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The learning outcome has been published on the course webpage and on the official
description of the course. The seven learning goals L1 to L7 are reported in the
appendix. Learning outcome L6, L3 and to some extent L4 and L5 have been
tested through the project work. We here test further the achievement of L4 and
L5 as well as L1, L2, L7.

Guidelines for the marking

Problem 1 a: A(u, v) = `(v) right subspace of u 6, right ` and right A 8, right
H1

0 (0, 1) for test function v10.
Problem 1 b: A(u, v) = `(v) 6, right ` and right A 8, right subspace of H1

0 (0, 1)
10.
Problem 1 c: A(u, v) = `(v) 6, right ` and right A 8, right subspace of H1

0 (0, 1)
10.
Problem 2 a: right figure 6, right adjustment of the five points formula 8, right
system 10.
Problem 2 b: A SPD with right explanation 6, CG yes 8, CG yes right explana-
tion 10.
Problem 3 a: characteristics right explanation 6, characteristics meet x-axis in
the interval (0, 1) 10.
Problem 3 b: Right use of the method 6, quite right computation only minor
mistakes 8, correct 10.
Problem 4 a: right LTE 6, bound of A?1 in 2-norm and bound of the error 8,
invertibility of A independently of n 10.
Problem 4 b: right 10, minor computation error 8, major computational error 6.
Problem 4 c: First or second part 4, last part assuming the two first parts 6,
first and second part 6, first or second part and last part 8, all parts 10.

Problem 1 ( L2, L7)
Given f ∈ L2(0, 1), state the weak formulation of each of the following boundary
value problems on the interval (0, 1):

a)
−u′′ + u = f(x), u(0) = 0, u(1) = 0;

Solution
The Galerkin formulation is:

Find u ∈ H1(0, 1), with u(0) = u(1) = 0 such that

A(u, v) = `(v)
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for all v ∈ H1(0, 1) with v(0) = v(1) = 0, where

A(u, v) :=
∫ 1

0
(u′v′ + uv) dx, `(v) :=

∫ 1

0
fv dx.

Points: A(u, v) = `(v) 6, right ` and right A 8, right H1
0 (0, 1) 10.

b)
−u′′ + u = f(x), u(0) = 0, u′(1) = 1;

Solution
The Galerkin formulation is:

Find u ∈ H1(0, 1), with u(0) = 0 such that

A(u, v) = `(v)

for all v ∈ H1(0, 1) with v(0) = 0, where

A(u, v) :=
∫ 1

0
(u′v′ + uv) dx, `(v) :=

∫ 1

0
fv dx+ v(1).

Points: A(u, v) = `(v) 6, right ` and right A 8, right subspace of H1
0 (0, 1) 10.

c)
−u′′ + u = f(x), u(0) = 0, u(1) + u′(1) = 2.

Solution
The Galerkin formulation is:

Find u ∈ H1(0, 1), with u(0) = 0 such that

A(u, v) = `(v)

for all v ∈ H1(0, 1) with v(0) = 0, where

A(u, v) :=
∫ 1

0
(u′v′ + uv) dx+ u(1)v(1), `(v) :=

∫ 1

0
fv dx+ 2v(1).

Points: A(u, v) = `(v) 6, right ` and right A 8, right subspace of H1
0 (0, 1) 10.
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Problem 2 ( L1, L4, L5, L7)

a) Construct explicitly the system of linear equations obtained from approxi-
mating Poisson’s equation

uxx + uyy + f(x, y) = 0

in the region defined by x ≥ 0, y ≥ 0, x2 + y ≤ 1. The boundary conditions
are u(x, 0) = p(x), u(0, y) = q(y), and u(x, 1− x2) = r(x), where p, q, r and
f are given functions.
Use a grid of size ∆x = 1

3 and ∆y = 1
2 . Use the five point formula. Use

variable step-size near the right boundary.
(Show that you can apply the method correctly. You do not need to rearrange
the terms in the form AU = b.)

Solution
The domain and the grid are depicted in Figure 1, with We use the grid points
xi = ∆x · i, (i = 1, 2) y1 = ∆y, ∆x = 1

3 , ∆y = 1
2 . Starting from left to right we

number the unknowns as follows U1 ≈ u(x1, y1), U2 ≈ u(x2, y1).

The system of equations in the unknowns U1 and U2 is(
U2−U1

∆x −
U1−q(y1)

∆x

)
1

∆x +
(
r(x1)−U1

∆y1
− U1−p(x1)

∆y

)
2

∆y1+∆y = −f(x1, y1)
(
r(
√

1−y1)−U2
∆x2

− U2−U1
∆x

)
2

∆x2+∆x +
(
r(x2)−U2

∆y2
− U2−p(x2)

∆y

)
2

∆y2+∆y = −f(x2, y1)
(1)

∆y1 = 1− x2
1 − y1, ∆x2 =

√
1− y1 − x2, ∆y2 = 1− x2

2 − y1.

Points: right figure 6, right adjustment of the five points formula 8, right system
10.

b) Consider a linear system Ax = b with the following structure:

A =



Bm Ĩm O . . . O

ĨTm Bm−1 Ĩm−1
. . . ...

O ĨTm−1
. . . . . . O

... . . . . . . Ĩ2
O . . . O ĨT2 B1


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Figure 1: Domain and grid.
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where Bk is k× k tridiagonal with α > 4 on the diagonal, −Ĩk is k× (k− 1)
and it is obtained by removing the last column from the k×k identity matrix
i.e.

Bk =



α −1 0 . . . 0
−1 . . . . . . . . . ...
0
... . . . −1
0 . . . 0 −1 α

 , Ĩk = −



1 0 . . . 0
0 1 . . . 0
... . . . ...
0 . . . 0 1
0 . . . 0 0

 .

Is A is symmetric and positive definite? Explain your answer. Can you use
the Conjugate Gradient method to approximate the solution of this linear
system iteratively?

Solution
This matrix is symmetric and positive definite. The symmetry comes from noticing
that

AT =



BT
m (ĨTm)T O . . . O

ĨTm BT
m−1 (ĨTm−1)T . . . ...

O ĨTm−1
. . . . . . O

... . . . . . . (ĨT2 )T
O . . . O ĨT2 BT

1


with (ĨTk )T = Ĩk and Bk = BT

k gives AT = A. The eigenvalues are all real since the
matrix is symmetric. The matrix is positive definite because on each row there are
at most 4 off-diagonal elements which are different from zero (equal to −1). The
sum of the absolute values of the off-diagonal elements of the matrix is strictly less
than α so by the Gershgorin theorem all eigenvalues are positive.

Since A is symmetric and positive definite, the Conjugate Gradient method is well
defined and can be applied to approximate the solution to this problem.
Points: A SPD with right explanation 6, CG yes 8, CG yes right explanation 10.

Problem 3 ( L1, L4, L7)

a) Consider the equation

ut + a ux = 0, 0 ≤ x ≤ 1, t ≥ 0,
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when a = a(x) = x − 1
2 , with a given initial function u(x, 0) for 0 ≤ x ≤ 1.

Show that the characteristics are

x(t) = et (x0 −
1
2) + 1

2 .

Explain why you do not need to impose any boundary conditions.

Solution
By differentiation we see that the given x(t) is the solution of the characteristic
equation ẋ = a(x(t)), with x(0) = x0 in fact

ẋ = et(x0 −
1
2) = x(t)− 1

2 , x(0) = x0.

Solving for x0 from x(t) = et (x0 − 1
2) + 1

2 we get

x0 = e−t(x(t)− 1
2) + 1

2

which is the point in which the characteristic curve intersects the x-axis in the
(x, t)-plane. If 0 ≤ x(t) ≤ 1 and t > 0,

0 ≤ x0 = e−t(x(t)− 1
2) + 1

2 ≤ x(t)− 1
2 + 1

2 ≤ x(t) ≤ 1

and x0 is in the interval [0, 1]. So to obtain the solution in (x, t) which is u(x, t) =
u(e−t(x − 1

2) + 1
2 , 0) it suffices to know the initial function u(x, 0) on the interval

(0, 1) and no boundary conditions are necessary.

One can also note that for all s ≤ t we have

x(s) = es(x0 −
1
2) + 1

2 = ese−t(x(t)− 1
2) + 1

2 ,

0 ≤ es−t(x(t)− 1
2) + 1

2 ≤ x(t) ≤ 1,

so
0 ≤ x(s) ≤ x(t) ≤ 1, ∀s ≤ t,

i.e. the characteristics do not leave the domain 0 ≤ x ≤ 1, t ≥ 0 where the solution
of the PDE is sought.
Points: characteristics right explanation 6, characteristics meet x-axis in the in-
terval (0, 1) 10.
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b) The upwind method applied to the equation is

Un+1
i −Un

i

k
+
(
xi − 1

2

)
Un

i −U
n
i−1

h
= 0, xi >

1
2

Un+1
i −Un

i

k
+
(
xi − 1

2

)
Un

i+1−U
n
i

h
= 0, xi <

1
2 ,

and we are considering a uniform mesh xi = i h, i = 0, . . . , N , with k the
temporal step-size.
Consider the initial function u(x, 0) = |x − 1

2 |, N = 4 and k = h. Compute
the error of the method in x = 1/4 and x = 3/4 and at time t = k. Recall
that u(x, t) = u(e−t(x− 1

2) + 1
2 , 0).

Solution
One obtains

u
(1

4 , k
)

=
∣∣∣∣e−k (1

4 −
1
2

)∣∣∣∣ =
∣∣∣∣−1

4e
−k
∣∣∣∣ ,

and
u
(3

4 , k
)

=
∣∣∣∣e−k (3

4 −
1
2

)∣∣∣∣ =
∣∣∣∣14e−k

∣∣∣∣ .
For k = h = 1

4 we have u
(

1
4 ,

1
4

)
= u

(
3
4 ,

1
4

)
= 0.194700.

For x1 = 1
4 <

1
2 the method gives

U1
1 − U0

1
k

+
(1

4 −
1
2

)
U0

2 − U0
1

h
= 0,

and
U1

1 = U0
1 + 1

4
(
U0

2 − U0
1

)
= 3

16 .

For x3 = 3
4 ≥

1
2 the method gives

U1
3 − U0

3
k

+
(3

4 −
1
2

)
U0

3 − U0
2

h
= 0,

and
U1

3 = U0
3 −

1
4(U0

3 − U0
2 ) = 3

16
the error is in both points

U1
1 − u

(1
4 ,

1
4

)
= 3

16 − 0.194700 = U1
3 − u

(3
4 ,

1
4

)
= −0.007200.

Points: Right use of the method 6, quite right computation only minor mistakes
8, correct 10.
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Problem 4 ( L1, L4, L7)
Consider the boundary value problem

−y′′ + a2y = 0, y(−1) = 1, y(1) = 1.

Consider the following difference approximation to the given problem

−Yj−1 − 2Yj + Yj+1

h2 + a2Yj = 0, j = 1, 2, . . . , n− 1, Y0 = Yn = 1.

a) Find the local truncation error for this method. Then prove convergence in
the 2-norm.

Solution
Replacing Yj with y(xj) in the equation for the method gives the values of the
local truncation error

−y(xj−1)− 2y(xj) + y(xj+1)
h2 +a2y(xj) = τj, j = 1, 2, . . . , n−1, y(x0) = y(xn) = 1,

and using Taylor expansion we have

y(xj−1)− 2y(xj) + y(xj+1)
h2 = y′′(xj) + h2

12y
IV (xj) +O(h4),

which substituted into the equation for τj gives

τj = −h
2

12y
IV (xj) +O(h4).

Subtracting the equation for the local truncation error from the equation for the
method we obtain the equation for the error ej := Yj − y(xj)

−ej−1 − 2ej + ej+1

h2 + a2ej = −τj, j = 1, 2, . . . , n− 1, e0 = en = 0.

Which in the form of a linear system is

Ae = τ

with e = [e1, . . . , en−1]T , τ = [τ1, . . . , τn−1]T . The matrix A is (n − 1) × (n − 1)
tridiagonal with 2 + a2 on the main diagonal and −1 on the first sub-diagonal and
on the first super-diagonal. This matrix is symmetric and positive definite for all
n and therefore invertible, we thus get

e = A−1τ
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and
‖e‖2 ≤ ‖A−1‖2‖τ‖2.

The norm ‖A−1‖2 is bounded independently on n (and h). In fact,

‖A−1‖2 = ρ(A−1) = 1
minλ∈σ(A) |λ|

and the minimum eigenvalue is a2 + π2 +O(h2) such that

‖A−1‖2 →
1

a2 + π2 , h→ 0.

(See also note of the course chapter 3.1.1). Then there is C constant independent
on n such that ‖A−1‖2 ≤ C, and we get

‖e‖2 ≤ ‖A−1‖2‖τ‖2 ≤ C‖τ‖2 = O(h2).

Which proves convergence.
Points: right LTE 6, bound ofA−1 in 2-norm and bound of the error 8, invertibility
of A independently of n 10.

b) The solution of the considered boundary value problem is

y(x) = cosh(ax)
cosh(a) . (2)

Use the identity

cosh(x+ h) + cosh(x− h) = 2 cosh(x) cosh(h)

to verify that the solution of this difference approximation is

Yj = cosh(θxj)
cosh(θ) , (3)

where
θ = (1/h) cosh−1(1 + 1

2a
2h2). (4)

Solution
From the hypothesis Yj = cosh(θxj)

cosh(θ) , and the equation for the method

−Yj−1 − 2Yj + Yj+1

h2 + a2Yj = 0,
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we see that we need to prove that

− cosh(θxj−1) + 2 cosh(θxj)− cosh(θxj+1) + h2a2 cosh(θxj)
cosh(θ) = 0. (5)

Now
θxj−1 = θxj − θh, θxj+1 = θxj + θh,

and using the given identity with x replaced by θxj and h replaced by θh we get
that the left hand side of (5) is

−2 cosh(θxj) cosh(θh) + 2 cosh(θxj) + h2a2 cosh(θxj)
cosh(θ)

collecting
2cosh(θxj)

cosh(θ) ,

we are left with the factor

(− cosh(θh) + 1 + a2h2

2 )

which is zero since θ = (1/h) cosh−1(1 + 1
2a

2h2).
Points: right 10, light computation error 8, big computational error 6.

c) Using (3) and (2), by expanding in Taylor series, show directly (without
using the local truncation error) that

ej := Yj − y(xj) = 1
24 h

2a3 (cosh(ax) sinh(a)− x sinh(ax) cosh(a))
(cosh a)2 +O(h4).

Hint: From (4), using also Taylor expansion of cosh(θh), show first that

θ2 = a2 − 1
12θ

4h2 +O(h4).

From this deduce that

θ = a+ ∆a, ∆a = − 1
24a

3h2 +O(h4).

Finally expand Yj = Yj(a+ ∆a) in Taylor series.
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Solution
Expanding cosh(x) in Taylor series around 0 we get

cosh(x) = 1 + 1
2x

2 + 1
24x

4 +O(x6),

From
θ = (1/h) cosh−1(1 + 1

2a
2h2)

we get
cosh(θh) = 1 + 1

2a
2h2

and so
1 + 1

2θ
2h2 + 1

24θ
4h4 +O(h6) = 1 + 1

2a
2h2

leading to
θ2 = a2 − 1

12θ
4h2 +O(h4).

Taking square roots and expanding in Taylor series gives

θ = a− 1
24
θ4

a
h2 +O(h4),

which with
θ4 = a4 +O(h2),

gives finally
θ = a− 1

24a
3h2 +O(h4).

The final part of the exercise is about expanding in Taylor series Yj = Yj(a+ ∆a),
this gives

Yj(θ) = Yj(a+ ∆a) = f(a+ ∆a) = f(a) + f ′(a)∆a+O(∆a2)

where

f(y) = cosh(y xj)
cosh(y) , f ′(y) = sinh(yxj) cosh(y)xj − cosh(yxj) sinh(y)

cosh(y)2

and so

Yj = cosh(a xj)
cosh(a) −

1
24a

3h2 sinh(axj) cosh(a)xj − cosh(axj) sinh(a)
cosh(a)2 +O(h4),

which, using y(xj) = cosh(a xj)
cosh(a) , gives the desired result.

Points: First or second part 4, last part assuming the two first parts 6, first and
second part 6, first or second part and last part 8, all parts 10.
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Appendix

•
cosh(x) := ex + e−x

2 , sinh(x) := ex − e−x

2 .

•
y(xj−1)− 2y(xj) + y(xj+1)

h2 = y′′(xj) + h2

12y
IV (xj) +O(h4).
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Learning outcome:

Knowledge L1 Understanding of error analysis of difference methods:
consistency, stability, convergence of difference schemes.

L2 Understanding of the basics of the finite element method.
Skills L3 Ability to choose and implement a suitable discretization scheme

given a particular PDE, and to design numerical tests in order to verify
the correctness of the code and the order of the method.

L4 Ability to analyze the chosen discretization scheme, at least for simple
PDE-test problems.

L5 Ability to attack the numerical linear algebra challenges arising in the
numerical solution of PDEs.

General L6 Ability to present in oral and written form the numerical and analytical
competence results obtained in the project work.

L7 Ability to apply acquired mathematical knowledge in linear algebra and
calculus to achieve the other goals of the course.


