in the supplementary file.
c) Modify your code for a general θ method, and compare the numerical solution (your choice of $\theta \neq 1 / 2$) with the Crank-Nicolsons method. Draw the convergence plot (in terms of M) of this method using as if the Crank-Nicolsons method is the analytic solution, where both methods should use the same number of points M. Theoretically, what convergence rate do you expect? And do you numerically see it?
[Solution] For M large enough, the error difference between first order 1 $\operatorname{method}(\theta \neq 1 / 2)$ and order 2 method (Crank-Nicolson) is $\mathcal{O}\left(M^{-1}\right)-\mathcal{O}\left(M^{-2}\right)=$ $\mathcal{O}\left(M^{-1}\right)$, therefore we expect the first order convergence and you should actually see it numerically.
d) Consider a modified problem

$$
u_{t}=-u_{x x}
$$

with the same boundary/initial conditions. This is known to be an ill-posed problem where the solution diverges analytically. Consider the θ method to numerically solve this problem. Prove that you cannot obtain F-stability with any choice of parameters (Hint: look at Section 5.5).
[Solution] Write the linear system in the following manner (look at Section 5.5):

$$
(I+\theta r S) \boldsymbol{U}^{n+1}=\left((I+(\theta-1) r S) \boldsymbol{U}^{n}+\boldsymbol{d}^{n}\right.
$$

where S is the same as Section 5.5 , and our boundary condition is expressed in \boldsymbol{d}^{n}. Note that because of the modified problem, the sign before the matrix S is now different. We want to prove that

$$
\rho\left((I+\theta r S)^{-1}(I-(1-\theta) r S)\right)>1
$$

Now let

$$
\begin{gathered}
A:=(I+\theta r S)=\operatorname{tridiag}(r \theta, 1-2 r \theta, r \theta) \\
B=(I-(1-\theta) r S)=\operatorname{tridiag}(-r(1-\theta), 1+2 r(1-\theta),-r(1-\theta))
\end{gathered}
$$

We know that (e.g., look at the previous exercise) for a tridiagonal matrix tridiag (c, a, b) the eigenvectors $\boldsymbol{x}^{(k)}$ and the associated eigenvalues λ_{k} are given by

$$
x_{j}^{(k)}=\left(\frac{b}{c}\right)^{j / 2} \sin \left(\frac{j k \pi}{M+1}\right), \quad \lambda_{k}=a+2 \sqrt{b c} \cos \left(\frac{k \pi}{M+1}\right)
$$

where $x_{j}^{(k)}$ is the j th element of the vector $\boldsymbol{x}^{(k)} ; A \boldsymbol{x}^{(k)}=\lambda_{k} \boldsymbol{x}^{(k)}$. Observe that A and B have the same eigenvectors. This means we can diagonalize A and B by the same orthogonal matrix T :

$$
A=T \Lambda_{A} T^{-1}, B=T \Lambda_{B} T^{-1}
$$

where Λ_{A} and Λ_{B} are diagonal matrices consisting of eigenvalues of A and B, respectively. Therefore,

$$
(I+\theta r S)^{-1}(I-(1-\theta) r S)=A^{-1} B=T \Lambda_{A}^{-1} \Lambda_{B} T^{-1}
$$

So the eigenvalues of $A^{-1} B$ is

$$
\frac{\lambda_{B, k}}{\lambda_{A, k}}=\frac{1+2(1-\theta) r+2(1-\theta) r \cos (k \pi /(M+1))}{1-2 \theta r+2 \theta r \cos (k \pi /(M+1))}
$$

for $k=1, \ldots, M$. With easy calculation one can show

$$
\forall k \frac{\lambda_{B, k}}{\lambda_{A, k}} \geq 1, \text { and, } \exists k \frac{\lambda_{B, k}}{\lambda_{A, k}}>1
$$

Therefore,

$$
\rho\left(A^{-1} B\right)>1
$$

2 Solve the problems 3, 4 and 5 of the exercise 1 from 2020.
[Solution] Solution is given here.

