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We want to implement the central differences discretization of the following boundary
value problem :

u′′(x) = f(x), 0 < x < 1,

u(0) = α, u(1) = β.

Considering the grid of equidistant points

xj = j · h, j = 0, 1, . . . ,M + 1, h =
1

M + 1
.

On each node xj we replace the second derivative in the differential equation with its approx-
imation by central differences and get

1

h2
(Ui−1 − 2Ui + Ui+1) = fi, i = 1, . . . ,M.

Using the boundary conditions U0 = α, UM+1 = β we get a system of M equations in the M
unknowns U1, . . . , UM that is

Ah~U = ~F

where ~U = [U1, . . . , UM ]T , ~F = [f1 − α
h2
, f2, . . . , fM−1, fM − β

h2
]T and

Ah :=
1

h2
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Task 1 Choose f = sin(πx), α = β = 0 and M = 10 construct the linear system Ah~U = ~F
and solve it with the backslash command of Matlab (or in other ways if you are using another
programming language) to find the numerical solution ~U . Plot the numerical solution. Find
the solution1 of the boundary value problem by integrating twice. Plot the values of the
solution on the grid and compare them to the corresponding numerical approximation values.

1We will sometimes call the solution exact solution to distinguish it from the numerical solution which is
the approximation produced by a numerical method.
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Run the program with different values of M and observe the behaviour of the numerical
method. Choose then another f leading to non trivial boundary values and repeat the exercise.
Hand-in: Plot of numerical and exact solution.

Task 2 In this task we want to see with a numerical experiment how the function-norm of
the error decreased as a function of h. To this end use the values of the exact solution on the
grid points to compute the the error vector ~eh := [U1−u1, . . . , UM −uM ]T , where uj = u(xj).
Consider then the piecewise constant error function defined by

eh(x) := ej , x ∈ [xj , xj+1), j = 1, . . . ,M.

We know from Taylor theorem that the exact solution can be expanded as

1

h2
(uj+1 − 2uj + uj−1) = u′′(xj) +

h2

12
u(4)(xj) +O(h4).

It can also be proved that eh(x) is going to zero in the 2-norm (for functions) as O(h2)2.
We design our numerical experiment as follows: consider increasing values of M , for

example M = 2k, k = 1, 2, . . . , 8 and decreasing values of h accordingly. Solve the linear
system from taks 1 for each value of M and compute the corresponding norm of the error,
(use max-norm, 1-norm and 2-norm), store the obtained values. Plot in logarithmic scale the
different values of h versus the corresponding values of the error norm (for the three different
choices of norm), you should observe a straight line with slope 2 (testifying second order
convergence). Hand-in: Plot (in logarithmic scale) of h versus the error norms.

Task 3 You should now modify your programme and implement Neumann boundary
conditions (follow the description of chapter 3.1.2 in the note). There are several strategies:
CASE 1 is a first order method, CASE 2 is a second order method using fictitious nodes, CASE
3 is a second order method leading to a matrix which is not tridiagonal but without using
fictitious nodes. Implement each of these and verify the order of each technique numerically.
Hand-in: Plot (in logarithmic scale) of h versus the 2-norm for the three cases.

Extra (not mandatory) Implement the method described in section 3.2.1 of the note,
where a general self-adjoint linear boundary value problem is considered and discretized so
to preserve symmetry under discretization. Verify the order.

2We will see the proof in one of the first lectures of the course. To do this we will use the fact that Ah is
invertible with inverse bounded in 2-norm independently on h. This is called (order 2) convergence.
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