

Department of Mathematical Sciences

Examination paper for

TMA4212 Numerical solution of differential equations with difference methods

Academic contact during examination: Elena Celledoni

Phone: 48238584

Examination date: 28. May 2016

Examination time (from-to): 09:00-13:00

Permitted examination support material: C: Approved simple pocket calculator is allowed.

Rottman is allowed.

Language: English
Number of pages: 3

Number of pages enclosed: 2

	Checked by:
Date	Signature

The learning outcome has been published on the course webpage and on the official description of the course. The seven learning goals **L1** to **L7** are reported in the appendix. Learning outcome **L6**, **L3** and to some extent **L4** have been tested through the project work. We here test further the achievement of **L4** as well as **L1**, **L2**, **L5 L7**. All answers must be properly argued for.

Problem 1 (L2)

We are solving the Poisson equation

$$\Delta u = u_{xx} + u_{yy} = f, \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial\Omega,$$

with the finite element method. $\Omega \subset \mathbf{R}^2$ is a rectangular domain with the sides aligned with the x and y axes and one corner in the origin. We use square elements and quadratic basis functions. We consider the element K with vertices (0,0), (h,0), (0,h) and (h,h), where h is a discretization parameter.

a) Find an expression for the four quadratic, finite element basis functions $\varphi_1 = \varphi_{(0,0)}, \ \varphi_2 = \varphi_{(h,0)}, \ \varphi_3 = \varphi_{(0,h)}$ and $\varphi_4 = \varphi_{(h,h)}$ on K, by combining appropriately the linear polynomials

$$\frac{h-x}{h}$$
, $\frac{x}{h}$, $\frac{h-y}{h}$, $\frac{y}{h}$.

b) Find the bilinear function α arising in the Galerkin formulation of the Poisson equation. The element stiffness matrix is

$$A^K = \{\alpha_K(\varphi_i, \varphi_j)\}_{i,j=1,\dots,4},$$

where α_K denotes the restriction of α to the element K. Find the elements $A_{2,4}^K$ and $A_{4,2}^K$ of this matrix.

Problem 2 (L1, L3)

Consider the linear advection equation

$$u_t + au_x = 0, \quad x \in \mathbf{R}, \quad u(x,0) = u_0(x)$$

with a constant. Consider the two schemes

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} + a \frac{u_{m+1}^n - u_m^n}{\Delta x} = 0, \tag{1}$$

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} + a \frac{u_m^n - u_{m-1}^n}{\Delta x} = 0.$$
 (2)

- a) Which one of the two schemes would you use to approximate this equation when a > 0 and which one when a < 0 and why?
- **b)** Perform a von Neumann stability analysis for the scheme (1).

Problem 3 (L5, L7)

- a) The 2×2 matrix A is symmetric and positive definite. Show that the Jacobi iteration for Ax = b converges. For the Jacobi iteration see the appendix.
- b) The $N \times N$ matrix E has all its elements equal to 1. Show that one of the eigenvalues of E is N, and all the others are zero. Construct a matrix $A = I + \kappa E$, where κ is a constant to be determined, such that A is symmetric and positive definite, but in general the Jacobi method diverges.
- c) Explain why the result of b) does not contradict point a) above in this exercise.

Problem 4 (L1, L2, L4, L7)

Consider the boundary value problem

$$-p_0 u'' + r_0 u = f(x), \quad u(0) = 0, \quad u(1) = 0, \tag{3}$$

on the interval [0, 1], where p_0 and r_0 are positive constants and $f \in C^4[0, 1]$. Use equally spaced points

$$x_i = ih$$
, $i = 0, 1, ..., n$, with $h = \frac{1}{n}$, $n \ge 2$,

and the standard piecewise linear finite element basis functions (hat functions) φ_i , $i = 1, 2, \dots, n-1$.

a) State the weak formulation of the problem and the Galerkin method and show that the finite element equations for $u_i = u^h(x_i)$ become

$$-p_0 \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2} + r_0 \frac{u_{i-1} + 4u_i + u_{i+1}}{6} = \frac{1}{h} \langle f, \varphi_i \rangle \tag{4}$$

for i = 1, 2, ..., n - 1, with $u_0 = 0$ and $u_n = 0$.

b) By expanding in Taylor series we have obtained that

$$\frac{1}{h}\langle f, \varphi_i \rangle = f(x_i) + \frac{1}{12}h^2 f''(x_i) + \mathcal{O}(h^4). \tag{5}$$

Interpreting (4) as a finite difference approximation to the boundary value problem, and using (5), show that the corresponding local truncation error τ_i satisfies

$$\tau_i = \frac{1}{12}h^2r_0u''(x_i) + \mathcal{O}(h^4), \quad i = 1, \dots, n-1.$$

c) Show finally the following bound for the error

$$\max_{0 \le i \le n} |u(x_i) - u^h(x_i)| \le Mh^2,$$

where M is a positive constant.

Appendix

 $\frac{u(x_{i-1}) - 2u(x_i) + u(x_{i+1})}{h^2} = u''(x_i) + \frac{h^2}{12}u''''(x_i) + \mathcal{O}(h^4)$

• Jacobi iteration: given the linear system of equations

$$Ax = b$$

with A $n \times n$ matrix and b a vector with n components, we split A as the sum of its diagonal D minus a matrix R:

$$A = D - R$$
.

We assume that D is invertible.

The Jacobi iteration is an iterative method to approximate the solution of the linear system, and is given by the iteration

$$x^{k+1} = D^{-1}(R x^k + b), (6)$$

with x^0 a given initial guess. Note that (6) this is a fixed point iteration to solve the fixed point equation $x = D^{-1}(Rx + b)$, whose solution is the same as for the linear system.

Learning outcome:

Knowledge L1

- L1 Understanding of error analysis of difference methods: consistency, stability, convergence of difference schemes.
- L2 Understanding of the basics of the finite element method.

Skills

- L3 Ability to choose and implement a suitable discretization scheme given a particular PDE, and to design numerical tests in order to verify the correctness of the code and the order of the method.
- L4 Ability to analyze the chosen discretization scheme, at least for simple PDE-test problems.
- L5 Ability to attack the numerical linear algebra challenges arising in the numerical solution of PDEs.

General competence

- L6 Ability to present in oral and written form the numerical and analytical results obtained in the project work.
- L7 Ability to apply acquired mathematical knowledge in linear algebra and calculus to achieve the other goals of the course.