
TMA4212 Part 2: Introduction to finite element

methods

Charles Curry

April 26, 2018

Contents

1 Introduction 2

2 Boundary value problems and the Galerkin method 4
2.1 Setting up a variational form . 4
2.2 Grids and basis functions . 5
2.3 Assembly: setting up a linear system 7
2.4 Neumann conditions . 9
2.5 Inhomogeneous Dirichlet conditions 10
2.6 Further examples . 12

3 Theory I: Variational problems 13
3.1 The space H1((0, 1)) . 13
3.2 The Lax-Milgram theorem . 15
3.3 Rayleigh-Ritz method . 16

4 Theory II: Stability and convergence of Galerkin methods 17
4.1 Coercivity and stability . 17
4.2 Towards convergence: Galerkin orthogonality and Cea’s lemma . 18
4.3 Interpolation estimates and convergence 18

5 2D Poisson equation 19
5.1 The variational form . 20
5.2 Triangulations and basis functions 21
5.3 Assembly . 23
5.4 Coding practicalities . 26
5.5 Further comments . 26

6 Outlook 27

1

1 Introduction

In the first part of the course, we covered numerical solution of partial differential
equations by finite difference methods. By introducing a grid of points and
discretizing the equation, time-independent linear PDEs were reduced to linear
systems

Au = F,

whilst time-dependent linear equations (evolution problems) gave rise to either
ODEs (by semi-discretization) or linear evolution equations:

u′ = Au+ F or Aun+1 = Bnun + Cn

It is now time to introduce another important approach to the numerical solu-
tion of PDEs, namely the finite element methods. This technique is widely ap-
plied in industry, principally it because handles irregular domains with awkward
boundaries much more comfortably than difference methods. Moreover, finite
element methods are a particular type of Galerkin method, and thus provide an
excellent introduction to a still broader vista of applied numerical analysis.

The verbal description of Galerkin methods is that the solution space is
discretized, rather than the equation. Indeed, the idea is to specify a finite
dimensional function space (such as piecewise linear functions, trigonometric
polynomials up to a given degree, a finite set of orthogonal polynomials etc.),
and look for solutions in this space. The key is that ‘solution’ in this sense is
interpreted in some averaged or weak sense. This is made possible by the vast
theory of weak formulations of PDEs. Constructing a weak form of an equation
may be important in cases where the solution becomes insufficiently regular for
the equation to make sense, as is seen in the development of a discontinuity
(shock) in the following inviscid Burgers’ equation.

x

u(x)

t = 0
x

u(x)

t = 1

Figure 1: Shock development

This situation arises physically also, we need only think of sonic booms as
aircraft break the sound barrier, or even the formation of traffic jams (recall that
traffic flow can be modelled by PDEs). In this case it might be argued that the
weak form is a better description of the physical system than the PDE which was
derived first. On the other hand, in situations where there are no problems with

2

regularity of solutions (as often occurs with elliptic or parabolic problems), weak
formulations may still have computational value. The Galerkin (and related)
methods are among the most spectacular realizations of this phenomenon.

The heart of the material covered in this course lies in §2 and §5. In §2
we introduce the finite element method for second order ODE boundary value
problems. This is extended to PDEs with two independent variables in §5,
where the focus will be particularly on the Poisson equation (and related elliptic
problems).

A difficulty that arises when first encountering finite element methods is that
the underlying theory, grounded in functional analysis of PDEs, can be far more
intimidating than the application and understanding of the methods themselves.
An introduction to this side is found in §3-4 - we give in §3 the briefest treatment
of the necessary results from functional analysis, together with the main theorem
on existence and uniqueness of solutions to weak formulations of PDEs. This is
followed in §4 by a demonstration of how stability and convergence is obtained
for the finite element method in the ODE case, although the techniques and
results of this section are much more widely applicable. These chapters should
perhaps be read as appendices to §2 and §5, providing justification for the
methods and a reference to some required concepts.

These notes conclude in §6 with a short discussion of the wider world of finite
element and Galerkin methods. This is not curriculum material, but hopefully
provides a bit of perspective, and perhaps an encouragement to learn more
about the field in the TMA4220 finite element course!

3

2 Boundary value problems and the Galerkin
method

We begin by consider the equation

−u′′(x) = f(x), 0 < x < 1 (1)

At first we will assume homogeneous Dirichlet conditions u(0) = u(1) = 0,
before examining other cases later in the same chapter. When applied to a
linear PDE, the Galerkin method involves four stages:

1. Setting up a weak (variational) form of the PDE

2. Choosing a finite dimensional function space where we will look for solu-
tions, together with a basis.
For finite element methods, this involves specifying a discretization of the
domain of the equation, which in the 1d (ODE) case is nothing other than
a set of grid points in [0, 1].

3. ‘Assembling’ a linear system
By expanding in terms of the basis, the (weak) PDE is reduced to a linear
system Au = b (or a linear ODE such as Mu̇(t) = Au(t) + b in the case of
evolution problems)

4. Solution of the system
Whilst an important and nontrivial step in practice, the considerations
are the same as those arising from finite difference methods so we will not
comment further.

2.1 Setting up a variational form

Let v be an arbitrary element of a function space V (usually called a test func-
tion) - we will postpone discussion of the specific space V . We multiply (1) by
v and integrate over the domain:

−
∫ 1

0

u′′(x)v(x)dx =

∫ 1

0

f(x)v(x)dx

Integration by parts results in the relation∫ 1

0

u′(x)v′(x)dx−
[
u′(x)v(x)

]1
0

=

∫ 1

0

f(x)v(x)dx (2)

A characteristic of Galerkin methods is that the solutions u and test functions
v are supposed to belong to the same function space V . In particular, we can
assume that all elements of V satisfy the Dirichlet boundary conditions. In
particular, v(0) = v(1) = 0, and the second term on the left hand side of the
above equation vanishes. We are led to the following weak form of the PDE:

4

Find u ∈ V such that for all v ∈ V ,∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx (3)

In this case the space V will be the Sobolev space H1
0 ([0, 1]), which consists of

all functions on [0, 1] which satisfy the boundary conditions and are of sufficient
regularity for all the terms in the above equation to make sense. This space is
discussed in more detail in §3.1.

How closely are the equations (1) and (3) related? The above argument
shows that any solution of (1) also solves (3). In fact, in this case it is possible
to prove the converse, namely that any solution of (3) is sufficiently regular for
the original ODE to make sense, and that the solution solves (1). However,
as discussed in the introduction, we cannot expect such a result to hold for all
PDEs, and indeed it may not always be relevant. Such questions are a major
part of PDE theory and are treated at length in standard PDE texts, but will
be avoided in this course.

2.2 Grids and basis functions

The fundamental idea of Galerkin methods is to restrict the functions u, v in
the weak formulation (3) to lie in a finite dimensional function space Vh ⊂ V .
If in addition we give a basis {ϕi} for Vh, expanding u and v in terms of the
basis will lead to a linear system of equations (see §2.3).

Finite element methods are a specific type of Galerkin method where the
function spaces V0 are piecewise (or elementwise in higher dimensions) polyno-
mials. Indeed, the domain Ω of the equation, here [0, 1] is partitioned into a set of
elements Ki, here subintervals [xi, xi+1], where 0 = x0 < x1 < . . . < xM+1 = 1
is a grid of points imposed on [0, 1] such as we have used in setting up finite
difference methods. Having specified this set of elements, we let Xp

h be the space
of functions that are polynomials of degree p when restricted to an element. Of
special interest to us is the space X1

h of piecewise linear functions. There is a

x

f(x)

Figure 2: A representative element f(x) of X1
h

5

natural basis {ϕi}i=0,...,M+1 for X1
h, the nodal (or Lagrange) basis, where the

basis functions ϕi(x) are the unique elements of X1
h that evaluate to 1 at the

point xi, and 0 at all other grid points xj . This basis is natural in the following

1

0 xi−1 xi xi+1

Figure 3: The basis function ϕi(x)

sense. As X1
h is a finite dimensional vector space, any element v ∈ X1

h can be

expanded in terms of the basis, i.e. v =
∑M+1

i=0 viϕi(x), where vi are uniquely
determined coefficients. For this choice of basis, it follows that v(xi) = vi for all
i = 0, . . . ,M + 1, i.e. the coefficients in the expansion are simply the values of
the function at each grid point (or node, hence nodal basis). This is convenient,
as we will typically give the solution u in terms of its vector of components ui,
and hence the solution can be plotted easily.

The explicit formula for ϕi can be calculated:

ϕi(x) =

x−xi−1

xi−xi−1
xi−1 < x ≤ xi

xi+1−x
xi+1−xi

xi < x < xi+1

0 otherwise

For most computations involving the basis functions, we will restrict ourselves
to a specified element Ki = [xi, xi+1]. In this case, we observe that all basis
functions ϕj are identically zero on Ki except ϕi and ϕi+1:

1

0
xi xi+1

Figure 4: Basis functions ϕi, ϕi+1 restricted to Ki

6

2.3 Assembly: setting up a linear system

We now return to the weak form (3), replacing the space V with Vh. As
u, v ∈ Vh, they may be expanded in terms of the basis. Indeed, writing
u(x) =

∑
i uiϕi(x), v(x) =

∑
j vjϕj(x), the problem becomes:

Find a vector of coefficients u for which, for all vectors v

∑
i,j

uivj

∫ 1

0

ϕ′i(x)ϕ′j(x)dx = vj

∫ 1

0

f(x)ϕj(x)dx (4)

If we define the ‘stiffness matrix’ A and ‘load vector’ F by

Aij =

∫ 1

0

ϕ′i(x)ϕ′j(x)dx, Fj =

∫ 1

0

f(x)ϕj(x)dx, (5)

equation (4) takes the form
vTAu = vTF.

As this must hold for all v, it is equivalent to the equation

Au = F.

In practice, a large part of the challenge of coding finite element solvers is
the construction of the matrix A and vector F following (5). An important
principle (especially for PDEs with spatial dimension 2 or greater) is to perform
the construction elementwise, i.e. we compute

Aij =
∑
k

∫ xk+1

xk

ϕ′i(x)ϕ′j(x)dx, Fj =
∑
k

∫ xk+1

xk

f(x)ϕj(x)dx,

In view of the comments on restricting basis functions ϕj to a given element
Kk (see figure 4), the only non-zero contributions to Aij and Fj from Kk arise
where i, j = k or k+ 1. Let us begin with A, where from the explicit form of ϕi

we find that (on Kk)

ϕ′k(x) = − 1

xk+1 − xk
, ϕ′k+1(x) =

1

xk+1 − xk

It follows that we can construct A by first initializing A to the matrix with all
entries zero, and then adding the 2× 2 matrix

1

xk+1 − xk

(
1 −1
−1 1

)
to the submatrix [Aij]i,j=k,k+1. For example, if the grid points are equidistant

7

so that xk+1 − xk = h for all k, the assembly process gives

A =
1

h

1 −1 0 · · · · · · 0

−1 2 −1
. . . 0

0 −1 2
. . .

. . . 0
...

. . .
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · · · · 0 −1 1

(6)

This is not quite the correct matrix for the system, however, as we have neglected
the boundary conditions. Indeed, the space X1

h is not a subspace of H1
0 ([0, 1])

as functions v in the latter space obey v(0) = v(1) = 0, which has not been
imposed in the former space. Computationally, it is usually easier to assemble
the matrix and then enforce the boundary conditions. Here, this is a simple
matter, as any element v ∈ X1

h will satisfy the boundary conditions if and only
if v0 = vM+1 = 0. This constitutes a vector subspace of X1

h with the basis
{ϕi}i=1,...,M . It follows that we obtain the correct matrix by removing the
entries of Aij where i, j are 0 or M + 1, i.e. the first and last row and column,
obtaining the matrix

A =
1

h

2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

 (7)

The computation of F is more complicated, as the integrals involve not only the
basis functions but also the forcing term f(x). Indeed, the contribution from
the element Kk will be the vector

1

xk+1 − xk

(∫ xk+1

xk
(xk+1 − x)f(x)dx∫ xk+1

xk
(x− xk)f(x)dx,

)
(8)

which should be added to the subvector [Fj]j=k,k+1 in a similar manner as to
the construction of A. Unless f(x) takes a simple form, these integrals must be
computed numerically, using a quadrature rule. Return to the case of a uniform
grid, and suppose we evaluate these using the trapezoidal rule∫ b

a

g(x)dx ≈ (b− a)
g(a) + g(b)

2

The vector (8) becomes simply

1

2

(
f(xk)
f(xk+1),

)

8

hence before implementing boundary conditions we find

F =

(
1

2
f(x0), f(x1), . . . , f(xM),

1

2
f(xM+1)

)T

. (9)

To implement the boundary conditions, we delete the entries corresponding to
ϕ0 and ϕM+1, giving

F =
(
f(x1), . . . , f(xM)

)T
Thus solving (1) numerically by linear finite elements on a uniform grid with
trapezoidal quadrature is equivalent (gives the same same linear system) to
solving by three-point central difference approximation of the second derivative.
It would however be more normal to use Gaussian quadrature on the integrals
(8), in general ∫ b

a

g(x)dx ≈
∑
i

wig(xi),

where wi are the quadrature weights and xi the quadrature nodes, particular
values of which can be found in any textbook on numerical integration (or the
wikipedia articles)

For time independent problems it is often the case that for regular geome-
tries finite element methods can be shown to be equivalent to finite difference
schemes. This is typically no longer the case for semidiscretization of evolution
equations (see §6), but the main reason for employing finite element methods
in practice is their ability to handle domains with irregular boundaries, as often
arise in physical problems.

2.4 Neumann conditions

In contrast to finite difference methods, the implementation of Neumann condi-
tions does not involve a substantial challenge. Let us consider equation (1) with
the Neumann condition u′(0) = a, u′(1) = b. Multiplying by a test function v
and integrating by parts gives the same equation∫ 1

0

u′(x)v′(x)dx−
[
u′(x)v(x)

]1
0

=

∫ 1

0

f(x)v(x)dx,

however we no longer enforce v(0) = v(1) = 0, indeed v ∈ H1([0, 1]) but not
necessarily H1

0 . The second term on the left hand side no longer vanishes,
but may be expressed in terms of the boundary conditions. The result is the
following weak form: Find u ∈ H1([0, 1]) such that for all v ∈ H1([0, 1]),∫ 1

0

u′(x)v′(x)dx = bv(1)− av(0) +

∫ 1

0

f(x)v(x)dx (10)

From here we proceed in the same manner as before - we first specify a finite
dimensional subspace Vh ⊂ V together with a basis {ϕi}, and arguing as per §2.3

9

reduces the problem to a linear system. Taking linear finite elements Vh = X1
h

with the nodal (Lagrange) basis as before gives the equation

Au = (−a, 0, . . . , b)T + F,

where A and F are the same stiffness matrix and load vector (5), only this time
we do not remove any rows or columns. For instance, taking a uniform grid
results in A taking the form (6).

Note that if we evaluate the integrals in F by the trapezoidal rule as per
(9), we obtain the same system as arises from the order 2 finite difference dis-
cretization that uses fictitious nodes x−1, xM+2, see case two from chapter 3 of
the course notes on finite differences.

It is also possible to have mixed boundary conditions, e.g. u′(0) = a, u(1) =
0, in this case we multiply (1) by a function v and integrate by parts. The
function space V comprises those elements of H1([0, 1]) for which v(1) = 0, and
we proceed as before. The end result is a system

Au = (−a, 0, . . . , 0)T + F,

where we take the same A,F and remove the last row and column of A and final
entry in F (all those corresponding to ϕM+1), but not the first (corresponding
to ϕ0).

2.5 Inhomogeneous Dirichlet conditions

Suppose we consider the problem (1) with the inhomogeneous Dirichlet con-
ditions u(0) = a, u(1) = b. This requires a little care, because the space of
functions v ∈ H1([0, 1]) which satisfy these conditions do not form a vector
space - the sum of two such functions v1 + v2 will no longer satisfy the con-
ditions. The usual way around this problem in the Galerkin framework is to
relate the solution of the inhomogeneous and homogeneous problems. To il-
lustrate the idea, suppose û solves (1) with homogeneous boundary conditions
û(0) = û(1) = 0, and let

u(x) = û(x) +R(x), R(x) = a(1− x) + bx.

Then as R′′(x) = 0, we see that u solves the same problem with inhomogeneous
conditions u(0) = a, u(1) = b. We call the function R a lifting of the boundary
data. Let us see how this idea translates to the weak formulation of the problem.
Once again, we multiply (1) by a test function v, here taken from the space
H1

0 ([0, 1]) - as we will be relating to the homogeneous problem we take test
functions obeying v(0) = v(1) = 0, giving the equation∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx,

where here u is an element of H1([0, 1]) with u(0) = a, u(1) = b. Now sup-
pose that Rh(x) is an element of H1([0, 1]) satisfying the conditions Rh(0) =

10

a,Rh(1) = b, and define û := u−Rh. It follows that û ∈ H1
0 ([0, 1]), and∫ 1

0

û′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx+

∫ 1

0

R′h(x)v′(x)dx

where here û, v ∈ H1
0 ([0, 1]). We can then solve this problem numerically in the

familiar manner by introducing a finite dimensional subspace Vh of H1
0 ([0, 1])

together with a basis, and expanding in terms of the basis. The calculation of
the right hand side is most convenient if Rh(x) ∈ Vh, and indeed in the case of
linear finite elements Vh = X1

h with nodal basis {ϕi} there is a natural choice:

Rh(x) = aϕ0(x) + bϕM+1(x)

In this case the integral involving R′h becomes

a

b

0 1
x

Rh(x)

Figure 5: A canonical lifting Rh of the boundary conditions u(0) = a,u(1) = b

a

∫ 1

0

ϕ′0(x)v′(x)dx+ b

∫ 1

0

ϕ′M+1(x)v′(x)dx,

which assumes a convenient form once we expand v =
∑

j vjϕj(x):∫ 1

0

R′h(x)v′(x)dx = A(a, 0, . . . , 0, b)T ,

where A is the stiffness matrix from (5), before boundary conditions are imple-
mented, e.g. in the case of a uniform grid it is (6) and not (7). The procedure
is as follows: we set up the system

Aû = F +A(a, 0, . . . , 0, b)T ,

computing the vector on the right hand side by matrix multiplication (it may
be possible to code this more efficiently than a simple multiplication due to the
large number of zeros in the vector to be multiplied), Only then do we implement
the boundary conditions by removing the first row and column from A on the

11

left hand side and the first and last entries in the vector F + A(a, 0, . . . , 0, b)T .
Finally, we take

u(x) = û(x) +Rh(x),

which in vector terms consists of expanding the vector û from dimension M to
M + 2 by including an additional a as the first entry, and b as the last entry.

2.6 Further examples

So far we have restricted ourselves to the simple equation u′′(x) = f(x), but
similar reasoning is applicable to more general second order ODEs, for example
the Sturm-Liouville type equation

− d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), a < x < b,

with appropriate boundary conditions (Neumann, Dirichlet, mixed etc). In
this case, multiplying by a test function and integrating by parts results in the
equation∫ b

a

p(x)u′(x)v′(x)dx+

∫ b

a

q(x)u(x)v(x)dx = − [p(x)u′(x)v(x)]
b
a+

∫ b

a

f(x)v(x)dx,

where the first term on the right hand side vanishes for the Dirichlet problem.
Again, the problem of finding u ∈ H1((a, b)) such that the above holds for all
v ∈ H1((a, b)) (or H1

0 for the Dirichlet problem) is the appropriate weak form.
Introducing the subspace X1

h with its nodal basis then reduces the problem
to the linear system

(A+M)u = F,

where

Aij =

∫ b

a

p(x)ϕ′i(x)ϕ′j(x)dx, Mij =

∫ b

a

q(x)ϕi(x)ϕj(x)dx,

and the vector F is given by

F =
(
p(a)v(a)σa, 0, . . . , 0,−p(b)v(b)σb

)
+

∫ b

a

ϕ(x)f(x)dx,

where ϕ = (ϕ0, . . . , ϕM+1)T , and the term in parentheses occurs only for the
Neumann problem u′(a) = σa, u

′(b) = σb. In the particular case q(x) = 1, the
matrix M is called the mass matrix.

The assembly procedure is similar, except it is unlikely that the matrix A
can be evaluated explicitly due to the presence of the weight p(x). We perform
the calculations elementwise, but in this case the integrals∫ xi+1

xi

p(x)ϕ′i(x)ϕ′j(x)

must be evaluated by quadrature; likewise the integrals comprising M .
Practical examples for both the 1D Poisson equation and the more general

Sturm-Liouville problems are given in the codes published on the website.

12

3 Theory I: Variational problems

In this section, we present the keystone of the Galerkin method - the Lax-
Milgram theorem concerning the existence and uniqueness of solutions to a
wide variety of variational problems such as (3). The techniques used come
from functional analysis, which takes us far afield from the course curriculum,
so do not worry if you there are some claims you struggle to understand. The
basic variational problem we consider takes the form

Definition 3.1. Find u ∈ V such that, for all v ∈ V ,

a(u, v) = F (v),

where a is a bilinear form (function V ×V → R), and F is a linear functional.
We require that V be a so-called Hilbert space, the conditions for which do not
concern us as they will be satisfied by all the function spaces we consider, but
suffice to say that we need to specify an inner product and hence norm on V .
For the important case of H1((0, 1)) we will give these, together with some
inequalities that will be used in the sequel to justify the application of the
Lax-Milgram theorem.

3.1 The space H1((0, 1))

Recall that we wished to derive weak forms such as∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx, (11)

and pose them in a function space V for which all the terms above are defined.
We begin by recalling that the function space L2((0, 1)) of square-integrable
functions on (0, 1) is an inner product space with inner product 〈f, g〉L2 defined
by

〈f, g〉L2 =

∫ 1

0

f(x)g(x)dx

If we define the associated norm ||f ||2L2 = 〈f, f〉L2 , the Cauchy-Schwarz inequal-
ity gives 〈f, g〉L2 ≤ ||f ||L2 ||g||L2 , hence

∫ 1

0

f(x)g(x)dx ≤
(∫ 1

0

f(x)2dx

) 1
2
(∫ 1

0

g(x)2dx

) 1
2

In particular, if we assume that the source term f ∈ L2, the integral on the
right hand side of (11) exists if v ∈ L2. By a similar argument, the integral on
the left make sense provided u′, v′ ∈ L2.

We should stop for a moment to reflect that elements of L2 need not be
continuous, and the values of discontinuous functions at any individual isolated
point are irrelevant under the integral sign - indeed Lp spaces typically incor-
porate a quotient such that two functions which differ on a set of zero measure

13

only (such as an isolated point) are equivalent. This allows us to permit func-
tions such as f(x) = |x− 1

2 |, which would normally be considered differentiable
everywhere except at x = 1

2 . We say that such a function has a weak (or
distributional) derivative, the formal definition of which is by integration by
parts:

Definition 3.2 (Weak derivative). Let u ∈ L2((0, 1)). We say that u′(x) is a
weak derivative of u if, for all smooth functions v such that v(0) = v(1) = 0, we
have ∫ 1

0

u′(x)v(x)dx = −
∫ 1

0

u(x)v′(x)dx

Note that if u is continuously differentiable then its weak derivative exists
and coincides with the classical derivative. It can be checked that the function
f(x) = |x − 1

2 | has a weak derivative f ′ that evaluates to 1 if x > 1
2 and −1 if

x < 1
2 . On the other hand, we should not assume that (weak) differentiation

can be performed by gluing together patches where the function is differentiable
- observe that the weak derivative of the Heaviside step function is the Dirac
delta function, which is not an element of L2.

Theorem 3.3. Let H1((0, 1)) be the space of functions v ∈ L2 for which a weak
derivative v′ ∈ L2 exists. Define the inner product by

〈f, g〉H1 =

∫ 1

0

f(x)g(x)dx+

∫ 1

0

f ′(x)g′(x)dx

Then H1((0, 1)) is a Hilbert space.

It is possible to define spaces Hk of k-times weakly differentiable functions
with L2 weak derivatives - the inner product includes all the additional integrals∫ 1

0
f (m)g(m) with m ≤ k, and the result is still a Hilbert space. These spaces

are called Sobolev spaces. For PDEs of order greater than second order (such
as the biharmonic equation) this is necessary, however we will only require H1

in these notes.
Most of the error estimates we obtain will be in the associated H1 norm,

defined by

||u||2H1 =

∫ 1

0

u(x)2dx+

∫ 1

0

u′(x)2dx (12)

It will also be convenient to introduce the H1 seminorm |u|H1 , defined below:
(the term seminorm is used as all the requirements for | · |H1 to be a norm are
satisfied except that |u|H1 = 0 does not imply u = 0.)

|u|2H1 =

∫ 1

0

u′(x)2dx

The following result is convenient:

Lemma 3.4. All functions in H1((0, 1)) are continuous.

14

This is a particular case of the Sobolev embedding inequality, concerning the
continuity of functions in Hk spaces and their derivatives - the general result is
roughly that elements of Hk are m-times continuously differentiable (the case
m = 0 giving continuity) provided k > m+ n

2 , where n is the dimension of the
space. Note that in problems with 2 or 3 space dimensions, this no longer holds
(although elements of H2 are still continuous). This justifies the following:

Definition 3.5. We define the space H1
0 ((0, 1)) to be the subspace of H1((0, 1))

comprising functions u for which u(0) = u(1) = 0

If we could not guarantee continuity of u this definition would be meaningless
in view of the comments on discontinuous functions in the paragraph immedi-
ately before the introduction of weak derivatives. There are ways round this (we
will briefly discuss this in §5 when we come to the 2D Poisson equation), but it
is better to avoid such complications where possible. The next result is critical
to the application of the Lax-Milgram theorem and hence existence/uniqueness
of solutions for all the examples we will consider:

Lemma 3.6 (Poincaré inequality). There exists a constant C such that, for all
v ∈ H1

0 ((0, 1)), we have
|v|H1 ≥ C||v||H1

3.2 The Lax-Milgram theorem

We are now in a position to state the promised result:

Theorem 3.7 (Lax-Milgram). Let V be a Hilbert space. Suppose that F is
a continuous linear functional (it suffices that F be bounded), and that a is a
continuous, coercive bilinear form, i.e. there exist M,α such that

1. (Continuous) a(u, v) ≤M ||u||V ||v||V for all u, v ∈ V

2. (Coercive) a(v, v) ≥ α||u||2V for all v ∈ V

The the variational problem: find u ∈ V such that, for all v ∈ V ,

a(u, v) = F (v)

admits a unique solution.

We illustrate the use of the above theorem by applying it to show existence
and uniqueness to the homogeneous Dirichlet problem

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0, f ∈ L2((0, 1))

cast in the weak form: find u ∈ H1
0 ((0, 1)) such that for all v ∈ H1

0 ((0, 1)), we
have ∫ 1

0

u′(x)v′(x)dx =

∫ 1

0

f(x)v(x)dx.

15

Now as noted in §3.1, H1
0 ((0, 1)) is a Hilbert space, and hence by the linearity

of the integral operator the above equation is of the variational form, where
a(u, v) is the left-hand side above and F (v) is the right-hand side. To invoke
the theorem, it suffices to show the continuity of a and F , and coercivity of a.

We begin with the continuity of F : it suffices that F be a bounded operator
on H1, i.e.

||F ||(H1)′ = sup
v 6=0

|F (v)|
||v||H1

<∞

Now the Cauchy-Schwarz inequality in L2 gives

F (v) = 〈f, v〉L2 ≤ ||f ||L2 ||v||L2 ≤ ||f ||L2 ||v||H1 ,

i.e. ||F || ≤ ||f ||L2 , hence we have the desired result.
Next, we show continuity of a: indeed

a(u, v) = 〈u′, v′〉L2 ≤ ||u′||L2 ||v′||L2 = |u|H1 |v|H1 ≤ ||u||H1 ||v||H1

Finally, for the coercivity of a we use the Poincaré inequality:

a(v, v) = |v|2H1 ≥
1

2

(
C2||v||2L2 + |v|2H1

)
≥ α||v||H2 ,

where α = 1
2 min(C2, 1).

3.3 Rayleigh-Ritz method

We will briefly examine a numerical framework that is related to the Galerkin
method, but less widely applicable. In practice these can lead to identical codes,
but it is sometimes useful to be aware of this alternative. We illustrate the idea
by recalling that if A is a symmetric, positive definite matrix, the solution of

Au = b

may be characterized as the unique minimizer of the function

Φ(y) =
1

2
yTAy − yT b (13)

Due to the coercivity requirement to guarantee well-posedness of the equation,
positive definiteness is typically not such a strong imposition. On the other
hand, asking for symmetry can be more problematic, although it is for instance
satisfied for all the boundary value problems we considered from equation (1),
see the form (6) for instance. We have the following:

Lemma 3.8. Suppose a is a bilinear, symmetric from on V and F a linear
form, for which the hypotheses of the Lax-Milgram theorem are satisfied. Then
u ∈ V solves

a(u, v) = F (v) ∀v ∈ V
If and only if it solves the minimization problem

u = argminv∈V

(
1

2
a(v, v)− F (v)

)
(14)

16

For instance, the weak form (3) can be cast as the minimization problem:
find u ∈ H1((0, 1)) minimizing

1

2

∫ 1

0

u′(x)2dx−
∫ 1

0

u(x)2dx

The Rayleigh-Ritz method proceeds by finding the minimum of (14) in a finite
dimensional subspace. If we introduce a basis for this subspace, it will lead to
a quadratic minimization of the form (13), where A and b are the matrix and
vector that would arise from the Galerkin method. Due to the equivalence of
the minimization problem and linear system, the code used to implement the
methods would be therefore be the same.

4 Theory II: Stability and convergence of Galerkin
methods

4.1 Coercivity and stability

One benefit of the coercivity assumption in the Lax-Milgram theorem is that
we obtain a general stability estimate immediately by functional analysis, which
concerns both the exact and approximate solutions.

Lemma 4.1. Let u solve a variational problem on V governed by the Lax-
Milgram theorem. Then we have the bound

||u||V ≤
1

α
||F ||V ′

This follows from the coercivity relation applied to the exact solution u:

||u||2V ≤
1

α
a(u, u) =

1

α
F (u) ≤ 1

α
||u||V ||F ||V ′ ,

where the final inequality comes from the definition of the dual norm, see §3.2.
This is a stability result in the sense that, for instance when applied to (3), it
shows that the solutions of the Dirichlet problems

−u′′(x) = f(x), 0 < x < 1, u(0) = u(1) = 0

−v′′(x) = g(x), 0 < x < 1, v(0) = v(1) = 0

are related by

||u− v||V ≤
1

α
||f − g||L2

Moreover, as the approximate solution is given by a variational problem in the
subspace Vh to which the Lax-Milgram theorem still applies, the bound also
concerns the approximate solutions, i.e. we would also obtain

||uh − vh||V ≤
1

α
||f − g||L2

17

4.2 Towards convergence: Galerkin orthogonality and Cea’s
lemma

The main ingredient in convergence proofs is Cea’s lemma, which intuitively
bounds the approximation error from the Galerkin method in terms of how
close it is possible to approximate the solution.

Lemma 4.2. (Galerkin orthogonality) Let u and uh be the solutions of the
infinite and finite dimensional variational problems respectively. Then

a(u− uh, vh) = 0 ∀v ∈ Vh

The proof is one line: we write

a(u− uh, vh) = a(u, vh)− a(uh, vh) = F (vh)− F (vh) = 0,

where as vh is in both the spaces V and Vh we could use that u and uh solve their
variational problems to replace the terms in a with the corresponding terms in
F .

Lemma 4.3. (Cea’s lemma) Let u and uh be the solutions of the infinite and
finite dimensional variational problems respectively, and suppose that the hy-
potheses of Lax-Milgram theorem are satisfied. Notably, we assume that a is
continuous and coercive with constants M and α. Then

||u− uh||V ≤
M

α
||u− vh||V , ∀vh ∈ Vh

The proof begins by invoking coercivity:

||u− uh||2V ≤
1

α
a(u− uh, u− uh)

The term on the right-hand side can be expanded,

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh)

where the second term on the right is zero due to Galerkin orthogonality (as we
have vh − uh ∈ Vh). These can be combined to give

||u− uh||2V ≤
1

α
a(u− uh, u− vh) ≤ M

α
||u− uh||V ||u− vh||V ,

where we used continuity of a for the second inequality. The result follows after
dividing both sides by ||u− uh||V .

4.3 Interpolation estimates and convergence

We now specialise to variational problems where V = H1((0, 1)) and the ap-
proximating subspace Vh = X1

h, the piecewise linear functions with respect to
a given grid of maximum distance h between neighbouring points. In this case,
the term vh on the right-hand side of Cea’s lemma can be taken to be the in-
terpolating polynomial of u, and we can therefore use the following estimate on
the accuracy of polynomial interpolation:

18

Lemma 4.4. (Polynomial interpolation) Suppose v ∈ Hr+1((0, 1)), and let vrh
be its degree r polynomial interpolant on a given grid with maximum element
size h. Then

|v − vrh|H1 ≤ C1,rh
r|v|Hr+1

||v − vrh||L2 ≤ C2,rh
r+1|v|Hr+1

Combining the above estimates with Cea’s lemma (recalling that ||u||2H1 =
||u||2L2 + |u|2H1) leads to:

Corollary 4.5. Let uh be the numerical approximation to the solution u of a
variational problem on H1((0, 1)) obtained by the Galerkin method using the
finite dimensional subspace X1

h with an associated grid on [0, 1] of maximum
element size h. Assuming the hypotheses of the Lax-Milgram theorem, provided
u ∈ H2((0, 1)), we have

||u− uh||H1 ≤ Ch|u|H2 ,

i.e. first order convergence in H1-norm.

Note that the Lax-Milgram theorem only guarantees that u ∈ H1((0, 1)),
which is not sufficient for the above theorem (we need u ∈ H2). In fact, the
method will converge even in the absence of this assumption, but not necessarily
with order 1.

Having shown that for the 1D Poisson equation the method essentially co-
incides with the central difference method on a finite grid, which is order 2, we
may wonder how we lost an order of convergence. In fact, this is simply due
to the choice of norm; it can be shown that in this case we obtain also order 2
convergence in the L2 norm, but this is more difficult to prove, and requires use
of some ‘elliptic regularity’ estimates on the exact solution u.

5 2D Poisson equation

We now move onto the 2D Poisson equation

−∆u(x) = f(x), x ∈ Ω, (15)

where Ω ⊂ R2 is an open domain. The boundary conditions will be either
Dirichlet (u given on the boundary ∂Ω), Neumann (∂u

∂n given on ∂Ω, where n is
the outward normal to Ω), or some combination of the two.

The overall outline of the method is the same: we first write the problem in
the familiar variational form: find u ∈ V such that a(u, v) = F (v) for all v ∈ V ,
and then reduce the problem to a linear system by introduce a finite dimensional
subspace Vh ⊂ V and expanding in a given basis {ϕi}. The biggest difference
will be that suddenly in 2D a variety of geometries (and hence subspaces and
bases) are possible. This will be dealt with in §5.2, but first we will derive the
variational form.

19

5.1 The variational form

As before, we multiply (15) by a test function v and integrate:

−
∫

Ω

v∆u dΩ =

∫
Ω

fv dΩ

We now integrate by parts, which in the 2D case means using Green’s identity
(which is derived by using the Divergence theorem on the term∇.(v∇u) together
with the vector calculus identity ∇.(ϕv) = ϕ∇.v + v.∇ϕ):∫

Ω

v∆u dΩ = −
∫

Ω

∇u.∇v dΩ +

∫
∂Ω

v
∂u

∂n

Inserting this into the original expression gives the relation,∫
Ω

∇u.∇v dΩ =

∫
∂Ω

v
∂u

∂n
+

∫
Ω

fv dΩ (16)

from which the variational forms for Neumann or homogeneous Dirichlet prob-
lems are readily derived. The functions u, v will be in the function space H1(Ω),
which is defined analogously to H1((0, 1)): it is the space of functions v for which
v and its partial derivatives ∂v

∂x ,
∂v
∂y are square-integrable (L2). As before, the

partial derivatives can be defined in the weak sense. The space H1(Ω) is a
Hilbert space when equipped with the inner product

〈u, v〉H1 =

∫
Ω

uv dΩ +

∫
Ω

∇u.∇v dΩ.

We obtain a norm in the usual manner: ||u||H1 =
√
〈u, u〉H1 .

One aspect does not work out so nicely - as discussed earlier, Lemma 3.4
is no longer valid, i.e. functions v ∈ H1(Ω) are not necessarily continuous.
This causes problems when we attempt to introduce the space on functions
H1

0 (Ω) which vanish on the boundary, as we would like to do when studying
the Dirichlet problem. Suffice to say, provided the boundary ∂Ω is sufficiently
regular it is possible to show the existence of a unique continuous linear operator

γ0 : H1(Ω)→ L2(∂Ω)

which for continuous v ∈ H1(Ω) coincides with evaluation of v on the boundary
∂Ω. We can then say:

Definition 5.1. Let Ω ⊂ R2 be a bounded open domain of sufficiently regularity
to permit the existence of the trace operator γ0. Then the space H1

0 (Ω) is defined
to be the subspace of functions v ∈ H1(Ω) for which the trace γ0v vanishes.

At this stage we should not worry too much over the details of this construc-
tion. It transpires that the Poincaré inequality (Lemma 3.6) remains valid for
this space, which permits proofs of coercivity and ultimately use of the Lax-
Milgram theorem along similar lines as the 1D case. Combining the functional
analytic aspects with the identiy (16) we arrive at the following:

20

Definition 5.2 (Weak form of homogeneous Dirichlet problem). Find u ∈
H1

0 (Ω) such that ∫
Ω

∇u.∇v dΩ =

∫
Ω

fv dΩ, ∀v ∈ H1
0 (Ω)

Definition 5.3 (Weak form of Neumann problem). Find u ∈ H1(Ω) such that∫
Ω

∇u.∇v dΩ =

∫
∂Ω

gv +

∫
Ω

fv dΩ, ∀v ∈ H1(Ω),

where the boundary data is specified as ∂u
∂n (x) = g(x).

5.2 Triangulations and basis functions

In the 1D case, our function space X1
h consisted of functions which are linear

polynomials when restricted to a given element Ki, where the elements [xi, xi+1]
partition the space [0, 1]. In 1D the decomposition into intervals is essentially
the only reasonable way to cover the space in finite elements, but this is no longer
the case for higher dimensions. We instead choose to work with triangulations,
i.e. a splitting of the domain into non-overlapping triangles:

Figure 6: A triangulation of the square [0, 3]× [0, 3], and sample function in X1
h

As shown above, it is possible to define the space X1
h in the same manner as

before, requiring that any f ∈ X1
h be continuous and a linear polynomial when

restricted to any triangle Ki, i.e.

f(x, y) = ai + bix+ ciy, x ∈ Ki

It follows that the value of f on Ki is determined uniquely by the values at three
points (it has three degrees of freedom, as can be seen from the three constants
ai, bi, ci above), which can as before be taken to be the vertices. In view of
the continuity requirement, any function f ∈ X1

h is uniquely determined by its
values on the vertices of the triangulation of Ω, which motivates us to introduce
once more the nodal basis {ϕj}. Let xj be a vertex of the triangulation; the

21

Figure 7: The nodal basis function ϕj

basis function ϕj is then defined as the unique element of X1
h that evaluates to

1 on xj , and is zero on all other vertices:
Before beginning our analysis of the assembly procedure, it is important to

introduce the canonical affine mapping of the reference element K̂ with vertices
at x̂1 = (1, 0), x̂2 = (0, 1), x̂3 = (0, 0) to a given triangle Ki with arbitrary
vertices x1,x2,x3. Let

ϕ̂1(x̂) = x̂, ϕ̂2(x̂) = ŷ, ϕ̂3(x̂) = 1− x̂− ŷ, (17)

these are readily seen to be the nodal basis functions on the reference element.
The unique affine mapping of K̂ to Ki is then given by

x(x̂) = x1ϕ̂1(x̂) + x2ϕ̂2(x̂) + x3ϕ̂3(x̂) (18)

It is often convenient to consider the values of the ϕ̂i on K̂ as a coordinate sys-
tem, writing (λ1, λ2, λ3) for the point with ϕ̂i = λi. These are called barycentric
coordinates due to the following geometric interpretation:

Figure 8: barycentric coordinates

22

(1, 1) (2, 2)

(3, 1)

(0, 0) (1, 0)

(0, 1)

Figure 9: Mapping K → K̂ to the reference element

To find the barycentric coordinates of a point x, divide the triangle into
three subtriangles with a common vertex at x. The barycentric coordinate
λi(x) associated to the vertex xi is the ratio Ai

A , where A is the area of the

large triangle (i.e., the element K̂), and Ai is the area of the triangle of the
same colour as the vertex in the diagram. This definition is not specific to the
reference triangle K̂, but can be given for an arbitrary triangle Ki, in this case
we can map the barycentric coordinates λ to Cartesian coordinates following
(18):

x(λ) = λ1x1 + λ2x2 + λ3x3 (19)

This formula will be frequently used when computing quadratures, as quadra-
ture formulae on triangles are typically given using nodes defined by barycentric
coordinates.

5.3 Assembly

In this section we will show how to construct a linear system to find an ap-
proximate solution of the homogeneous Dirichlet problem (5.2). Assume that
we have identified a triangulation T of our domain Ω, and now have the nodal
basis {ϕj} of X1

h. We then solve (5.2) on the subspace X1
h, i.e. find u ∈ X1

h

such that ∫
Ω

∇u.∇v dΩ =

∫
Ω

fv dΩ, ∀v ∈ X1
h

We have omitted to mention that we require u and v to be zero on the bound-
ary ∂Ω. In practice, we will proceed as before, constructing the linear system
first without reference to this requiremenet and only later implementing these
boundary conditions. Again, we expand u and v in terms of the basis; writing
u(x) =

∑
i uiϕi(x), v(x) =

∑
j vjϕj(x), the problem becomes:

Find a vector of coefficients u for which, for all vectors v∑
i,j

uivj

∫
Ω

∇ϕi.∇ϕj dΩ = vj

∫
Ω

fϕj dΩ

23

We therefore define the stiffness matrix A and load vector F by

Aij =

∫
Ω

∇ϕi.∇ϕj dΩ, Fj =

∫
Ω

fϕj dΩ, (20)

leading once again to the linear system

Au = F.

It is particularly important in the 2D (or higher dimensional) case to construct
A and F elementwise, i.e. using the decomposition,

Aij =
∑
k

∫
Kk

∇ϕi.∇ϕj dΩ, Fj =
∑
k

∫
Kk

fϕj dΩ,

where Kk are the elements (triangles) in the triangulation of Ω. In this case,
there are three basis functions ϕj that are non-zero on each triangle Kk, namely
those corresponding to nodes that are a vertex of Kk. In practice, this means
that we will construct A and F by looping over the triangles, at each stage
adding a 3× 3 submatrix into A, and a 3 component subvector into F .

Lemma 5.4 (Stiffness submatrix). Let K ⊂ Ω be a triangle with vertices at
x1,x2,x3, and let ϕ1, ϕ2, ϕ3 be the corresponding nodal basis functions. Let J
be the matrix

J = [x1 − x3|x2 − x3],

and let G be the solution of the linear system

GJ =

 1 0
0 1
−1 −1

Denoting the absolute value of the determinant of J by |J |, the 3 × 3 stiffness
submatrix is given by ∫

Kk

∇ϕi.∇ϕj dΩ =
GGT |J |

2!
(21)

The proof of the above consists of transforming to the reference element and
using the chain rule. Indeed, we begin by noting that

∇ϕi.∇ϕj =
∑
k

∂ϕi

∂xk

∂ϕj

∂xk

and make the substitution x = x(x̂), ϕ(x) = ϕ̂(x̂) according to (18). The chain
rule gives

∂ϕi

∂xk
=
∑
j

∂ϕ̂i

∂x̂j

∂x̂j
∂xk

=
(
∇x̂ ϕ̂

)
J−1 = G,

24

where we have used

∇x̂ ϕ̂ =

 1 0
0 1
−1 −1

It follows that ∇ϕi.∇ϕj = GGT is constant on Kk. The result follows immedi-

ately by noting that the area of Kk is |J|2! , which is of itself a standard formula
for the area of a triangle, but can also be seen readily by noting that the area
of the reference element is 1

2! and the Jacobian of the change of variable is |J |.
The factorial in 2! is of course unnecessary, but has been left in to hint that
the result generalizes straightforwardly to arbitrary dimension d, where the 2!
is replaced by d!.

At the global level, the vertices of the triangle Kk will not generally be num-
bered x1, x2, x3, but rather xk1 , xk2 , xk3 . In this case, the submatrix (21) should
accordingly be added into Aij such that i, j = k1, k2, k3, reflecting the identifiers
of the basis functions ϕ associated to the nodes xki

. The implementation of this
is discussed further in the following section §5.4.

It remains to discuss the computation of the load vector,

Fj =

∫
Kk

fϕj dΩ,

In practice this is accomplished by quadrature, using formulae of the form

Fj ≈
|J |
2!

∑
wiλ

i
jf(x(λi)), j = 1, 2, 3 (22)

where wi are a set of given quadrature weights, and λi = (λi1, λ
i
2, λ

i
3) are the

quadrature nodes given in barycentric coordinates. The computation of x(λi) is
according to (19). Tables of quadrature rules for triangles can be found online
or in standard texts on numerical analysis, the simplest sensible rule consists of
evaluation at a single node, the barycentre λ = (1

3 ,
1
3 ,

1
3), with associated weight

w = 1.
As before, it remains to tackle the boundary conditions. At present, a num-

ber of nodes xi will lie on the boundary, and hence we wish to enforce ui = 0. In
the 1D case, there were only two such points numbered 0 and M + 1, such that
it was a simple matter to simply remove the first and last rows and columns of
the system. In this case, the boundary points xi will be scattered throughout
the ordering x1, . . . , xM , so resizing the matrix like this is complicated and com-
putational inefficient. Once these points xi are identified, it is usually better to
set Fi = 0, and the ith row of A to be the ith row of the identity matrix of the
same size, i.e. Aii = 1, Aij = 0 if j 6= i, which achieves the same goal. Another
possibility requiring even less computational effort is to set Fi = 0 and Aii to
be a very large number, which will achieve approximately the same result. The
identification of boundary is more complicated - in fact it is usually best to label
the boundary points whilst constructing the triangulation, and pass this to the
program as part of the triangulation data.

25

5.4 Coding practicalities

The most straightforward way of handling the specification of a triangulation is
to collect the coordinates of the vertices x1, . . . , xM in a M × 2 matrix

X = [x1| · · · |xM]T ,

together with an N ×3 connectivity matrix T (N being the total number of ele-
ments in the triangulation), for which the kth row gives the identifying number
of the three vertices making up the triangle Kk. For example, for the following
simple triangulation we have

x1 = (0, 0) x2 = (4, 0)

x3 = (2, 3) x4 = (6, 3)

1

2

Figure 10: A simple triangulation

X =

0 0
4 0
2 3
6 3

 , T =

(
1 2 3
2 3 4

)
.

The assembly procedure begins by initializing an M ×M matrix A and an M -
dimensional vector F . We then loop through the N elements. At each stage
we extract the three vertices x1,x2,x3, which are used to compute J and hence
the 3× 3 matrix (21) and the 3 component vector (22).

At this stage, we then look up the row t = T [k, :], which identifies the vertices
of the triangle. This is then used to know where to insert these submatrices.
Indeed, the procedure is

A[t,t] = A[t,t] + A_new;

F[t] = F[t] + F_new;

The sample codes available on the website give examples of the practical imple-
mentation of this procedure.

5.5 Further comments

It is possible to prove the first order convergence inH1-norm of the finite element
method using X1

h by means of Cea’s lemma. The additional ingredients are the

26

bounds for the error of polynomial interpolation in 2D, which will not be given
here. In this sense, h will be the maximum diameter of the elements of the
triangulation; the nature of the interpolation estimates require an additional
assumption that the triangulations parametrized by h form a sufficiently nice
family, but this is not so restrictive in practice.

More general equations than the Poisson equation are of course possible, for
instance it can be checked that discretization of the equation

−∆u(x) + σu(x) = f(x), x ∈ Ω

leads to linear systems of the form

A+ σM = F,

where A and F are as before, and M is the mass matrix

Mij =

∫
Ω

ϕiϕj dΩ.

Generalizing further, we can consider equations

−∇.
(
p(x)∇u(x)

)
+ σ(x)u(x) = f(x),

where as per the ODE case, the mass and stiffness matrices become weighted
by the coefficient:

Aij =

∫
Ω

p∇ϕi.∇ϕj dΩ, Mij =

∫
Ω

σϕiϕj dΩ.

So far all of the problems have led to symmetric variational forms, this will no
longer hold if we consider the stationary diffusion-transport-reaction problem

−∇.(p∇u) + b.∇u+ σu = f,

as the middle term (the transport or convection term) will lead to a term∫
Ω

bϕj .∇ϕi dΩ.

6 Outlook

We have focused on applications of the finite element method to time inde-
pendent equations, but the techniques also allow for treatment of evolution
equations. Consider for instance the heat equation

ut −∆u = f, (x, t) ∈ Ω× [0, T],

multiplying by a test function and integrating leads to variational problems of
the form ∫

Ω

v
∂u

∂t
dΩ + a

(
u(t), v

)
=

∫
Ω

vf(t) dΩ,

27

where a is the bilinear form coming from the variational form of the Poisson
equation. The Galerkin method can be applied, leading to an ODE of the form

Mu̇(t) +Au(t) = F (t).

This is a semidiscretization of the heat equation. Other strategies for evolution
problems exist, for example for hyperbolic equations it is possible to derive a
finite element Lax-Wendroff method by first Taylor expanding in time, and then
discretizing in space by finite elements; this is an example of a Taylor-Galerkin
method.

We conclude by mentioning that it is possible to obtain schemes of higher
order by taking spaces Xp

h of pth order elementwise polynomials as an approx-
imating space. Alternatively using spaces of orthogonal polynomials in the
Galerkin scheme leads to spectral methods. Sometimes solution spaces must
be constructed with special regard to the equations themselves, as can occur
in problems in electromagnetism and fluid mechanics, for instance. Moreover
it may be helpful to consider forms of generalized Galerkin method, where for
instance the test function and solution do not belong to the same space, or a
regularizing term is added to the discrete equation. Other important topics in-
clude grid generation and grid adaptivity, and of course how to program solvers
as efficiently as possible.

For those wishing to take the next steps in finite element methods, the course
TMA4220 is recommended!

28

