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Exercise set 2

1 Consider the following heat equation on x ∈ [0, 1],

ut = uxx, u(0, t) = u(1, t) = 0, u(0, x) =

{
2x, 0 ≤ x ≤ 1/2,

2− 2x, 1/2 ≤ x ≤ 1,

for t > 0 as we considered in Section 4.2.

a) Implement the Crank-Nicolsons method on your computer. Since this is a vol-
untary exercise, use any language you like. If you choose to use Matlab, the
code is given in Section 4.2.4. Observe time evolution of the solution. When
time t is sufficiently large, how the solution look like?
[Solution] When time is sufficiently large, the solution converges to zero. Look
at the first animation in the supplementary file.

b) The heat equation is known to have smoothing property: even if the initial
condition is discontinuous (but in L2), the solution at any t > 0 is in C∞. Check
this property numerically by choosing your own discontinuous initial condition.
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[Solution] Look at the second animation in the supplementary file.

c) Modify your code for a general θ method, and compare the numerical solution
(your choice of θ 6= 1/2) with the Crank-Nicolsons method. Draw the con-
vergence plot (in terms of M) of this method using as if the Crank-Nicolsons
method is the analytic solution, where both methods should use the same num-
ber of points M . Theoretically, what convergence rate do you expect? And do
you numerically see it?
[Solution] For M large enough, the error difference between first order 1
method (θ 6= 1/2) and order 2 method (Crank-Nicolson) isO(M−1)−O(M−2) =
O(M−1), therefore we expect the first order convergence and you should actu-
ally see it numerically.
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d) Consider a modified problem
ut = −uxx,

with the same boundary/initial conditions. This is known to be an ill-posed
problem where the solution diverges analytically. Consider the θ method to
numerically solve this problem. Prove that you cannot obtain F−stability with
any choice of parameters (Hint: look at Section 5.5).
[Solution] Write the linear system in the following manner (look at Section
5.5):

(I + θrS)Un+1 = ((I + (θ − 1)rS)Un + dn,

where S is the same as Section 5.5, and our boundary condition is expressed in
dn. Note that because of the modified problem, the sign before the matrix S is
now different. We want to prove that

ρ
(
(I + θrS)−1(I − (1− θ)rS)

)
> 1.

Now let
A := (I + θrS) = tridiag(rθ, 1− 2rθ, rθ),

B = (I − (1− θ)rS) = tridiag(−r(1− θ), 1 + 2r(1− θ),−r(1− θ)).

We know that (e.g., look at the previous exercise) for a tridiagonal matrix
tridiag(c, a, b) the eigenvectors x(k) and the associated eigenvalues λk are given
by

x
(k)
j =

(
b

c

)j/2

sin

(
jkπ

M + 1

)
, λk = a+ 2

√
bc cos

(
kπ

M + 1

)
,

where x(k)j is the jth element of the vector x(k); Ax(k) = λkx
(k). Observe that

A and B have the same eigenvectors. This means we can diagonalize A and B
by the same orthogonal matrix T :

A = TΛAT
−1, B = TΛBT

−1,

where ΛA and ΛB are diagonal matrices consisting of eigenvalues of A and B,
respectively. Therefore,

(I + θrS)−1(I − (1− θ)rS) = A−1B = TΛ−1A ΛBT
−1.

So the eigenvalues of A−1B is

λB,k

λA,k
=

1 + 2(1− θ)r + 2(1− θ)r cos(kπ/(M + 1))

1− 2θr + 2θr cos(kπ/(M + 1))
,

for k = 1, ...,M . With easy calculation one can show

∀k
λB,k

λA,k
≥ 1, and, ∃k

λB,k

λA,k
> 1.

Therefore,
ρ(A−1B) > 1.

2 Solve the problems 3, 4 and 5 of the exercise 1 from 2020.
[Solution] Solution is given here.
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https://www.math.ntnu.no/emner/TMA4212/2020v/exercises/ex01.pdf
https://wiki.math.ntnu.no/tma4212/2020v/ovinger

