Department of Mathematical Sciences

Contact during the exam:
Elena Celledoni, tlf. 73593541

Solution of the exam in TMA4212
 Monday 23rd May 2013
 Time: 9:00-13:00

Allowed aids: Approved simple pocket calculator. All written and handwritten material from the course. Learning outcome $\mathbf{L} 6$ and $\mathbf{L} 3$ have been tested through the project work ${ }^{1}$.

Problem 1 Learning outcome L2, L7

Consider the differential equation

$$
-\left(p(x) u^{\prime}\right)^{\prime}+r(x) u=f(x), \quad \text { for } x \in(a, b)
$$

with $p \in C^{1}[a, b], p(x) \geq c_{0}>0$ for all $x \in[a, b], r \in C^{0}[a, b], r(x) \geq 0$ for all $x \in[a, b]$ and $f \in L_{2}[a, b]$, subject to the boundary conditions

$$
-p(a) u^{\prime}(a)+\alpha u(a)=A, \quad p(b) u^{\prime}(b)+\beta u(b)=B,
$$

where α and β are positive real numbers and A and B are real numbers.
a) Show that the weak formulation of the boundary value problem is

$$
\text { find } \quad u \in H^{1}(a, b) \text {, such that } \mathcal{A}(u, v)=\ell(v) \text { for all } v \in H^{1}(a, b),
$$

where

$$
\mathcal{A}(u, v)=\int_{a}^{b}\left[p(x) u^{\prime}(x) v^{\prime}(x)+r(x) u(x) v(x)\right] \mathrm{d} x+\alpha u(a) v(a)+\beta u(b) v(b)
$$

and

$$
\ell(v)=\langle f, v\rangle+A v(a)+B v(b) .
$$

Solution

We multiply the boundary value problem on both sides by a test function $v \in H^{1}(a, b)$ and integrate between a and b to obtain

$$
\int_{a}^{b}\left[-\left(p(x) u^{\prime}\right)^{\prime} v+r(x) u v\right] d x=\int_{a}^{b} f v d x
$$

[^0]and integrating by parts we get
\[

$$
\begin{gathered}
\left.\left(-p u^{\prime}\right) v\right|_{a} ^{b}-\int_{a}^{b}\left[-\left(p(x) u^{\prime}\right) v^{\prime}-r(x) u v\right] d x=\int_{a}^{b} f v d x \\
\int_{a}^{b}\left[\left(p(x) u^{\prime}\right) v^{\prime}+r(x) u v\right] d x+\left[p(a) u^{\prime}(a) v(a)-p(b) u^{\prime}(b) v(b)\right]=\int_{a}^{b} f v d x
\end{gathered}
$$
\]

using the boundary conditions and rearranging the terms we get

$$
\int_{a}^{b}\left[\left(p(x) u^{\prime}\right) v^{\prime}+r(x) u v\right] d x+\alpha u(a) v(a)+\beta u(b) v(b)=\int_{a}^{b} f v d x+A v(a)+B v(b),
$$

leading to the proposed definition of $\mathcal{A}(u, v)$ (left hand side) and $\ell(v)$ (right hand side).
b) Construct a finite element approximation of the boundary value problem based on this weak formulation using piecewise linear finite element basis functions on the subdivision

$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$

on the interval $[a, b]$. Show that the finite element method gives rise to a set of $n+1$ simultaneous linear equations with $n+1$ unknowns $u_{i}=u^{h}\left(x_{i}\right), i=0,1, \ldots, n$. Show that this linear system has a unique solution. Comment on the structure of the matrix $M \in \mathbf{R}^{(n+1) \times(n+1)}$ of the linear system: Is M symmetric? Is M positive deinite? Is M tridiagonal? Explain your answers.

Solution

We consider $n+1$ piecewise linear basis functions $\phi_{0}, \ldots, \phi_{n}$ such that $\phi_{j}\left(x_{j}\right)=1, j=$ $0, \ldots, n$:

$$
\phi_{j}(x)=\left\{\begin{array}{cc}
\frac{x-x_{j-1}}{h}, & x \in\left[x_{j-1}, x_{j}\right), \\
\frac{x_{j+1}-x}{h}, & x \in\left[x_{j}, x_{j+1}\right], \\
0 & \text { otherwise, }
\end{array} \quad j=1, \ldots, n-1\right.
$$

and

$$
\phi_{0}=\left\{\begin{array}{cc}
\frac{x_{1}-x}{h}, & x \in\left[x_{0}, x_{1}\right), \\
0 & \text { otherwise },
\end{array} \quad \phi_{n}=\left\{\begin{array}{cc}
\frac{x-x_{n-1}}{h}, & x \in\left[x_{n-1}, x_{n}\right], \\
0 & \text { otherwise } .
\end{array}\right.\right.
$$

The finite element space is defined by

$$
S_{h}:=\left\{w_{h} \in H^{1} \mid w_{h}=\sum_{j=0}^{n} w_{j} \phi_{j}\right\},
$$

and the Galerkin method is

$$
\text { Find } u_{h} \in S_{h} \text { s.t. } \mathcal{A}\left(u_{h}, v_{h}\right)=\ell\left(v_{h}\right), \quad \forall v_{h} \in S_{h} .
$$

Therefore u_{h} can be written as $u_{h}=\sum_{j=0}^{n} u_{j} \phi_{j}$, and noticing that it is necessary and sufficient to impose

$$
\mathcal{A}\left(u_{h}, \phi_{i}\right)=\ell\left(\phi_{i}\right), \quad i=0, \ldots, n
$$

to determine u_{h}, using the bilinearity of \mathcal{A} and the linearity of ℓ we get

$$
\sum_{j=0}^{n} \mathcal{A}\left(\phi_{j}, \phi_{i}\right) u_{j}=\ell\left(\phi_{i}\right), \quad i=0, \ldots, n
$$

and letting

$$
M_{i, j}:=\mathcal{A}\left(\phi_{j}, \phi_{i}\right), \quad b_{i}:=\ell\left(\phi_{i}\right),
$$

we get the linear system

$$
M \mathbf{u}=\mathbf{b}
$$

with M the finite element matrix $(n+1) \times(n+1)$.
M is symmetric because

$$
M_{i, j}=\mathcal{A}\left(\phi_{j}, \phi_{i}\right)=\mathcal{A}\left(\phi_{i}, \phi_{j}\right)=M_{j, i} .
$$

M is positive definite, in fact consider the vector $\mathbf{v} \in \mathbf{R}^{n+1}$ and $\mathbf{v} \neq 0$ then

$$
\mathbf{v}^{T} M \mathbf{v}=\sum_{i} \sum_{j} v_{i} M_{i, j} v_{i}=\sum_{i} \sum_{j} v_{i} \mathcal{A}\left(\phi_{j}, \phi_{i}\right) v_{i}
$$

and using the bilinearity of the map we get

$$
\mathbf{v}^{T} M \mathbf{v}=\mathcal{A}(v, v)
$$

where $v=\sum_{j=0}^{n} v_{j} \phi_{j} \in H^{1}$. Further we have

$$
\mathbf{v}^{T} M \mathbf{v}=\mathcal{A}(v, v) \geq \int_{a}^{b} p v^{\prime} v^{\prime} d x>c_{0} \int_{a}^{b}\left(v^{\prime}\right)^{2} d x+\alpha v(a)^{2}+\beta v(b)^{2},
$$

and since $v \neq 0$ (almost everywhere) and $v \in H^{1}$, and $\int_{a}^{x} v^{\prime}(x) d x=v(x)-v(a)$ then v^{\prime} is not zero (almost everywhere) unless $v(x)=v(a) \neq 0$ for almost every x so either

$$
\int_{a}^{b}\left(v^{\prime}\right)^{2} d x>0
$$

or $v(x)=v(a)$ almost everywhere in $[a, b]$ and

$$
\alpha v(a)^{2}>0
$$

we can conclude that

$$
\mathbf{v}^{T} M \mathbf{v}>0
$$

and M is positive definite.
To understand if M is tridiagonal we must consider the entries

$$
M_{i, j}=\mathcal{A}\left(\phi_{j}, \phi_{i}\right), \quad|i-j|>1,
$$

the result follows after showing that ϕ_{i} or ϕ_{j} are not simultaneously different from zero in any of the subintervals $\left[x_{l}, x_{l+1}\right]$ for all l when $|i-j|>1$, and the same is true for their derivatives.

Problem 2 Learning outcome L5, L7

Consider Laplace equation in 2 D on a square domain $\Omega=[0,1] \times[0,1]$,

$$
u_{x x}+u_{y y}=0,
$$

with Dirichlet boundary conditions,

$$
u=g, \quad \text { on } \partial \Omega .
$$

Use the 5 -points formula to discretize the equation on the grid $h=\frac{1}{M+1}, x_{i}=i h, i=$ $1, \ldots, M$, and $y_{j}=j h, j=1, \ldots, M$ and obtain a linear system of algebraic equations

$$
A \mathbf{u}=\mathbf{b}
$$

where \mathbf{u} is a vector whose components are the numerical approximations of u on the grid of the discretization $u_{i, j} \approx u\left(x_{i}, y_{j}\right)$, ordered as follows:

$$
\mathbf{u}:=\left[u_{1,1}, u_{2,1}, \ldots, u_{M, 1}, u_{1,2}, \ldots, u_{M, 2}, \ldots, u_{1, M}, \ldots, u_{M, M}\right]^{T} .
$$

Consider the use of the conjugate gradient method to solve this linear system.
Recall the following formula for the eigenvalues of the discrete Laplacian:

$$
\mu_{j, l}=\frac{2}{h^{2}}(\cos (\pi j h)-1)+\frac{2}{h^{2}}(\cos (\pi l h)-1), \quad j=1, \ldots, M, l=1, \ldots, M
$$

a) Write out A explicitly. Show that $-A$ is a positive definite matrix whose eigenvalues lie in an interval $[a, b]$ with $\sqrt{\frac{a}{b}}$ approximately $\frac{\pi h}{2}$.

Solution

A is a $M^{2} \times M^{2}$ with M blocks $B M \times M$ along the diagonal each of which is of the form

$$
B=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-4 & 1 & & & \\
1 & -4 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & 1 & -4
\end{array}\right]
$$

along the sub and super diagonal there are $M-1, M \times M$ identity blocks scaled with $\frac{1}{h^{2}}$.
The eigenvalues of $-A$ are $-\mu_{j, l}$ one finds

$$
\begin{gathered}
\min _{j, l}\left(-\mu_{j, l}\right)=\frac{4}{h^{2}}(1-\cos (\pi h))=a \approx \frac{4}{h^{2}} \frac{\pi^{2} h^{2}}{2}=2 \pi^{2}, \\
\min _{j, l}\left(-\mu_{j, l}\right)=\max _{j} \frac{4}{h^{2}}(1-\cos (\pi j h))=\max _{j} \frac{8}{h^{2}} \sin (\pi / 2 j h)^{2}=\frac{8}{h^{2}} \sin (\pi / 2 M h)^{2}=b \approx \frac{8}{h^{2}},
\end{gathered}
$$

and

$$
\sqrt{\frac{a}{b}} \approx \frac{\pi h}{2} .
$$

b) Assume you are given an arbitrary initial guess x_{0}. Use the Theorem for the convergence of the conjugate gradient method to estimate the number of iterations K necessary to obtain a relative error below the tolerance ε, that is

$$
\frac{\left\|e_{K}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq \varepsilon
$$

Recall that for a vector \mathbf{v},

$$
\|\mathbf{v}\|_{A}:=\sqrt{\mathbf{v}^{T} A \mathbf{v}}
$$

Find an estimate for K assuming $M+1=100$ and $\varepsilon=10^{-7}$.

Solution

We use the theorem about the convergence of the conjugate gradient method in chapter 14.5 in the book by Strikwerda and we have

$$
\frac{\left\|e_{K}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq 2 \frac{(\sqrt{b}-\sqrt{a})^{K}}{(\sqrt{b}+\sqrt{a})^{K}}=2 \frac{\left(1-\sqrt{\frac{a}{b}}\right)^{K}}{\left(1+\sqrt{\frac{a}{b}}\right)^{K}}=2 \frac{\left(1-\frac{\pi h}{2}\right)^{K}}{\left(1+\frac{\pi h}{2}\right)^{K}}
$$

and to find K we impose the condition

$$
2 \frac{\left(1-\frac{\pi h}{2}\right)^{K}}{\left(1+\frac{\pi h}{2}\right)^{K}}=\varepsilon
$$

Taking logarithms we get

$$
K=\frac{\log \frac{\varepsilon}{2}}{\left(\log \left(1-\frac{\pi h}{2}\right)-\log \left(1+\frac{\pi h}{2}\right)\right)}
$$

Inserting the prescribed values for ε and $M+1$ we obtain the estimate

$$
K=536
$$

Problem 3 Learning outcome L1, L4, L7

Consider the linear PDE

$$
u_{t}+u_{x x x}=0, \quad u(-\infty, t)=u(\infty, t)=0, \quad x \in \mathbf{R}, \quad t \geq 0
$$

Consider the interval [$-L, L$] with $L>0$ sufficiently large, consider the grid $x_{m}=-L+h m$, $h=2 L / M, m=0, \ldots, M$. Discretise with central finite differences in space and the Backward Euler method in time (backward differences in time), let $u\left(x_{0}, t\right)=u\left(x_{M}, t\right)=0$.

Use the following central differences approximation of the third derivative

$$
\left.u_{x x x}\right|_{\left(x_{m}, t\right)}=\frac{u\left(x_{m+3}, t\right)-3 u\left(x_{m+1}, t\right)+3 u\left(x_{m-1}, t\right)-u\left(x_{m-3}, t\right)}{8 h^{3}}+\mathcal{O}\left(h^{2}\right) .
$$

Show that the obtained method is Von Neumann stable.

Solution

Using central differences in space and backward Euler in time we obtain

$$
U_{m}^{n+1}=U_{m}^{n}+\frac{k}{8 h^{3}}\left(U_{m-3}^{n+1}-3 U_{m-1}^{n+1}+3 U_{m+1}^{n+1}-U_{m+3}^{n+1}\right)
$$

leading to

$$
U_{m}^{n+1}+\frac{k}{8 h^{3}}\left(-U_{m-3}^{n+1}+3 U_{m-1}^{n+1}-3 U_{m+1}^{n+1}+U_{m+3}^{n+1}\right)=U_{m}^{n}
$$

by assuming $U_{m}^{n}=\xi^{n} e^{i \beta x_{m}}$, and $i=\sqrt{-1}$, and substituting in the method we obtain

$$
\xi=\frac{1}{1+i \alpha}
$$

with

$$
\alpha=\frac{k}{8 h^{3}}(\sin (3 \beta h)-3 \sin (\beta h)) .
$$

Finally we obtain

$$
\xi^{*} \xi=|\xi|^{2}=\frac{1}{1+i \alpha} \frac{1}{1-i \alpha}=\frac{1}{1+\alpha^{2}} \leq 1,
$$

implying Von Neumann stability.

Problem 4 Learning outcome L1, L4, L7

Let r and α be positive real numbers. Show that if $\left[w_{1}, \ldots, w_{M}\right]^{T}$ satisfies

$$
-r w_{m-1}+(1+2 r+\alpha) w_{m}-r w_{m+1}=v_{m}, \quad 1 \leq m \leq M-1, \quad w_{0}=w_{M}=0,
$$

then

$$
\max _{0 \leq m \leq M}\left|w_{m}\right| \leq \max _{1 \leq m \leq M-1}\left|v_{m}\right| .
$$

Use this to show that Backward Euler converges for arbitrary $r=k / h^{2}$ on the problem

$$
u_{t}=u_{x x}-u, \quad u(x, 0)=f(x), \quad u(0, t)=g_{0}(t), \quad u(1, t)=g_{1}(t) .
$$

Hint: You will have to take $w_{m}=e_{m}^{n+1}$ where $e_{m}^{n}:=U_{m}^{n}-u\left(x_{m}, t_{m}\right)$ is the error, and U_{m}^{n} is the numerical approximation given by the Backward Euler method.

Solution

We have

$$
(1+2 r+\alpha) w_{m}=r w_{m-1}+r w_{m+1}+v_{m}
$$

and then

$$
(1+2 r+\alpha) \max _{1 \leq m \leq M}\left|w_{m}\right| \leq 2 r \max _{1 \leq m \leq M}\left|w_{m}\right|+\max _{1 \leq m \leq M-1}\left|v_{m}\right|,
$$

and then

$$
\max _{1 \leq m \leq M}\left|w_{m}\right| \leq \max _{1 \leq m \leq M-1}\left|v_{m}\right| .
$$

Considering Backward Euler we have

$$
-r U_{m-1}^{n+1}+(1+2 r+k) U_{m}^{n+1}-r U_{m+1}^{n+1}=U_{m}^{n}
$$

and the error $e_{m}^{n}:=U_{m}^{n}-u\left(x_{m}, t_{n}\right)$ satisfies the equation

$$
-r e_{m-1}^{n+1}+(1+2 r+k) e_{m}^{n+1}-r e_{m+1}^{n+1}=e_{m}^{n}-k \tau_{m}^{n}
$$

where $\tau_{m}^{n}=\left(\mathcal{O}(k)+\mathcal{O}\left(h^{2}\right)\right)$. Using the property proven at the beginning of the exercise, with $w_{m}=e_{m}^{n+1}$ and $v_{m}=e_{m}^{n}-k \tau_{m}^{n}$

$$
\max _{1 \leq m \leq M}\left|e_{m}^{n+1}\right| \leq \max _{1 \leq m \leq M}\left|e_{m}^{n}\right|+k \max _{m}\left|\tau_{m}^{n}\right| \leq k \sum_{j=1}^{n} \max _{m}\left|\tau_{m}^{j}\right| \leq k n \max _{m, n}\left|\tau_{m}^{n}\right| \leq T \max _{m, n}\left|\tau_{m}^{n}\right|
$$

and since the method is consistent (in fact for Backward Euler $\max _{m, n}\left|\tau_{m}^{n}\right|=\mathcal{O}(k)+\mathcal{O}\left(h^{2}\right)$) so we get

$$
\max _{m}\left|e_{m}^{n}\right| \leq T\left(\mathcal{O}(k)+\mathcal{O}\left(h^{2}\right)\right), \quad \forall m \text { and } n
$$

the last inequality implies convergence.

[^0]: ${ }^{1}$ The learning outcome is published on the course webpage and on the official description of the course.

