Contact during the exam:
Håkon Marthinsen, tlf. 735 93544, mobile 99023030

EXAM IN TMA4212
June 7th 2010
Time: 09:00-13:00

Allowed material: B - All printed and handwritten material is allowed. A simple calculator is allowed.
All exam questions are given equal weight.

Problem 1 Consider the Laplace equation

$$
\begin{equation*}
\Delta u=0, \quad \text { on } \Omega . \tag{1}
\end{equation*}
$$

The domain Ω is depicted in the figure

with the origin in the lower left corner. Consider the following boundary conditions:

$$
\begin{array}{lll}
u(x, 0) & =0, & \\
u(x, 0.5) & =\sin \pi x, & 0 \leq x \leq 1,5 \\
u(0, y) & =0, & \\
\left.\frac{\partial u}{\partial n}\right|_{(x, y)} & =0 & \\
0 \leq y \leq 0 \leq y \\
& & 0.5, x=y+0.5
\end{array}
$$

where $\frac{\partial u}{\partial n}=n_{x} u_{x}+n_{y} u_{y}$, and n_{x}, n_{y} are the components of the normal vector (with Euclidean length 1) pointing outside the domain Ω (as shown in the picture). Consider the grid in the figure with step-size $h=0.25$ both in the
x - and the y-direction. Use the 5 -point formula and a consistent approximation of the boundary conditions on the right boundary. Show that the method is consistent. Find the 3×3 system of linear equations whose solution is the numerical approximation in the nodes denoted with the indexes $1,2,3$.

Problem 2 We are looking for a discretization of the following equation by the finite element method,

$$
\begin{equation*}
-u_{x x}=f, \quad x \in[0,1], \quad u(0)=1, u(1)=0, f(x)=-\frac{\pi^{2}}{4} \cos \left(x \frac{\pi}{2}\right), \tag{2}
\end{equation*}
$$

using piecewise linear basis functions on the grid x_{0}, \ldots, x_{M} with $x_{m}=m h$ and $h=1 / M$.
a) Use the bilinear form

$$
a(u, v)=\int_{0}^{1} u_{x} v_{x} d x
$$

to write the Galerkin formulation of the problem using appropriate function spaces ${ }^{1}$, assume $u \in H_{E}^{1}$ and $v \in H_{0}^{1}$. Explain the connection between the Galerkin formulation and (2).
b) Find the $(M-1) \times(M-1)$-matrix C such that

$$
C U=b,
$$

is the linear system corresponding to the Galerkin method. To find the elements of C, compute the integrals exactly.
c) Find b. Use the trapezoidal rule to approximate the integrals.

Problem 3 Consider the equation

$$
u_{t}=-u_{x x}-u_{x x x x}, \quad u(0)=u(1)=0, \quad x \in[0,1] .
$$

Consider the grid $x_{m}=h m, h=1 / M, m=0, \ldots, M$. We will discretize the problem with central differences in space and with the trapezoidal integration method in time (the Crank-Nicolson method). Let $u\left(x_{0}, t\right)=u\left(x_{M}, t\right)=0$ and let k be the step-size.

$$
\begin{aligned}
H^{1}((0,1)) & :=\left\{v \in L^{2}((0,1)) \mid v \text { absolutely continuous on }[0,1], \partial_{x} v \in L^{2}((0,1))\right\}, \\
H_{0}^{1}((0,1)) & :=\left\{v \in H^{1}((0,1)) \mid v(0)=v(1)=0\right\}, \\
H_{E}^{1}((0,1)) & :=\left\{v \in H^{1}((0,1)) \mid v(0)=1, v(1)=0\right\} .
\end{aligned}
$$

a) Use the following approximation of the fourth derivative:

$$
\left.u_{x x x x}\right|_{x_{m}}=\frac{\delta_{x}^{4} u\left(x_{m}\right)}{h^{4}}+\mathcal{O}\left(h^{2}\right),
$$

where

$$
\delta_{x}^{2} u\left(x_{m}\right):=u\left(x_{m+1}\right)-2 u\left(x_{m}\right)+u\left(x_{m-1}\right), \quad \delta_{x}^{4} u\left(x_{m}\right)=\delta_{x}^{2} \delta_{x}^{2} u\left(x_{m}\right) .
$$

Let $\frac{1}{h^{2}} B$ be the discrete Laplace operator given in the formulae in the last page of this document, a $(M-1) \times(M-1)$-matrix, and let $U^{n}:=$ $\left[U_{1}^{n}, \ldots, U_{M-1}^{n}\right]^{T}$ be the numerical approximation.
Consider the components of $\frac{1}{h^{4}} B^{2} U^{n}$. Explain how they can be interpreted as approximations of $\left.u_{x x x x}\right|_{\left(x_{m}, t_{n}\right)}$; look separately at the cases $m=1$, $m=2, \ldots, M-2$, and $m=M-1$.
Show that the Crank-Nicolson method can be written in the form

$$
A U^{n+1}=D U^{n}
$$

and find A and D as functions of B.
Show that there exists a constant H such that A^{-1} exists for all $h<H$.
b) Write the method in the form

$$
U^{n+1}=C U^{n}, \quad C=A^{-1} D
$$

and show that the method is Lax-Richtmyer stable. Assume $M \geq 2$ such that $h=1 / M \leq 1$.
c) Consider now periodic boundary conditions $u(x)=u(x+1)$, such that it is possible to perform a von Neumann stability analysis. Show that the method is von Neumann stable.

Piecewise linear finite element basis functions

$$
\begin{gathered}
\phi_{j}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{j-1}\right)}{h}, & x_{j-1} \leq x \leq x_{j}, \\
\frac{\left(x_{j+1}-x\right)}{h}, & x_{j} \leq x \leq x_{j+1}, \quad j=1, \ldots, M-1, \\
0, & \text { otherwise, }
\end{array}\right. \\
\phi_{M}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{M-1}\right)}{h}, & x_{M-1} \leq x \leq x_{M}, \\
0, & \text { otherwise },
\end{array} \phi_{0}(x)=\left\{\begin{array}{cc}
\frac{\left(x_{0}-x\right)}{h}, & x_{0} \leq x \leq x_{1}, \\
0, & \text { otherwise. }
\end{array}\right.\right.
\end{gathered}
$$

Eigenvalues of the discrete Laplace operator

Consider the $(M-1) \times(M-1)$ matrix $B=\operatorname{tridiag}(1,-2,1), \frac{1}{h^{2}} B$, with $h=$ $\frac{1}{M}$, obtained by discretizing the Laplace operator with homogeneous Dirichlet boundary conditions. The eigenvalues of B are given as

$$
\lambda_{m}(B)=2(\cos (m \pi h)-1)=-4 \sin ^{2}\left(\frac{m \pi h}{2}\right), \quad m=1, \ldots, M-1 .
$$

Trapezoidal rule for numerical quadrature

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}(f(a)+f(b)) .
$$

Lax-Richtmyer stability is discussed in chapter 4.6 of the notes and in definition 9.1 in the book Finite difference methods for ordinary and partial differential equations by Randall J. LeVeque.

