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Problem 1 We consider the Laplace equation

∆u = 0, on Ω. (1)

The domain Ω and the grid are given in the picture and the mesh size is h = 0.25.
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We want to find the numerical approximation Ui ≈ u(xi, h), i = 1, 2, 3 and xi = i h. Using the
five-point formula and the boundary conditions,

u(x, 0) = 0, 0 ≤ x ≤ 0.5,
u(x, 0.5) = sinπx, 0 ≤ x ≤ 1,
u(0, y) = 0, 0 ≤ y ≤ 0.5,

we obtain:
sinπh+ U2 − 4U1 = 0,
U1 + sinπ2h+ U3 − 4U2 = 0.

To obtain the last equation of the linear system, we derive an approximation of the Neumann
boundary condition along 0 ≤ y ≤ 0.5, x = y + 0.5. This condition is

0 =
∂u

∂n

∣∣∣∣
(x,y)

= nxux + nyuy

where nx and ny are the components of the normal vector (of length 1) pointing outside the
domain. It is easily seen that nx = 1√

2
and ny = − 1√

2
and

∂u

∂n

∣∣∣∣
(x,y)

=
1√
2

(ux − uy).
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We now replace derivatives with difference approximations and obtain

∂u

∂n

∣∣∣∣
(x3,h)

=
1√
2

[(
u(x3, h)− u(x2, h)

h
− sinπx3 − u(x3, h)

h

)
+
h

2
(uxx(ξ, h) + uyy(η, h))

]
,

where ξ ∈ (x2, x3), η ∈ (h, 2h), and we have used backward differences in the x direction and
forward differences in the y direction. The truncation error is O(h). Since the five-point formula
is of second order in h the overall method is consistent and has a truncation error O(h).

By replacing u(xi, h) with Ui in the previous formula we get

∂u

∂n

∣∣∣∣
(x,y)
≈ 1√

2

(
U3 − U2

h
− sinπ3h− U3

h

)
,

setting the right hand side of the last expression equal to zero we obtain the third equation of
the linear system. After rearranging the terms we get −4 1 0

1 −4 1
0 1 −2


 U1

U2

U3

 = −

 sinπh
sinπ2h
sinπ3h

 .

Problem 2

a) We want to apply the finite element method to

−uxx = f, x ∈ [0, 1], u(0) = 1, u(1) = 0, f(x) = −π
2

4
cos (x

π

2
), (2)

to this end we derive the Galerkin formulation of the problem. We start by multiplying
both sides of the equation by a test function chosen arbitrarily in H1

0 and we obtain

−
∫ 1

0
uxxv dx =

∫ 1

0
fv dx.

Integrating by parts and since v is zero on the boundary this gives∫ 1

0
uxvx dx =

∫ 1

0
fv dx.

The Galerkin formulation of the problem is: find u ∈ H1
E such that

a(u, v) = 〈f, v〉, ∀v ∈ H1
0 ,

and we have used the notation 〈·, ·〉 to denote the L2 inner product. Solutions of (2) are
also solutions of the Galerkin formulation, but not necessarily the other way around.
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b) The numerical approximation given by the Galerkin method is the solution of the problem:
find u ∈ V 1

E such that
a(u, v) = 〈f, v〉, ∀v ∈ V 1

0 ,

where V 1
0 = {v ∈ H1

0 | v =
∑M−1
j=1 φjvj} and V 1

E = {v ∈ H1
E | v = φ0 +

∑M−1
i=1 φivi}. By

taking v = φj , j = 1, . . . ,M − 1, and expressing u in the Galerkin method by means of
the basis functions, i.e.

u = φ0 +
M−1∑
i=1

uiφi, U = [u1, . . . , uM−1]T ,

we obtain the requested linear system of equations:

M−1∑
i=1

uia(φi, φj) = 〈f, φj〉 − a(φ0, φj), j = 1, . . . ,M − 1.

The matrix C of the linear system is an (M − 1)× (M − 1)-matrix with entries

Cj,i := a(φi, φj) =
∫ 1

0
φ′iφ
′
j dx, i, j = 1, . . . ,M − 1,

with φ′i = dφi
dx . By using the expressions for the basis functions and computing the integrals

we obtain:

Ci,j = Cj,i

Ci−1,i = Ci,i+1 =
∫ xi

xi−1

φ′i φ
′
i−1 dx = −1

h
,

Ci,i =
∫ xi+1

xi−1

(φ′i)
2 dx =

2
h
.

c) We get
bj = 〈f, φj〉 − a(φ0, φj), j = 1, . . . ,M − 1,

and we note that a(φ0, φj) = 0 for j = 2, . . . ,M − 1. So we have

bj = −π
2

4h

∫ xj

xj−1

cos (x
π

2
)(x−xj−1) dx− π

2

4h

∫ xj+1

xj

cos (x
π

2
)(xj+1−x) dx, j = 2, . . . ,M−1

and using the trapezoidal rule to approximate the integrals we get

bj ≈ −
π2 h

4
cos (xj

π

2
) j = 2, . . . ,M − 1,

and

b1 ≈ −
π2 h

4
cos (x1

π

2
) +

1
h
.
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Problem 3

a) We consider the equation

ut = −uxx − uxxxx, u(0) = u(1) = 0, x ∈ [0, 1].

We consider the grid xm = hm, h = 1/M , m = 0, . . . ,M . Discretizing by central
differences and the trapezoidal rule in time we get

Un+1
m = Unm +

k

2h2
(− δ2x(Unm + Un+1

m )− 1
h2
δ4x(Unm + Un+1

m )),

where as usual

δ2xU
n
m = Unm+1 − 2Unm + Unm−1, m = 1, . . . ,M − 1,

and by straightforward calculation

δ4xU
n
m = Unm+2 − 4Unm+1 + 6Unm − 4Unm−1 + Unm−2, m = 2, . . . ,M − 2

corresponding to the entries of the rows of B2 for m = 2, . . . ,M − 2. Since Un0 = 0 and
UnM = 0 we have

δ4xU
n
1 = δ2x(Un2 − 2Un1 ) = Un3 − 4Un2 + 5Un1 ,

(corresponding to the first component of B2Un),

δ4xU
n
M−1 = δ2x(UnM−2 − 2UnM−1) = UnM−3 − 4UnM−2 + 5UnM−1,

(corresponding to the last component of B2Un). In matrix format the method can be
expressed by

Un+1 = Un + r (−B − 1
h2
B2)(Un + Un+1), r :=

k

2h2

where B is the usual discrertization of the Laplace operator. The method can then be
written in the form

AUn+1 = DUn,

where
A = I + r (B +

1
h2
B2), D = I − r (B +

1
h2
B2).

Now A and D are symmetric and therefore diagonalizable via an orthogonal transforma-
tion and have the same eigenvectors as B. To discuss the invertibility of A we consider
its eigenvalues which are

λAm = 1 + r (λBm +
1
h2

(λBm)2), λBm = −γ2, γ = 2 sin(
mπh

2
),

where 0 ≤ sin(mπ h
2 ) ≤ 1 for m = 1, . . . ,M − 1 and h = 1/M , and

λAm = 1 + r γ2(
γ2

h2
− 1),
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λAm = 1 + r γ2(
γ

h
− 1)(

γ

h
+ 1).

The term (γh −1) = ( 2
h sin(mπ h

2 )−1) is positive for all h = 1/M and M ≥ 2, all the other
terms in the above expression are positive so λAm is different from zero form = 1, . . . ,M−1
and A is invertible. Thus we choose H = 1.

b) We assume M ≥ 1 and h = 1/M ≤ 1 and write the method in the form

Un+1 = CUn, C = A−1D.

Since C is a symmetric matrix, to show Lax-Richtmyer stability for the method it is
sufficient to show that the spectral radius of C, ρ(C), is less than or equal to 1. The
eigenvalues of C are

λCm =
1− r γ2(γ

2

h2 − 1)

1 + r γ2(γ
2

h2 − 1)
,

as in the previous question we see that γ2(γ
2

h2 − 1) is positive for all h ≤ 1 and m =
1, . . . ,M − 1; so we get that |λCm| ≤ 1 for m = 1, . . . ,M − 1, and ρ(C) ≤ 1.

c) We consider the method componentwise

Un+1
m = Unm + r

(
−δ2x −

δ4x
h2

)
(Unm + Un+1

m ).

We assume
Unm = ξnβ e

iβxm , xm = mh

and substitute in the previous equation. After some algebra we get

ξβ =
1− rγ2(γ

2

h2 − 1)

1 + rγ2(γ
2

h2 − 1)
, γ2 = −(eiβh − 2 + e−iβh) = 4 sin2 (

βh

2
).

The rest of the analysis consists in proving that |ξβ| ≤ 1 and it is the same as in the
previous question.


