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The learning outcome has been published on the course webpage and on the official
description of the course. The seven learning goals L1 to L7 are reported in the
appendix. Learning outcome L6, L3 and to some extent L4 and L5 have been
tested through the project work. We here test further the achievement of L4 and
L5 as well as L1, L2, L7.

Problem 1 ( L1)
The wave equation in one space dimension can be written in the form

ut + Aux = 0

where
u :=

[
v(x, t)
w(x, t)

]
, A :=

[
0 −1
−1 0

]
.

Consider the following finite difference method for this problem

V k+1
j = V k

j + 1
2p (W k

j+1 −W k
j−1),

W k+1
j = W k

j + 1
2p (V k+1

j+1 − V k+1
j−1 ),

with p = ∆t
∆x .

a) Find the leading error term of the local truncation error for this method.
Solution. The Taylor expansion and using vt = wx, wt = vx, wxx = vtx,
wxx = wtt gives the following local truncation error

τ kj (v) = 1
2∆t∂2

xv
k
j −

1
6∆x2∂3

xw
k
j +O(∆t2) +O(∆x3)

τ kj (w) = −1
2∆t∂2

xw
k
j −

1
6∆x2∂3

xv
k
j +O(∆t2) +O(∆x3),

and the first two terms in each expression are the leading error term of the
local truncation error.

b) Perform a von Neumann stability analysis for this numerical method.
Solution. We set V k

j = ξke
iβxj andW k

j = η
iβxj

k and substitute in the formula
for the numerical method, we get

ξk+1 = ξk + i p ηk sin(β∆x)
ηk+1 = ηk + i p ξk+1 sin(β∆x)
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solving for ξk+1 and ηk+1 we get

[
ξk+1
ηk+1

]
=
[

1 ip sin(β∆x)
ip sin(β∆x) 1− p2 sin2(β∆x)

]
·
[
ξk
ηk

]
= G ·

[
ξk
ηk

]
We need ρ(G) ≤ 1 for stability. We see that det(G) = 1. Then ρ(G) = 1
if the two eigenvalues of G are such that λ1 = λ̄2, and ρ(G) > 1 otherwise.
The condition for stability is then

Tr(G)2 − 4det(G) ≤ 0⇒ p2 sin(β∆x)2(p sin(β∆x) + 2)(p sin(β∆x)− 2) ≤ 0.

The method is Von Neumann stable if |p| | sin(β∆x)| ≤ 2 for all β, i.e.
|p| ≤ 2.

Problem 2 (L1, L4, L5) The function u = u(x, y) satisfies the equation
uxx + uyy + f(x, y) = 0 in the sector of the circle defined by 0 ≤ x2 + y2 ≤ 1,
0 ≤ y ≤ x. A zero Neumann condition is given on the boundary x = y and
homogeneous Dirichlet conditions on the rest of the boundary. Using a uniform
square mesh of size ∆x = ∆y = 1

3 leads to a system of linear equations of the form
Au = b.

a) Construct explicitly the elements of the matrix A.
Solution. The domain and the grid can be seen in figure 1. There are
three unknowns (three components in the vector u = [U1, U2, U3]T and they
correspond to the numerical approximations of u in the two nodes of the grid
along the line x = y (points of coordinates (1

3 ,
1
3) and (2

3 ,
2
3)) and the only

internal node of the grid (coordinates (2
3 ,

1
3)). The normal vector along the

boundary x = y is n =
√

2[1,−1], and the normal derivative is ∂nu = nT∇u.
So the zero Neumann boundary conditions can be expressed as

ux = uy,

along x = y.
We order the unknowns is shown in the figure. We need to use finite differ-
ences with variable step-sizes. The equations we obtain are

U2 − 2U1 = 0
2

0.6095

(
−U2

0.2761 −
U2 − U1

1/3

)
+ U3 − 2U2 + 0

(1/3)2 = −f2

U3

0.0787 + U3 − U2

1/3 = 0

from these we can deduce the matrix A which in this case is 3× 3.
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Figure 1: Grid for problem 2 a).

b) Transform the problem in polar coordinates and construct the matrix of a
similar system of linear equations. Use four unknowns and a 4×4 matrix A.
Solution. We built the grid in polar coordinates as given in figure 2. In this
way and there are four unknowns corresponding to two internal nodes and
two boundary nodes (along the line x = y). In vector notation this amounts
to u = [U1, U2, U3, U4]T and we order the unknowns is as shown in the figure.
The four corresponding equations are

1
(1/3)2 (U2 − 2U1) + 9

2U2 + 9U3 − 2U1

π2 64 = −f1

1
(1/3)2 (−2U2 + U1)− 9

4U1 + 9
4
U4 − 2U2

π2 64 = −f2

U3 − U1 = 0
U4 − U2 = 0

here ∆r = 1
3 . From these equations we can deduce the matrix A which in

this case is 4× 4.

Problem 3 (L1, L4) Consider the following finite difference method
Un+1

m − Un
m

∆t
=

Un+1
m−1 − 2Un+1

m + Un+1
m+1

∆x2 , m = 1, . . . , M, n ≥ 0, ∆x = 1
M + 1

for the heat equation

ut = uxx, x ∈ [0, 1], t > 0,
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Figure 2: Grid for problem 2 b).

with homogeneous Dirichlet boundary conditions and initial condition u(x, 0) =
f(x). We assume the solution is sufficiently regular, and that the following bound
for the local truncation error τnm holds

|τnm| ≤ A(∆t+ ∆x2), ∀m,n

where A is a constant not depending on ∆t and ∆x.

Show that the method converges for all values of r = ∆t
∆x2 and finite time T , without

using the Lax equivalence theorem.
Solution. We use an approach similar to the one of chapter 5.4 in the note.
Consider unm := u(xm, tn) the local truncation error τnm satisfies the equation

un+1
m − unm

∆t =
[
un+1
m−1 − 2un+1

m + un+1
m+1

∆x2

]
+ τnm

subtracting the equation defining the method from this equation we obtain the
equation for the error enm = unm − Un

m,

en+1
m = enm + r

[
en+1
m−1 − 2en+1

m + en+1
m+1

]
+ ∆t τnm

and
(1 + 2r)en+1

m = enm + r
[
en+1
m−1 + en+1

m+1

]
+ ∆t τnm

taking absolute values

(1 + 2r)|en+1
m | ≤ |enm|+ r

[
|en+1
m−1|+ |en+1

m+1|
]

+ |∆t τnm|.
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Defining En := maxm |enm| and maximizing on the right hand side we get

(1 + 2r)|en+1
m | ≤ En + 2rEn+1 + ∆t A(∆t2 + ∆x2), ∀m.

Since the inequality holds for all m it holds also for the maximum over m and so

(1 + 2r)En+1 ≤ (En + 2rEn+1) + ∆t A(∆t+ ∆x2)

En+1 ≤ En + ∆t A(∆t+ ∆x2)

so
En ≤ An(∆t2 + ∆t∆x2) ≤ TA(∆t+ ∆x2), n∆t ≤ T.

So
lim

∆x→0,∆t→0
En = 0.

Problem 4 (L2, L7)
Consider the boundary value problem

− d

dx

(
(x+ 1)du

dx

)
= f(x), x ∈ [0, 4] (1)

u(0) = 0,
u(4) = 0.

We will solve this problem using the finite element method.

a) State the weak formulation of the problem.
Solution: By multiplying with a test function v and integrating over the
domain we get

∫ 4

0
− d

dx

(
(x+ 1)du

dx

)
vdx =

∫ 4

0
fvdx∫ 4

0
(x+ 1)u′v′dx− [(x+ 1)u′v]40 =

∫ 4

0
fvdx∫ 4

0
(x+ 1)u′v′dx =

∫ 4

0
fvdx

A(u, v) = l(v)

since v(0) = v(4) = 0. The weak formulation is “Find u ∈ H1
0 (0, 4) such that

A(u, v) = l(v) ∀v ∈ H1
0 (0, 4)” . We sometimes write l(v) = 〈f, v〉.



Page 6 of 7 TMA4212 Num. diff. 3. june 2014

Consider the approximation space of piecewise linear polynomials (hat functions)
over the grid nodes x0 = 0, x1 = 2, x2 = 3, x3 = 4.

b) Write the discrete problem (Galerkin Method) and specify the function space
Sh0 by writing explicit expressions for the basis functions ϕi(x).
Solution: The Galerking method reads “Find uh ∈ Sh0 such thatA(uh, vh) =
l(vh) ∀vh ∈ Sh0 ” . Where Sh0 =

{
vh ∈ H1

0 (0, 4)|vh = ∑2
i=1 viϕi

}
. The basis

functions are

ϕ1(x) =


x/2 x ∈ [0, 2]

3− x x ∈ [2, 3]
0 else

ϕ2(x) =


x− 2 x ∈ [2, 3]
4− x x ∈ [3, 4]

0 else

The Galerkin method allows us to find the numerical solution of the differential
equation (1) by solving a linear system of equations

Au = b.

c) What is the definition of the elements Aij of the A-matrix and bi of the
b-vector for this differential equation. What is the size of A and b for this
choice of Sh0 . Compute all elements of the A-matrix using the linear hat
functions from b).
Solution:

Aij = A(ϕi, ϕj) =
∫ 4

0
(x+ 1)ϕ′iϕ′j dx

bi = l(ϕi) =
∫ 4

0
ϕif dx

A ∈ R2×2 and b ∈ R2. To compute Aij, we first note that the derivative of
the basis functions are

ϕ′1(x) =


1/2 x ∈ [0, 2]
−1 x ∈ [2, 3]

0 else

ϕ′2(x) =


1 x ∈ [2, 3]
−1 x ∈ [3, 4]

0 else
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A(ϕ1, ϕ1) =
∫ 2
0 (x+ 1)(1

2)2dx+
∫ 3
2 (x+ 1)(−1)2dx = 9/2

A(ϕ1, ϕ2) =
∫ 3
2 (x+ 1)(−1)(1)dx = −7/2

A(ϕ2, ϕ2) =
∫ 3
2 (x+ 1)(1)2dx+

∫ 4
3 (x+ 1)(−1)2dx = 8

Noting that A is symmetric we then have

A = 1
2

[
9 −7
−7 16

]
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Appendix Laplacian in polar coordinates x = r cos(ϕ), y = r sin(ϕ)

∆u = ∂2u

∂r2 + 1
r

∂u

∂r
+ 1
r2
∂2u

∂ϕ2
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Learning outcome:

Knowledge L1 Understanding of error analysis of difference methods:
consistency, stability, convergence of difference schemes.

L2 Understanding of the basics of the finite element method.
Skills L3 Ability to choose and implement a suitable discretization scheme

given a particular PDE, and to design numerical tests in order to verify
the correctness of the code and the order of the method.

L4 Ability to analyze the chosen discretization scheme, at least for simple
PDE-test problems.

L5 Ability to attack the numerical linear algebra challenges arising in the
numerical solution of PDEs.

General L6 Ability to present in oral and written form the numerical and analytical
competence results obtained in the project work.

L7 Ability to apply acquired mathematical knowledge in linear algebra and
calculus to achieve the other goals of the course.


