Hyperbolic equations

January 29, 2016

Exercise 1

Consider the advection diffusion problem

$$
u_{t}+u_{x}=\nu u_{x x}+f, \quad t \geq 0, \quad-1<x<1, \quad f \equiv 1
$$

with initial condition

$$
u(x, 0)=\cos (\pi / 2 x)
$$

and boundary conditions

$$
u(-1, t)=0, \quad t \geq 0, \quad u(1, t)=0, \quad t \geq 0 .
$$

Implement a finite difference discretization for this problem. Use different values of ν, say $\nu=0.1, \nu=0.01 \nu=0.001$. What do you observe? Hand-in: Plot the solution for the three different choices of ν in the same figure to illustrate the difference.

Exercise 2

Consider the problem

$$
u_{t}+a u_{x}=0, \quad t \geq 0, \quad-\infty<x<\infty
$$

with initial condition

$$
u(x, 0)=g(x) .
$$

Task 1 Implement the explicit difference formulae of chapter 7.3 in the note, in particular (7.11) and (7.12), and verify that (7.12) is always unstable while (7.11) converges. Hand-in: Plot of the solutions to illustrate stability or lack of it.

Task 2 Implement Lax-Wendroff and Leap-Frog and verify numerically their order in space and time. Hand-in: Plot of the solutions and convergence plots that verify correct order in space and time.
Task 3 (Optional) Consider finally the inviscid Burgers equation

$$
u_{t}+\left(\frac{1}{2} u^{2}\right)_{x}=0
$$

Discretize the time derivative and the space derivative in this equation using the same approximation as in formula (7.11). Verify numerically that the method converges. Hand-in: Plot of the solution and convergence plots that verify correct order in space and time.

