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The learning outcome has been published on the course webpage and on the official
description of the course. The seven learning goals L1 to L7 are reported in the
appendix. Learning outcome L6, L3 and to some extent L4 have been tested
through the project work. We here test further the achievement of L4 as well as
L1, L2, L5 L7. All answers must be properly argued for.

Problem 1 (L2)

We are solving the Poisson equation

∆u = uxx + uyy = f, in Ω, u = 0 on ∂Ω,

with the finite element method. Ω ⊂ R2 is a rectangular domain with the sides
aligned with the x and y axes and one corner in the origin. We use square elements
and quadratic basis functions. We consider the element K with vertices (0, 0),
(h, 0), (0, h) and (h, h) where h is a discretization parameter.

a) Find an expression for the four quadratic, finite element basis functions
ϕ1 = ϕ(0,0), ϕ2 = ϕ(h,0), ϕ3 = ϕ(0,h) and ϕ4 = ϕ(h,h) on K, by combining
appropriately the linear polynomials

h− x
h

,
x

h
,

h− y
h

,
y

h
.

Solution The quadratic basis functions on K are

ϕ1 = (x− h)(y − h)
h2 , ϕ2 = x(h− y)

h2 , ϕ3 = (h− x)y
h2 , ϕ4 = xy

h2 .

b) Find the bilinear function α arising in the Galerkin formulation of the Poisson
equation. The element stiffness matrix is

AK = {αK(ϕi, ϕj)}i,j=1,...,4,

where αK denotes the restriction of α to the element K. Find the elements
AK2,4 and AK4,2 of this matrix.
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Solution The bilinear function arising in the weak formulation of the Poisson
equation with homogeneous Dirichlet boundary conditions is

−α(u, v) =
∫ 1

0

∫ 1

0
∇u · ∇v dx dy,

and αK is its restriction to the element K. Since α is symmetric, we have

AK2,4 = αK(ϕ4, ϕ2) = αK(ϕ2, ϕ4) = AK4,2.

We also have
αK(ϕ4, ϕ2) = −

∫ h

0

∫ h

0
∇ϕ4 · ∇ϕ2 dx dy,

and

∇ϕ4 =
[

y
h2
x
h2

]
, ∇ϕ2 =

[
h−y
h2

− x
h2

]
, ∇ϕ4 · ∇ϕ2 = yh− y2

h4 − x2

h4 .

So after integration

AK2,4 = AK4,2 = αK(ϕ4, ϕ2) = 1
6 .

Problem 2 (L1, L3)

Consider the linear advection equation

ut + aux = 0, x ∈ R, u(x, 0) = u0(x)

with a constant. Consider the two schemes

un+1
m − unm

∆t + a
unm+1 − unm

∆x = 0, (1)

un+1
m − unm

∆t + a
unm − unm−1

∆x = 0. (2)

a) Which one of the two schemes would you use to approximate this equation
when a > 0 and which one when a < 0 and why?
Solution If a < 0 we would use (1). If a > 0 we would use (2). This is be-
cause according to the CFL condition it is necessary that the characteristics
of the equation (i.e. the lines x(t) = x0 + ta) lie in the domain of depen-
dence of the method in order to have convergence. Fixed a point (x∗, t∗) in
the (x, t)-plane, for (1) the domain of dependence is a triangle with vertices
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(x∗, t∗), (x∗, 0) and (x∗ + t∗∆x
∆t , 0), and for (2) the domain of dependence is

a triangle with vertices (x∗, t∗), (x∗, 0) and (x∗ − t∗∆x
∆t , 0). Let p = ∆t

∆x . For
(1) and with a < 0, if 0 ≤ (−a)p ≤ 1, the characteristic line through (x∗, t∗)
is contained in the domain of dependence. Similarly, for (2) and for a > 0,
if 0 ≤ ap ≤ 1, the characteristic line through (x∗, t∗) is contained in the
triangle with vertices (x∗, t∗), (x∗, 0) and (x∗ − t∗∆x

∆t , 0). So the necessary
condition for convergence is satisfied.

b) Perform a Von Neumann stability analysis for the scheme (1).
Solution. See chapter 7.4 in the note.

Problem 3 (L5, L7)

a) The 2×2 matrix A is symmetric and positive definite. Show that the Jacobi
iteration for A converges. For the Jacobi iteration see the appendix.
Solution We assume the 2× 2 symmetric matrix A has the form

A =
[
a1,1 a
a a2,2

]
.

Since A is positive definite 0 < det(A) = a1,1a2,2 − a2, and a2 < a1,1a2,2. If
we split A = D − R where D is the diagonal of A, the iteration matrix for
the Jacobi method is

D−1R =
[ 0 a

a1,1
a
a2,2

0

]
.

To ensure convergence we need to have ρ(D−1R) < 1 where ρ(D−1R) is the
spectral radius of D−1R. The eigenvalues of D−1R are

λ = ± a
√
a1,1a2,2

and since a2 < a1,1a2,2, |λ| < 1 and ρ(D−1R) < 1. So convergence of the
Jacobi iteration is always guaranteed for a symmetric positive definite 2× 2
matrix.

b) The N × N matrix E has all its elements equal to 1. Show that one of
the eigenvalues of E is N , and all the others are zero. Construct a matrix
A = I+κE, where κ is a constant to be determined, such that A is symmetric
and positive definite, but in general the Jacobi method diverges.
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Solution We can write E = e eT . With e the vector with N components
equal to 1. So E is a rank one matrix, e is an eigenvector of E with eigen-
value N (because e eTe = Ne ) and all the other eigenvalues are zero. The
eigenvalues of I + κE are

λ(I + κE) =
{

1 + κN
1

and for I + κE to be positive definite, κ needs to be either positive or if κ
is negative 1

N
> |κ|. The iteration matrix of the Jacobi method is simply

D−1R = κ

1 + κ
(I − E)

with eigenvalues

λ
(

κ

1 + κ
(I − E)

)
=

 + κ
1+κ(1−N)
κ

1+κ

so
ρ
(

κ

1 + κ
(I − E)

)
=
∣∣∣∣ κ

1 + κ

∣∣∣∣ (N − 1).

Excluding the case κ = 0 for which A = I + κE is the identity matrix and
the solution of the linear system is already given, for negative and positive
values of κ we have

(i) when κ < 0 and |κ| < 1
N

then the spectral radius is always less than 1

ρ( κ

1 + κ
(I − E)) =

∣∣∣∣∣ 1
1
k

+ 1

∣∣∣∣∣ (N − 1) < 1

because | 1
k

+ 1| > N − 1, and the Jacobi method converges without any
further restrictions on κ;

(ii) when κ > 0

ρ( κ

1 + κ
(I − E)) = κ

1 + κ
(N − 1) < 1⇔ κ <

1
N − 2 ,

so for k ≥ 1
N−2 and N > 2 the Jacobi method does not converge (for

any x0) even though I + κE is symmetric and positive definite (this
provides an answer to the exam question b)).
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c) Explain why the result of b) does not contradict point a) above in this
exercise.
Solution The result of b) (ii) is valid for N > 2. If N = 2 the symmetric
matrix I + κE is positive definite when

1 + 2κ > 0.

So either for κ > 0 or for κ negative and |κ| < 1
2 . For the spectral radius of

the iteration matrix we have

ρ( κ

1 + κ
(I − E)) =

∣∣∣∣± κ

1 + κ

∣∣∣∣ =
∣∣∣∣∣± 1

1
κ

+ 1

∣∣∣∣∣ < 1

is always less than one both in the case when κ > 0 or when κ negative and
|κ| < 1

2 (ie. whenever I + κE is positive definite). So if N = 2, we cannot
find any κ such that the matrix I + κE is symmetric and positive definite
and at the same time the Jacobi method does not converge (this is consistent
with point a)).

Problem 4 ( L1, L2, L4, L7)
Consider the boundary value problem

−p0u
′′ + r0u = f(x), u(0) = 0, u(1) = 0, (3)

on the interval [0, 1], where p0 and r0 are positive constants and f ∈ C4[0, 1]. Use
equally spaced points

xi = ih, i = 0, 1, . . . , n, with h = 1
n
, n ≥ 2,

and the standard piecewise linear finite element basis functions (hat functions) ϕi,
i = 1, 2, . . . , n− 1.

a) State the weak formulation of the problem and the Galerkin method and
show that the finite element equations for ui = uh(xi) become

−p0
ui−1 − 2ui + ui+1

h2 + r0
ui−1 + 4ui + ui+1

6 = 1
h
〈f, ϕi〉 (4)

for i = 1, 2, . . . , n− 1, with u0 = 0 and un = 0.
Solution Weak formulation: for v ∈ H1

0 consider

−p0

∫ 1

0
u
′′
vdx+ r0

∫ 1

0
uvdx =

∫ 1

0
fvdx
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using integration by parts we get

p0

∫ 1

0
u
′
v
′
dx+ r0

∫ 1

0
uvdx =

∫ 1

0
fvdx = 〈f, v〉,

and defining

A(u, v) := p0

∫ 1

0
u
′
v
′
dx+ r0

∫ 1

0
uvdx, ∀u, v ∈ H1

0

we get the weak formulation. Which is:
Find u ∈ H1

0 such that

A(u, v) = 〈f, v〉, ∀v ∈ H1
0 .

Denoting with ϕ1, . . . , ϕn−1 the linear finite element basis, where

ϕj =


x−xj−1

h
xj−1 ≤ x ≤ xj

xj+1−x
h

xj ≤ x ≤ xj+1

0 otherwise.

we can state the Galerkin method: Find uh = ∑n−1
j=1 u

h
jϕj ∈ H1

0 such that

A(uh, ϕi) = 〈f, ϕi〉, i = 1, . . . , n− 1.

This is equivalent to the linear system

MU = b

where M is (n− 1)× (n− 1) symmetric and with entries

Mi,j = A(ϕj, ϕi)

and U = [uh1 , . . . , uhn−1]T , b = [〈f, ϕ1〉, . . . , 〈f, ϕn−1〉]T . We need to find the
elements of M for row i. We have

ϕ
′

j =


1
h

xj−1 ≤ x ≤ xj

− 1
h

xj ≤ x ≤ xj+1

0 otherwise.

Using the formula for A(·, ·) and computing the integrals we obtain

Mi,i = A(ϕi, ϕi) = 2p0
1
h

+ r0h
2
3 ,Mi,i+1 = Mi−1,i = −p0

1
h

+ r0
1
6h,
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while Mi,j = 0 if j ≥ i+ 2, j ≤ i− 2. Substituting these values in

n−1∑
j=1

Mi,ju
h
j = bi,

we obtain (4).

b) By expanding in Taylor series we have obtained that

1
h
〈f, ϕi〉 = f(xi) + 1

12h
2f ′′(xi) +O(h4). (5)

Interpreting (4) as a finite difference approximation to the boundary value
problem, and using (5), show that the corresponding local truncation error
τi satisfies

τi = 1
12h

2r0u
′′(xi) +O(h4), i = 1, . . . , n− 1.

Solution The local truncation error τi satisfies

−p0
u(xi−1)− 2u(xi) + u(xi+1)

h2 +r0
u(xi−1) + 4u(xi) + u(xi+1)

6 = f(xi)+
1
12h

2f
′′(xi)+O(h4)+τi
(6)

using (3) at x = xi and rearranging the terms, this simplifies to

−p0
h2

12u
′′′′(xi) + r0

h2

6 u
′′(xi)−

1
12h

2f
′′(xi) +O(h4) = τi.

Differentiating (3) twice we obtain −p0u
′′′′ + r0u

′′ = f
′′ , which we can sub-

stitute in the previous expression to finally obtain

τi = r0
h2

12u
′′(xi) +O(h4).

c) Show finally the following bound for the error

max
0≤i≤n

|u(xi)− uh(xi)| ≤Mh2,

where M is a positive constant.
Solution By subtracting (4) from the equation for the local truncation error,
we obtain the equation for the error at xi, i.e. the equation for ei = u(xi)−uhi ,
this is

−p0
ei−1 − 2ei + ei+1

h2 + r0
ei−1 + 4ei + ei+1

6 = −τi
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i = 1, . . . , n− 1. We can rewrite it as

(12p0 + 4r0h
2)ei = (6p0 − r0h

2)(ei−1 + ei+1)− 6h2τi

taking maxima over i at the left hand side we have

(12p0 + 4r0h
2)|ei| ≤ 2|6p0 − r0h

2|max
i
|ei|+ 6h2 max

i
|τi|

for all i, and then

(12p0 + 4r0h
2) max

i
|ei| ≤ 2|6p0 − r0h

2|max
i
|ei|+ 6h2 max

i
|τi|

and

(12p0 + 4r0h
2) max

i
|ei| ≤ 2(6p0 + r0h

2) max
i
|ei|+ 6h2 max

i
|τi|

leading to

(12p0 + 4r0h
2 − 12p0 − 2r0h

2) max
i
|ei| ≤ 6h2 max

i
|τi|

and
r0h

2 max
i
|ei| ≤ 3h2 max

i
|τi|.

Finally, using the obtained expression for τi and assuming boundedness of
the derivatives of u, we get

max
i
|ei| ≤

1
4 max
x∈[0,1]

|u′′(xi)|h2 = Kh2.
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Appendix

•
u(xi−1)− 2u(xi) + u(xi+1)

h2 = u
′′(xi) + h2

12u
′′′′(xi) +O(h4)

• Jacobi iteration: given the linear system of equations

Ax = b

with A n × n matrix and b a vector with n components, we split A as the
sum of its diagonal D minus a matrix R:

A = D −R.

The Jacobi iteration is an iterative method to approximate the solution of
the linear system, and is given by the iteration

xk+1 = D−1(Rxk + b), (7)

with x0 a given initial guess. Note that (7) this is a fixed point iteration to
solve the fixed point equation x = D−1(Rx+ b), whose solution is the same
of the linear system.
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Learning outcome:

Knowledge L1 Understanding of error analysis of difference methods:
consistency, stability, convergence of difference schemes.

L2 Understanding of the basics of the finite element method.
Skills L3 Ability to choose and implement a suitable discretization scheme

given a particular PDE, and to design numerical tests in order to verify
the correctness of the code and the order of the method.

L4 Ability to analyze the chosen discretization scheme, at least for simple
PDE-test problems.

L5 Ability to attack the numerical linear algebra challenges arising in the
numerical solution of PDEs.

General L6 Ability to present in oral and written form the numerical and analytical
competence results obtained in the project work.

L7 Ability to apply acquired mathematical knowledge in linear algebra and
calculus to achieve the other goals of the course.


