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Problem 1 We consider the Laplace equation
Au=0, on . (1)

The domain € and the grid are given in the picture and the mesh size is h = 0.25.

We want to find the numerical approximation U; ~ u(x;, h), i = 1,2,3 and x; = i h. Using the
five-point formula and the boundary conditions,

u(zx,0) = 0, 0<z<0.5,
u(x,0.5) = sinmx, 0<ax <1,
u(0,y) = 0, 0<y<0.5,
we obtain:
sinmh + Uy — 4U; = 0,

Uy +sinm2h +Us —4Uy; = Q0.

To obtain the last equation of the linear system, we derive an approximation of the Neumann
boundary condition along 0 <y < 0.5, x =y + 0.5. This condition is

0= @ = Ngly + Nyly
Ml (a.y)
where n, and n, are the components of the normal vector (of length 1) pointing outside the
domain. It is easily seen that n, = % and ny = —% and
ou 1
By Vo)
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We now replace derivatives with difference approximations and obtain

1 [(u(xg,h) —u(z,h)  sinmaz — u(xs, h))
(w3.h) V2 h h

where £ € (22,23), n € (h,2h), and we have used backward differences in the x direction and
forward differences in the y direction. The truncation error is O(h). Since the five-point formula
is of second order in h the overall method is consistent and has a truncation error O(h).

@
on

o (a6 ) + iy . 1)]

By replacing u(x;, h) with U; in the previous formula we get

Ju
on

@y V2

setting the right hand side of the last expression equal to zero we obtain the third equation of
the linear system. After rearranging the terms we get

h h

1 <U3—U2 sin7r3h—U3)

—4 1 0 Uy sinh
1 -4 1 Us | =— | sinnm2h
0 1 -2 Us sin w3h

Problem 2

a) We want to apply the finite element method to

2 T
—Uge = f, x€]0,1], u(0)=1, u(l)=0, f(z) = — cos (z 5), (2)

to this end we derive the Galerkin formulation of the problem. We start by multiplying
both sides of the equation by a test function chosen arbitrarily in H} and we obtain

1 1
—/ umvdm:/ fvdx.
0 0

Integrating by parts and since v is zero on the boundary this gives

1 1
/ Uy Uy dT = / fudx.
0 0

The Galerkin formulation of the problem is: find u € H% such that
a(u,v) = (f,v), Vv e H,

and we have used the notation (-,-) to denote the L? inner product. Solutions of (2) are
also solutions of the Galerkin formulation, but not necessarily the other way around.
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b) The numerical approximation given by the Galerkin method is the solution of the problem:

find u € Vé such that
a(u,v) = (f,v), Yve€ Vol,

where Vil = {v € H} |v = Zj]\izl pjv;y and Vi = {v € H|v = ¢ + M7  pivi}. By
taking v = ¢, 7 = 1,..., M — 1, and expressing u in the Galerkin method by means of
the basis functions, i.e.

M-1
u=do+ > widi, U=[u1,...,unr—1]",
i=1

we obtain the requested linear system of equations:

M

-1
Z uia((ﬁi’(rbj):<f7¢j>_a(¢07¢j)a ]:]-aaM_]-

i=1

The matrix C of the linear system is an (M — 1) x (M — 1)-matrix with entries

1
Cji ::a(qﬁi,gbj):/o Gl dv, i j=1,...,M—1,

with ¢} = ‘fl‘i" . By using the expressions for the basis functions and computing the integrals
we obtain:

Cij = Cji
1
Cioti=Ciin = [ ddhrdo= 1,

Cii = /+1(¢§)2dx:3.

We get
b]:<f7¢]>_a(¢07¢j)7 jzlv'”aM_la
and we note that a(¢g, ¢;) =0 for j =2,..., M — 1. So we have

2 X5 2 Tj4+1
bj:—Z—h xjilcos(mg)(m—mj_l)dx_zh xjf cos(xg)(xjﬂ—w)dm, j=2,...,M—1

and using the trapezoidal rule to approximate the integrals we get

m2h

bj%—Tcos(xjg) j=2,...,M—1,

and )
1
by ~ —WTh cos (:clg) + 7
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Problem 3

a) We consider the equation
Up = —Ugy — Uggze, w(0)=u(l)=0, z€][0,1].

We consider the grid x,, = hm, h = 1/M, m = 0,...,M. Discretizing by central
differences and the trapezoidal rule in time we get

k 1
Ul = Up, + 5 (= 63(UR, + Ut = 64U + UR),

where as usual
UL =Ur = 2UL+U_, m=1,...,M—1,
and by straightforward calculation
SyUR = Ul o — AU 4+ 6U —4U"_ +U" 5, m=2,...,M —2

corresponding to the entries of the rows of B2 for m = 2,..., M — 2. Since Uy =0 and
Uy = 0 we have
SAum = S2(UY — 2UT) = U — 4UY + 507,

(corresponding to the first component of B2U™),
0oUsr—1 = 02(Uky—g — 2URy 1) = Ufy_3 — 4Ufy_o + 5UR; 4,

(corresponding to the last component of B2U™). In matrix format the method can be
expressed by

1 k
+1 _ 2 +1 —
where B is the usual discrertization of the Laplace operator. The method can then be
written in the form
AU = pU™,

where

1 1
A:I+T(B+ﬁ32), D:Ifr(B+ﬁB2).

Now A and D are symmetric and therefore diagonalizable via an orthogonal transforma-
tion and have the same eigenvectors as B. To discuss the invertibility of A we consider
its eigenvalues which are

1
h?

where 0 < sin(™I") <1form=1,...,M — 1 and h = 1/M, and

9 mmh

Ay =147+ 5007, AL =—7 7y =2sin(

);

gl

Ay = 1‘1'7"72(? —-1),
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b)

Mo1ar2 2 - @ 1.

h h
The term (% —1) = (3 Sin(mgh) —1) is positive for all h = 1/M and M > 2, all the other
terms in the above expression are positive so )\;?1 is different from zero form =1,..., M —1

and A is invertible. Thus we choose H = 1.

We assume M > 1 and h = 1/M < 1 and write the method in the form
vttt =cun, C=A4"'D.

Since C' is a symmetric matrix, to show Lax-Richtmyer stability for the method it is
sufficient to show that the spectral radius of C, p(C), is less than or equal to 1. The
eigenvalues of C' are

2
o 1R
- 2 )
" 1+r72(7l—2—1)

as in the previous question we see that 72(77; — 1) is positive for all h < 1 and m =

1,...,M —1; s0 we get that |\ | <1form =1,...,M — 1, and p(C) < 1.

We consider the method componentwise

64
Uptt = U +r (—55 - hf;) (U + U

We assume
Up, =3 ebTm g = mh

and substitute in the previous equation. After some algebra we get

2
-1 . . h
1;7 92 = —( — 24 ) = in? (2 5 )

The rest of the analysis consists in proving that |{3| < 1 and it is the same as in the
previous question.
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