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Problem 1

a) The grid has h = 0.1 and k = 0.002. We use central differences in the space
direction and forward Euler in time. The method is

Un+1
m = Un

m + k

h2 δ
2
xU

n
m.

The Dirichlet conditions u(0, t) = 1 gives Un
0 = 1 for all n. The initial

condition u(x, 0) = 1 gives U0
m = 1 for m = 0, . . . ,M andM = 1

M
= 10. The

Robin boundary conditions (4) are discretized using central differences:

Un
M+1 − Un

M−1
2h = Un

M , Un
M+1 = Un

M−1 + 0.2Un
M

From the discretization adopted above for nodes inside the domain we get

Un+1
M = 0.2Un

M−1 + 0.6Un
M + 0.2Un

M+1,

and inserting the obtained expression for Un
M+1 we get

Un+1
M = 0.2Un

M−1 + 0.6Un
M + 0.2Un

M−1 + 0.04Un
M

Un+1
M = 0.4Un

M−1 + 0.64Un
M ,

at the right hand side. So in summary

Un+1
1 = 0.2 + 0.6Un

1 + 0.2Un
2 m = 1

Un+1
m = 0.2Un

m−1 + 0.6Un
m + 0.2Un

m+1 m = 2, . . . ,M − 1
Un+1

M = 0.4Un
M−1 + 0.64Un

M m = M.

b) We have U0
M−2 = U0

M−1 = U0
M = 1. This gives

U1
M−1 = 0.2U0

M−2 + 0.6U0
M−1 + 0.2U0

M = 1,

U1
M = 0.4U0

M−1 + 0.64U0
M = 1.04

and
U2

M = 0.4U1
M−1 + 0.64U1

M = 0.4 · 1 + 0.64 · 1.04 = 1.0656.

So the numerical solution in (1, 0.002) is 1.04, and in (1, 0.004) is 1.0656.
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c) The boundary condition (4) is in this case discretized with
Un

M − Un
M−1

h
= Un

M , Un
M = Un

M−1 + 0.1Un
M

and
Un

M = 10
9 U

n
M−1.

So in summary

Un+1
1 = 0.2 + 0.6Un

1 + 0.2Un
2 m = 1

Un+1
m = 0.2Un

m−1 + 0.6Un
m + 0.2Un

m+1 m = 2, . . . ,M − 1

Un+1
M = 10

9 Un+1
M−1 m = M.

d) With the last method the numerical solution in (1, 0.002) is 10
9 , and in

(1, 0.004) is 92
81 .

e) Here one should discuss the conditional stability for Euler’s method.

Problem 2

a) Considering U = (U1, . . . , U8) and using the boundary conditions and the
method proposed in the exercise one gets a linear system

AU = F

with matrix

A =



4 −1 0 −1 0 0 0 0
−1 4 −1 0 −1 0 0 0
0 −1 4 0 0 −1 0 0
−2 0 0 4 −1 0 0 0
0 −2 0 0 4 −2 0 0
0 0 −1 0 −1 4 0 −1
0 0 0 0 −1 0 4 −2
0 0 0 0 0 −1 −1 4


b) By using the divergence theorem and the assumed Neumann boundary con-

ditions (over the whole boundary) we get that one cannot have a solution
unless f = 0. Assuming f = 0 one gets that all constants are solutions to the
equation, i.e the solution is not unique. The problem either has no solution
or infinitely many solutions. So the problem is not well posed.
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Problem 3 Recall the definition of domain of dependence of a numerical
method (see the course note). The equation for the characteristics is

dx(t)
dt

= a,

which gives that the characteristic through (x∗, t∗) is

x− x∗ = a(t− t∗).

The CFL condition is a necessary condition for convergence and states that the
characteristics should never leave the domain of dependence of the numerical
method. In other words the CFL condition guarantees the availability of neces-
sary data upon which the solution of the PDE problem at the point (x∗, t∗) builds.
Without this information there is no hope to construct a convergent numerical
approximation in (x∗, t∗).

If α−1 = 0 α0 6= 0 α1 6= 0 then the domain of dependence is intersecting the
x-axis in the interval [x∗, x∗ + t∗

p
]. We assume here that t∗ > 0. So, since the

characteristics for this problem are straight lines the CFL is satisfied if

x∗ ≤ x∗ − at∗ ≤ x∗ + t∗

p

and
0 ≤ −at∗ ≤ t∗

p
,

−1
p
≤ a ≤ 0.

So we must require
a ≤ 0, and |a|p ≤ 1.

But if α−1 6= 0 α0 6= 0 α1 = 0 then the domain of dependence is intersecting the
x-axis in the interval [x∗ − t∗

p
, x∗]. And the CFL is satisfied if

x∗ − t∗

p
≤ x∗ − at∗ ≤ x∗

and
0 ≤ a ≤ 1

p
.

So we must require
a ≥ 0, and |a|p ≤ 1.
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Problem 4

a) Multiplying by a test function v ∈ X where

X = {w |w ∈ H1(Ω) andw = 0 on ∂DΩ}.

Integrating by parts we obtain the weak formulation∫
Ω
∇u · ∇v dA =

∫
Ω
fv dA,

and we note that the boundary terms vanish: on ∂DΩ because v is zero, and
on ∂NΩ because ∂nu is zero. Then

a(u, v) :=
∫

Ω
∇u · ∇v dA

and
l(v) :=

∫
Ω
fv dA,

and we can rewrite the above as

a(u, v) = l(v).

b) Let
XH = {w ∈ X|w(x, y) = ax+ by + c},

and so w is zero on the nodes 2, 3, 4, 5, 6, 7, 8 (see figure) then

XH = span{φ1},

where φ1 is the pyramid function at the node 1. The Galerkin method is:
Find U ∈ XH such that

a(U, V ) = l(V ), ∀V ∈ XH .

The numerical solution is therefore

U = U1φ1

and we rewrite the Galerkin problem as
Find U1 ∈ R such that

U1a(φ1, φ1) = l(φ1).



TMA4212 Num. diff. June, 2012 Page 5 of 5

c) We get
a(φ1, φ1) =

∫
Ω
∇φ1 · ∇φ1 dA =

∫
K1∪K3∪K6

2 dA = 6A.

Where Ki is the element number i in the figure (triangle i) and A = 1
2 is the

area if one triangle. So
a(φ1, φ1) = 3.

For the right hand side we get

l(φ1) =
∫

Ω
fφ1 dA = f3

∫
K1
φ1 dA,

and we have used the fact that f is constant.
We get ∫

K1
φ1 dA =

∫ 1

0

∫ (1−x)

0
(1− x− y) dx dy = 1

6 .

So l(φ1) = 1
2f.

d) We can now solve the the Galerkin problem
Find U1 ∈ R such that

U1 a(φ1, φ1) = l(φ1).

We get
U1 = l(φ1)

a(φ1, φ1) = 1
6f,

and the finite element numerical solution is

uh = 1
6fφ1.


