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Contact during the exam:
Håkon Marthinsen, tlf. 735 93544, mobile 99 02 30 30

EXAM IN TMA4212
June 7th 2010

Time: 09:00–13:00

Allowed material: B – All printed and handwritten material is allowed.
A simple calculator is allowed.
All exam questions are given equal weight.

Problem 1 Consider the Laplace equation

∆u = 0, on Ω. (1)

The domain Ω is depicted in the figure
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with the origin in the lower left corner. Consider the following boundary condi-
tions:

u(x, 0) = 0, 0 ≤ x ≤ 0.5,
u(x, 0.5) = sinπx, 0 ≤ x ≤ 1,
u(0, y) = 0, 0 ≤ y ≤ 0.5,
∂u

∂n

∣∣∣∣
(x,y)

= 0 0 ≤ y ≤ 0.5, x = y + 0.5,

where
∂u

∂n
= nxux + nyuy, and nx, ny are the components of the normal vector

(with Euclidean length 1) pointing outside the domain Ω (as shown in the
picture). Consider the grid in the figure with step-size h = 0.25 both in the
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x- and the y-direction. Use the 5-point formula and a consistent approximation
of the boundary conditions on the right boundary. Show that the method is
consistent. Find the 3 × 3 system of linear equations whose solution is the
numerical approximation in the nodes denoted with the indexes 1, 2, 3.

Problem 2 We are looking for a discretization of the following equation
by the finite element method,

−uxx = f, x ∈ [0, 1], u(0) = 1, u(1) = 0, f(x) = −π
2

4
cos(x

π

2
), (2)

using piecewise linear basis functions on the grid x0, . . . , xM with xm = mh and
h = 1/M .

a) Use the bilinear form

a(u, v) =
∫ 1

0
uxvx dx,

to write the Galerkin formulation of the problem using appropriate func-
tion spaces1, assume u ∈ H1

E and v ∈ H1
0 . Explain the connection between

the Galerkin formulation and (2).

b) Find the (M − 1)× (M − 1)-matrix C such that

CU = b,

is the linear system corresponding to the Galerkin method. To find the
elements of C, compute the integrals exactly.

c) Find b. Use the trapezoidal rule to approximate the integrals.

Problem 3 Consider the equation

ut = −uxx − uxxxx, u(0) = u(1) = 0, x ∈ [0, 1].

Consider the grid xm = hm, h = 1/M , m = 0, . . . ,M . We will discretize the
problem with central differences in space and with the trapezoidal integration
method in time (the Crank-Nicolson method). Let u(x0, t) = u(xM , t) = 0 and
let k be the step-size.

1

H1((0, 1)) := {v ∈ L2((0, 1)) | v absolutely continuous on [0, 1], ∂xv ∈ L2((0, 1)) },
H1

0 ((0, 1)) := {v ∈ H1((0, 1)) | v(0) = v(1) = 0 },
H1

E((0, 1)) := {v ∈ H1((0, 1)) | v(0) = 1, v(1) = 0 }.



TMA4212 Numerical PDE Page 3 of 4

a) Use the following approximation of the fourth derivative:

uxxxx|xm
=
δ4xu(xm)
h4

+O(h2),

where

δ2xu(xm) := u(xm+1)− 2u(xm) + u(xm−1), δ4xu(xm) = δ2x δ
2
xu(xm).

Let 1
h2B be the discrete Laplace operator given in the formulae in the

last page of this document, a (M − 1) × (M − 1)-matrix, and let Un :=
[Un

1 , . . . , U
n
M−1]T be the numerical approximation.

Consider the components of 1
h4B

2Un. Explain how they can be interpreted
as approximations of uxxxx|(xm,tn); look separately at the cases m = 1,
m = 2, . . . ,M − 2, and m = M − 1.

Show that the Crank-Nicolson method can be written in the form

AUn+1 = DUn,

and find A and D as functions of B.

Show that there exists a constant H such that A−1 exists for all h < H.

b) Write the method in the form

Un+1 = CUn, C = A−1D,

and show that the method is Lax-Richtmyer stable. Assume M ≥ 2 such
that h = 1/M ≤ 1.

c) Consider now periodic boundary conditions u(x) = u(x+ 1), such that it
is possible to perform a von Neumann stability analysis. Show that the
method is von Neumann stable.
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Piecewise linear finite element basis functions

φj(x) =


(x−xj−1)

h , xj−1 ≤ x ≤ xj ,

(xj+1−x)
h , xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . ,M − 1,

φM (x) =

{
(x−xM−1)

h , xM−1 ≤ x ≤ xM ,

0, otherwise,
φ0(x) =

{
(x0−x)

h , x0 ≤ x ≤ x1,

0, otherwise.

Eigenvalues of the discrete Laplace operator

Consider the (M − 1) × (M − 1) matrix B = tridiag(1,−2, 1), 1
h2B, with h =

1
M , obtained by discretizing the Laplace operator with homogeneous Dirichlet
boundary conditions. The eigenvalues of B are given as

λm(B) = 2 (cos(mπh)− 1) = −4 sin2
(mπh

2
)
, m = 1, . . . ,M − 1.

Trapezoidal rule for numerical quadrature

∫ b

a
f(x) dx ≈ b− a

2
(f(a) + f(b)).

Lax-Richtmyer stability is discussed in chapter 4.6 of the notes and in defini-
tion 9.1 in the book Finite difference methods for ordinary and partial differential
equations by Randall J. LeVeque.


