Norwegian University of Science and Technology
Department of Mathematical
Sciences

$$
\begin{array}{r}
\text { TMA4212 } \\
\text { Numerical solution of } \\
\text { differential equations by } \\
\text { difference methods } \\
\text { Spring } 2021
\end{array}
$$

For this project 2D, you can ask a question on Piazza or to Yuya Suzuki (yuya.suzuki@ntnu.no).

D Consider the following wave equation on $x \in \mathbb{R}, t>0$

$$
u_{t t}=c^{2} u_{x x}, \quad u(x, 0)=g(x), \quad u_{t}(x, 0)=h(x),
$$

where c is a positive constant, with a periodic boundary condition

$$
u(x+1, t)=u(x, t),
$$

for all $x \in \mathbb{R}$ and $t>0$. Note that due to this periodic boundary condition, we only need to consider one period $[0,1]$ for the spatial domain.
Consider equidistant points

$$
x_{0}=0, x_{1}=\frac{1}{M+1}, \ldots, x_{M}=\frac{M}{M+1}, x_{M+1}=1
$$

and let $h=1 /(M+1)$.
a) By using central differences on both directions x and t, we have

$$
\begin{equation*}
\frac{U_{j}^{n+1}-2 U_{j}^{n}+U_{j}^{n-1}}{k^{2}}=c^{2} \frac{U_{j+1}^{n}-2 U_{j}^{n}+U_{j-1}^{n}}{h^{2}} \tag{1}
\end{equation*}
$$

where k is the time step size, for $(n+1)$ th time step and $j=0,1, \ldots, M$. When $n=0$, we need to know U_{j}^{-1}. Express U_{j}^{-1} from the initial condition $u_{t}(x, 0)=h(x)$ by using central difference in time, then rewrite (??) for $n=0$ without using U_{j}^{-1}.
b) Now, by fixing $r=c k / h$ and by substituting in (??)

$$
U_{j}^{n}=\xi^{n} \exp \left(2 \pi \mathrm{i} \beta \frac{j}{M+1}\right),
$$

where i is the imaginary unit and $j=0, \ldots, M$, derive the condition for r such that $|\xi| \leq 1$ is satisfied for any $\beta \in \mathbb{Z}$.
Implement the difference method for such r with $c=1$ and initial condition $g(x)=\cos (4 \pi x), h(x)=0$. Derive the analytical solution for this problem by using separation of variables. Then make a convergence plot in terms of h where $r=c k / h$ being fixed for the solution at time $t=1$.
Change the initial condition to initial condition $g(x)=\exp \left(-100(x-1 / 2)^{2}\right)$, $h(x)=0$. Observe the time development of the solution and describe it. Make some plots of the solution for different time t.
c) Add one more dimension to the problem: consider for $(x, y) \in \mathbb{R}^{2}$

$$
u_{t t}=c^{2}\left(u_{x x}+u_{y y}\right), u(x, y, 0)=g(x, y), \quad u_{t}(x, y, 0)=h(x, y)
$$

with the periodic boundary condition on both spatial direction

$$
u(x+1, y, t)=u(x, y, t), \quad u(x, y+1, t)=u(x, y, t)
$$

for all $(x, y) \in \mathbb{R}^{2}$ and $t>0$. Again, due to this periodicity, we only need to consider one unit square $[0,1]^{2}$ for the spatial domain. Consider equidistant points for both direction, but they can be different step sizes:

$$
\begin{aligned}
x_{0} & =0, x_{1}=\frac{1}{M+1}, \ldots, x_{M}=\frac{M}{M+1}, x_{M+1}=1 \\
y_{0}=0, y_{1} & =\frac{1}{N+1}, \ldots, y_{N}=\frac{N}{N+1}, y_{N+1}=1
\end{aligned}
$$

and let $h_{x}=1 /(M+1), h_{y}=1 /(N+1)$. Generalize the difference method (??) for this 2D setting.
Again, by fixing $r_{x}=c k / h_{x}, r_{y}=c k / h_{y}$ and by substituting the following for the obtained 2D scheme

$$
U_{j, l}^{n}=\xi^{n} \exp \left(2 \pi \mathrm{i} \beta_{1} \frac{j}{M+1}\right) \exp \left(2 \pi \mathrm{i} \beta_{2} \frac{l}{N+1}\right)
$$

where $l=0, \ldots, N$ and $j=0, \ldots, M$, derive the condition for r_{x} and r_{y} such that $|\xi| \leq 1$ is satisfied for any $\beta_{1}, \beta_{2} \in \mathbb{Z}$.
Implement the above difference method for $c=1$ and the initial condition $g(x, y)=\cos (4 \pi x) \sin (4 \pi y), h(x, y)=0$. Derive the analytical solution for this problem by using separation of variables. Then make a convergence plot of the l_{2} error in terms of h_{x} where $r_{x}=c k / h_{x}$ and $h_{x}=h_{y}$ being fixed, for the solution at time $t=1$. Also, make some 3 D plots (x, y, u) of the numerical solution for different time t.
d) For the above 2D problem, $c=1$ and the initial condition $g(x, y)=\cos (4 \pi x) \sin (4 \pi y)$, $h(x, y)=0$, and $t=1$, to compare with other groups, submit a code which produces two graphs: x axis for the number of degree of freedom $(M N / k)$ and y axis for the relative l_{2} error; and x axis for the number of degree of freedom $(M N / k)$ and y axis for computational time.

