NTNU - Trondheim

Examination paper for
 TMA4212 Numerical solution of differential equations with difference methods

Academic contact during examination: Sølve Eidnes
Phone: 94816149

Examination date: 22. May 2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: C: Approved simple pocket calculator is allowed. The text book by Strikwerda, the book by Süli and Mayers, and the official note of the TMA4212 course (98 pages) are allowed. Photo copies on 2D finite elements (4 pages) are allowed. Rottman is allowed. The books in printed version are also allowed. Old exams with solutions are not allowed.

Language: English
Number of pages: 3
Number of pages enclosed: 2

Checked by:

The learning outcome has been published on the course webpage and on the official description of the course. The seven learning goals $\mathbf{L} \mathbf{1}$ to $\mathbf{L} 7$ are reported in the appendix. Learning outcome $\mathbf{L 6}, \mathbf{L} 3$ and $\mathbf{L} 4$ have been tested through the project work. We here test the achievement of L1, L2, L5 L7.

All answers must be properly argued for.

Problem 1 (L2)

Consider the boundary value problem

$$
\begin{aligned}
-u^{\prime \prime}+u= & f(x), \quad 0<x<1 \\
& u(0)=0, \quad u(1)+\beta u^{\prime}(1)=\gamma
\end{aligned}
$$

$f \in L^{2}(0,1)$, with $\beta \neq 0$.
a) State the Galerkin formulation of the problem, identify the space of test functions, the bilinear form and the linear form.
b) Assume $\beta=0$ and $\gamma=0$ and modify the Galerkin formulation appropriately. Consider a general nonuniform subdivision of $[0,1]$ with points

$$
0=x_{0}<x_{1}, \ldots, x_{N-1}<x_{N}=1,
$$

where the mesh-points x_{i} are not necessarily equally spaced. Let $h_{i}=x_{i}-$ x_{i-1} and let $h=\max _{i} h_{i}$. Consider the finite element basis functions

$$
\phi_{i}(x)=\left\{\begin{array}{ccc}
0 & \text { if } \quad x \leq x_{i-1} \\
\frac{x-x_{i-1}}{h_{i}} & \text { if } \quad x_{i-1} \leq x \leq x_{i} \\
\frac{x_{i+1}-x}{h_{i+1}} & \text { if } \quad x_{i} \leq x \leq x_{i+1} \\
0 & \text { if } \quad x_{i+1} \leq x,
\end{array}\right.
$$

for $i=1, \ldots, N-1$. Formulate the Galerkin method. Consider $N=3$ and $x_{0}=0, x_{1}=1 / 4, x_{2}=3 / 4$ and $x_{3}=1$. Specify the function space S_{0}^{h} by writing explicit expressions of the basis functions ϕ_{i}.

To find the vector \mathbf{u} whose components u_{i} identify the numerical approximation

$$
u^{h}(x)=\sum_{i=1}^{N-1} u_{i} \phi_{i}(x)
$$

we need to solve a linear system of algebraic equations

$$
A \mathbf{u}=\mathbf{b}
$$

c) Find the entries of the matrix A of the linear system of algebraic equations, in the case $N=3$ and $x_{0}=0, x_{1}=1 / 4, x_{2}=3 / 4$ and $x_{3}=1$.

Suppose that the solution of the boundary value problem $u \in H_{0}^{2}(0,1)$. Consider the function

$$
\mathcal{I}_{h} u=\sum_{i=1}^{N-1} u\left(x_{i}\right) \phi_{i}(x)
$$

which is called the interpolant of u. Notice that $\mathcal{I}_{h} u \in S_{0}^{h}$. It is possible to show that the following estimate holds

$$
\begin{equation*}
\left\|u-\mathcal{I}_{h} u\right\|_{H^{1}(0,1)} \leq \frac{h}{\pi}\left(1+\frac{h^{2}}{\pi^{2}}\right)^{\frac{1}{2}}\left\|u^{\prime \prime}\right\|_{L^{2}(0,1)} \tag{1}
\end{equation*}
$$

d) Using Céa's lemma and (1), show that the same bound holds for the error in the $H^{1}(0,1)$ norm, i.e.

$$
\left\|u-u_{h}\right\|_{H^{1}(0,1)} \leq \frac{h}{\pi}\left(1+\frac{h^{2}}{\pi^{2}}\right)^{\frac{1}{2}}\left\|u^{\prime \prime}\right\|_{L^{2}(0,1)} .
$$

Problem 2 (L1, L7)

The eigenvalue problem

$$
-y^{\prime \prime}=\lambda y, \quad y(0)=y(1)=0,
$$

is approximated by

$$
-\frac{Y_{j+1}-2 Y_{j}+Y_{j-1}}{h^{2}}=\mu Y_{j}, \quad 1 \leq j \leq n-1, \quad Y_{0}=Y_{n}=0 .
$$

a) The solution of the differential equation is $y=\sin (m \pi x), \lambda=m^{2} \pi^{2}$ for any positive integer m. Show that the difference approximation has solution $Y_{j}=\sin \left(m \pi x_{j}\right), j=0,1, \ldots, n$, and give an expression for the corresponding value of μ.
b) Use the fact that

$$
1-\cos \theta=\frac{1}{2} \theta^{2}-\frac{1}{24} \xi \theta^{4}, \quad|\xi| \leq 1
$$

to show that $|\lambda-\mu| \leq m^{4} \pi^{4} h^{2} / 12$.
c) Consider the truncation error

$$
\tau_{j}:=-\frac{y_{j+1}-2 y_{j}+y_{j-1}}{h^{2}}-\lambda y_{j}, \quad j=1, \ldots, n-1, \quad y_{j}=y\left(x_{j}\right) .
$$

Show that

$$
\tau_{j}=-\frac{1}{12} h^{2} m^{4} \pi^{4} \sin \left(m \pi \xi_{j}\right), \quad \xi_{j} \in\left(x_{j-1}, x_{j+1}\right)
$$

d) From a), we notice that for this problem $Y_{j}=y\left(x_{j}\right)=y_{j}$. Assuming

$$
\begin{aligned}
\mathbf{Y} & =\left(Y_{1}, \ldots, Y_{n-1}\right)^{T} \\
\mathbf{y} & =\left(y_{1}, \ldots, y_{n-1}\right)^{T} \\
\boldsymbol{\tau} & =\left(\tau_{1}, \ldots, \tau_{n-1}\right)^{T}
\end{aligned}
$$

the equations can now be written in the form

$$
\begin{equation*}
(A-\mu I) \mathbf{Y}=0 \tag{2}
\end{equation*}
$$

with A the $(n-1) \times(n-1)$ matrix arising by the central difference discretisation of the second derivative. The truncation error satisfies

$$
\begin{equation*}
(A-\lambda I) \mathbf{y}=\boldsymbol{\tau} \tag{3}
\end{equation*}
$$

Using (2) and (3) and the result in c), obtain an estimate of the error

$$
|\lambda-\mu| .
$$

Problem 3 (L5, L7)

Assume $a \in \mathbb{R}$ and consider the matrix

$$
A=\left[\begin{array}{lll}
1 & a & a \\
a & 1 & a \\
a & a & 1
\end{array}\right]
$$

a) For which values of a is A positive definite?
b) Consider the Jacobi iteration for solving a linear system $A x=b$, see the appendix. For which values of a does the Jacobi method converge?

Appendix

-

$$
\frac{u\left(x_{i-1}\right)-2 u\left(x_{i}\right)+u\left(x_{i+1}\right)}{h^{2}}=u^{\prime \prime}\left(x_{i}\right)+\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(\xi_{i}\right), \quad \xi \in\left(x_{i-1}, x_{i+1}\right) .
$$

- Jacobi iteration: given the linear system of equations

$$
A x=b
$$

with $A n \times n$ matrix and b a vector with n components, we split A as the sum of its diagonal D minus a matrix R :

$$
A=D-R .
$$

We assume that D is invertible.
The Jacobi iteration is an iterative method to approximate the solution of the linear system, and is given by the iteration

$$
\begin{equation*}
x^{k+1}=D^{-1}\left(R x^{k}+b\right), \tag{4}
\end{equation*}
$$

with x^{0} a given initial guess. Note that (4) this is a fixed point iteration to solve the fixed point equation $x=D^{-1}(R x+b)$, whose solution is the same as for the linear system.

Learning outcome:

Knowledge L1 Understanding of error analysis of difference methods: consistency, stability, convergence of difference schemes.

L2 Understanding of the basics of the finite element method.
Skills L3 Ability to choose and implement a suitable discretization scheme given a particular PDE, and to design numerical tests in order to verify the correctness of the code and the order of the method.

L4 Ability to analyze the chosen discretization scheme, at least for simple PDE-test problems.
L5 Ability to attack the numerical linear algebra challenges arising in the numerical solution of PDEs.

General competence

L6 Ability to present in oral and written form the numerical and analytical results obtained in the project work.

L7 Ability to apply acquired mathematical knowledge in linear algebra and calculus to achieve the other goals of the course.

