Boundary value problems

January 4, 2015

We want to implement the central differences discretization of the following boundary value problem :

$$
\begin{gathered}
u^{\prime \prime}(x)=f(x), \quad 0<x<1, \\
u(0)=\alpha, \quad u(1)=\beta .
\end{gathered}
$$

Considering the grid of equidistant points

$$
x_{j}=j \cdot h, \quad j=0,1, \ldots, M+1, \quad h=\frac{1}{M+1} .
$$

On each node x_{j} we replace the second derivative in the differential equation with its approximation by central differences and get

$$
\frac{1}{h^{2}}\left(U_{i-1}-2 U_{i}+U_{i+1}\right)=f_{i}, \quad i=1, \ldots, M
$$

Using the boundary conditions $U_{0}=\alpha, U_{M+1}=\beta$ we get a system of M equations in the M unknowns U_{1}, \ldots, U_{M} that is

$$
A_{h} \vec{U}=\vec{F}
$$

where $\vec{U}=\left[U_{1}, \ldots, U_{M}\right]^{T}, \vec{F}=\left[f_{1}-\frac{\alpha}{h^{2}}, f_{2}, \ldots, f_{M-1}, f_{M}-\frac{\beta}{h^{2}}\right]^{T}$ and

$$
A_{h}:=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 & 1 & 0 & & \\
1 & -2 & 1 & \ddots & \\
0 & \ddots & \ddots & \ddots & 0 \\
& \ddots & \ddots & \ddots & 1 \\
& & 0 & 1 & -2
\end{array}\right]
$$

Task 1 Choose $f=\sin (\pi x), \alpha=\beta=0$ and $M=10$ construct the linear system $A_{h} \vec{U}=\vec{F}$ and solve it with the backslash command of Matlab (or in other ways if you are using another programming language) to find the numerical solution \vec{U}. Choose then another f leading to non trivial boundary values and repeat the exercise.

Task 2 In this task we want to see with a numerical experiment how the function-norm of the error decreased as a function of h. To this end compute by analytic methods the exact solution to your boundary value problem and use it to compute the the error vector
$\vec{e}_{h}:=\left[U_{1}-u_{1}, \ldots, U_{M}-u_{M}\right]^{T}$. Consider then the piecewise constant error function $e_{h}(x)=e_{j}$ if $x \in\left[x_{j}, x_{j+1}\right)$ and $j=1, \ldots, M$.

We know from Taylor theorem that

$$
\frac{1}{h^{2}}\left(u_{j+1}-2 u_{j}+u_{j-1}\right)=u^{\prime \prime}\left(x_{j}\right)+\frac{h^{2}}{12} u^{(4)}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right),
$$

and it can be proved that also $e_{h}(x)$ is going to zero in the 2-norm (for functions) as $\mathcal{O}\left(h^{2}\right)^{1}$.
We design our numerical experiment as follows: consider increasing values of M, for example $M=2^{k}, k=1,2, \ldots, 8$ and decreasing values of h accordingly. Solve the linear system from taks 1 for each value of M and compute the corresponding norm of the error, (use max-norm, 1-norm and 2-norm), store the obtained values. Plot in logarithmic scale the different values of h versus the corresponding values of the error norm (for the three different choices of norm), you should observe a straight line with slope 2 (testifying second order convergence).

Task 3 You should now modify your programme and implement Neumann boundary conditions (follow the description of chapter 3.1.2 in the note). There are several strategies: CASE 1 is a first order method, CASE 2 is a second order method using fictitious nodes, CASE 3 is a second order method leading to a matrix which is not tridiagonal but without using fictitious nodes. Implement each of these and verify the order of each technique numerically.

Task 4 Implement the method described in section 3.2 .1 of the note, where a general selfadjoint linear boundary value problem is considered and discretized so to preserve symmetry under discretization. Verify the order.

[^0]
[^0]: ${ }^{1}$ We will see the proof in one of the first lectures of the course. To do this we will use the fact that A_{h} is invertible with inverse bounded in 2-norm independently on h. This is called (order 2) convergence.

