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The learning outcome has been published on the course webpage since the start of
the semester and on the official description of the course. We have identified seven
goals L1 to L7 that should be achieved, see appendix. Learning outcome L6, L3
and to some extent L4 and L5 have been tested through the project work. We
here test further the achievement of L4 and L5 as well as of the remaining goals.

Problem 1 (L2, L5, L7) Consider the two-point boundary value problem

−u′′ + u = f(x), x ∈ (0, 1), u(0) = 0, u(1) = 0,

with f ∈ C2[0, 1].

a) Find the weak formulation of this problem. State the Galerkin method for
this problem on a uniform subdivision

0 = x0 < x1 < · · · < xn = 1, n ≥ 2,

with h = xi − xi−1. Use piecewise linear finite element basis functions.

Solution
The weak form for this problem is:

Find u ∈ H1
0 (0, 1) such that

A(u, v) = `(v), ∀v ∈ H1
0 (0, 1),

where
A(u, v) :=

∫ 1

0
(u′v′ + uv) dx, `(v) :=

∫ 1

0
fv dx.

Taken the approximation space

Xh := {wh ∈ H1
0 (0, 1) |wh =

n−1∑
i=1

wi ϕi, wi ∈ R, i = 1, . . . , n− 1}

with ϕi, i = 1, . . . , n− 1, are the hat functions (piecewise linear functions on (0, 1)
and such that ϕi(xj) = δj,i), the Galerkin method is

Find uh ∈ Xh such that

A(uh, vh) = `(vh), ∀vh ∈ Xh.
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b) Write down explicitly the linear system of equations that needs to be solved
to compute the numerical solution to the problem. Show that the Galerkin
method as only one solution.

Solution
We observe that A(u, v) = A(v, u) and A is linear in both arguments (because of
the linearity of integrals. For this reason assuming

uh :=
n−1∑
i=1

ui ϕi,

we have

A(uh, vh) = `(vh), ∀vh ∈ Xh ⇔ A(uh, ϕj) = `(ϕj), j = 1, . . . , n− 1.

From which we get
n−1∑
j=1

ujA(ϕj, ϕi) = `(ϕi), i = 1, . . . , n− 1.

Collecting the coefficients u1, . . . , un−1 into a vector U := [u1, . . . , un−1]T and de-
noting by Mi,j := A(ϕi, ϕj) the entries of a (n − 1) × (n − 1) matrix, we get the
linear system

MU = f,

f := [`(ϕ1), . . . , `(ϕn−1)]T . More precisely we get

A(ϕi, ϕi+1) =
∫ xi+1

xi

(ϕ′i ϕ′i+1 + ϕi ϕi+1) dx = −1
h

+ h

6 , (1)

A(ϕi, ϕi) =
∫ xi+1

xi−1
(ϕ′i ϕ′i + ϕi ϕi) dx = 2

h
+ 2h

3 , (2)

the symmetry of A implies A(ϕi, ϕi+1) = A(ϕi+1, ϕi). Since the hat functions and
their derivatives are compactly supported we get A(ϕi, ϕj) = A(ϕj, ϕi) = 0 for
j ≥ i+ 2, meaning that the matrix is tridiagonal.

Because of the symmetry of A, M is symmetric. What is important here is that
M is invertible. For this it is sufficient to prove that M is positive definite:

vTMv =
∑
i,j

viA(ϕj, ϕi)vj = A(vh, vh) =
∫ 1

0
((v′h)2 + (vh)2) dx = ‖vh‖2

H1
0
,

and ‖ · ‖H1
0
is an Hilbert space norm, so ‖vh‖2

H1
0

= 0 if and only if vh is zero (i.e.
v1, . . . , vn−1 are all zero). As a consequence M is positive definite, therefore all
its eigenvalues are positive and its determinant is different form zero. The linear
system (i.e. the Galerkin method) has a unique solution.
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c) Analyse the properties and sparsity of the matrix of the linear system one
has to solve. Propose suitable numerical methods for the solution of this
linear system. Justify your answers.

Solution
As we have seen M is symmetric and positive definite. By the properties of the
hat functions we have also seen that the matrix is tridiagonal and by (1) and
(2) it is also diagonally dominant. Therefore we can use a Thomas algorithm for
this system (we do not need pivoting because the matrix is diagonally dominant).
Alternatively we can use a Conjugate Gradient method to solve the linear system,
for example using the diagonalD ofM as a preconditioner. The CG method is well
defined as the matrix is symmetric and positive definite. Using such preconditioner
would amount at applying the CG mehtod with the inner product

〈·, ·〉D = 〈·, D·〉

with 〈·, ·〉 denoting the Euclidean inner product.

d) Assume n = 3, f = 1, find uh.

Solution
We obtain a 2× 2 linear system[

6 + 2
9 −3 + 1

18
−3 + 1

18 6 + 2
9

] [
u1
u2

]
=
[

1
3
1
3

]

We get u1 = u2 = 0.1017 and uh = 0.1017(ϕ1 + ϕ2).

Problem 2 (L1, L4, L7)

To obtain a numerical solution of Poisson’s equation

uxx + uyy + f(x, y) = 0

on the trianlge bounded by the lines y = 0, y = 2+2x, and y = 2−2x with Dirichlet
conditions given at all points on the boundary, use a grid of size ∆x = ∆y = 1

N
.

Use variable step-size near the boundary.

a) Find the leading error terms in the truncation error of the standard five point
difference scheme at internal points, and at points adjacent to the boundary.
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Solution
Figure 1 is a picture of the domain and grid with h = 1

4 . On the odd horizontal
gridlines (j odd) we need to use a step of size h/2 instead of h to get hold of the
boundary value. On the even horizontal gridlines (j even) the nodes of the grid
coincide with boundary nodes. The vertical lines intersect the boundary always on
grid nodes. So for all j odd, the first and last node (from left to right) on row j of
the grid have an adjacent node on the boundary (respectively to the left and right
side) at only h/2 distance instead of h. For these nodes we need to use variable
step size in the x-direction. The general discretization of the Laplacian for this
problem becomes(
Ui+1,j − Ui,j

∆xi+1
− Ui,j − Ui−1,j

∆xi

)
2

∆xi+1 + ∆xi
+
(
Ui,j+1 − 2Ui,j + Ui,j−1

h2

)
= −f(xi, yj),

where
∆xi := xi − xi−1,

∆xi = h/2 for nodes near the boundary and ∆xi = h otherwise.

For all nodes with j even and nodes with j odd but not adjacent to the bound-
ary the local truncation error is the same as for the usual five point formula for
equidistant nodes (see note of the course chapter 6) and the leading error terms
depend on the fourth partial derivatives of u with respect to x and y:

τi,j = h2

12(uxxxx(xi, yj) + uyyyy(xi, yj)) +O(h4).

For nodes with j odd adjacent to the boundary we can distingush between left
and right boundary and get different formulae but similar results. We consider
therefore here only the case of a node close to the left boundary, the discretization
becomes(

Ui+1,j − Ui,j
h

− Ui,j − Ui−1,j

h/2

)
4

3h +
(
Ui,j+1 − 2Ui,j + Ui,j−1

h2

)
= −f(xi, yj),

replacing Ui,j with ui,j = u(xi, yj) and using Taylor expansion in the first term at
the left hand side we get(
ux(xi, yj) + h

2uxx(xi, yj) + h2

3! uxxx(xi, yj)− ux(xi, yj) + h

4uxx(xi, yj)−
h2

8 3!uxxx(xi, yj) +O(h3)
)

4
3h

giving
uxx(xi, yj) + 7h

36uxxx(xi, yj) +O(h2)
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so

τi,j = uxx(xi, yj)+
7h
36uxxx(xi, yj)+O(h2)+uyy(xi, yj)+

h2

12uyyyy(xi, yj)+O(h4)+f(xi, yj)

and finally using the Poisson equation in the point (xi, yj) one gets

τi,j = 7h
36uxxx(xi, yj) +O(h2)

a first order error with leading error constant depending on the third derivative in
x.

Figure 1: Domain and grid.
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b) Show how to choose the constant C so that a maximum principle may be
applied to the mesh function

u(xi, yj)− Ui,j + Cy2
j .

Deduce that the error in the solution is at least first order in the mesh size.

Solution

C = max
P
{
∣∣∣∂4
xu
∣∣∣
P

∣∣∣ , ∣∣∣∂4
yu
∣∣∣
P

∣∣∣ , ∣∣∣∂3
xu
∣∣∣
P

∣∣∣}
where the maximum is taken over all grid points P . Then the obtained grid
function

Vi,j := u(xi, yj)− Ui,j + Cy2
j
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can be used to prove convergence of order 1 in h by the discrete maximum principle
(see last section of chapter 6 in the course note).

c) The necessity for a special scheme near the boundary could be avoided by
using a rectangular mesh with ∆y = 2∆x. Find the linear system you need
to solve to implement such method with ∆x = 0.5 and ∆y = 1.

Solution
In this case we have just one unknown corresponding to the point with coordinates
P = (0, 1), which is the only internal node of the grid. The linear system collapses
to a single equation:

(Uw − 2Up + Ue)4 + (Un − 2Up + Us) = −Fp,

leading to the following expression for Up by means of known boundary functions
and F ,

Up = Fp + 4Uw + 4Ue + Un + Us
10 .

Problem 3 (L1, L4 L7)

a) Consider the difference scheme

Un+1
i = Un

i + k

h2

(
Un
i−1 − 2Un

i + Un
i+1

)
− k Un

i ,

for the numerical approximation of ut = uxx−u with homogeneous Dirichlet
boundary conditions and with initial function u(x, 0) = f(x), on the space
interval [0, 1], and with t ≥ 0.
The local truncation error for this method is of second order in h and first
order in k.
Prove convergence of the scheme under the condition k

h2 ≤ 1
2 .

Solution
For the matrix-stability analysis for this problem we write the method in the form

Un+1 = Un + k

h2AU
n − kUn,

where A is the tridiagonal M ×M matrix with −2 on the main diagonal and 1 on
first the super- and sub-diagonal. The method is then

Un+1 = CUn,
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with
C = (I − kI + k

h2A) = V (I − kI + k

h2 Λ)V T .

C is a symmetric matrix and therefore a necessary and sufficient condition for
stability is that there exist ν independent on h and k such that

ρ(C) ≤ 1 + νk,

where ρ(C) denotes the spectral radius of C. The eigenvalues of C are

1− k + k

h2λm, λm = −4 sin2 φm, φm = mπ

2(M + 1) , m = 1, . . . ,M.

And
ρ(C) = max

m
|1− k + k

h2λm|.

Since λm < 0
1− k + k

h2λm ≤ 1

for all m. Let r = k
h2 . To obtain

ρ(C) ≤ 1 + k,

we require
−1− k ≤ 1− k + rλm = 1− k − 4r sin2 mπ

2(M + 1) .

This condition is the same as

2 ≥ 4r sin2 mπ

2(M + 1) = 4r sin2(π2 − h
π

2 ) = 4r cos2(hπ2 ).

Leading to the condition

r ≤ 1
2 cos2(π2h) = 1

2 + 1
8π

2h2 +O(h4),

so a more restrictive and sufficient stability condition is

r ≤ 1
2 .

By the Lax equivalence theorem a consistent difference scheme applied to a linear
PDE is convergent if and only if it is stable. Since we have proved stability and
consistency is assumed in the exercise text, the method must be convergent.
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b) Perform a Von-Neumann stability analysis for this scheme.

Solution
Inserting as usual Un

m = ξneiβxm we get

ξ = (1− k) + r(e−iβh − 2 + eiβh)

and
ξ = (1− k)− 4r sin2(βh2 ).

The condition
|ξ| ≤ 1 + νk,

with ν independent on h and k should be satisfied to have Von-Neumann stability.
We try with ν = 1. Obviously

1− k − 4r sin2(βh2 ) ≤ 1 + k,

while
−1− k ≤ 1− k − 4r sin2(βh2 )

gives the stability condition
r ≤ 1

2 sin2(βh2 )
.

Which is analogous to the matrix-stability condition of question a).

Problem 4 (L1, L4, L7)

The characteristics of the equation

ut + aux = 0, 0 ≤ x ≤ 1

when a = a(t) = 2t are
x(t) = x0 + t2.

Consider the following method applied to the equation is

Un+1
i − Un

i

k
+ 2nk U

n
i − Un

i−1
h

= 0.

Use the characteristics to find the CFL condition for this scheme.
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Solution We observe that the characteristic curves intersect the x-axis in x0 =
x(t)− t2. In particular the characteristic through a point (x∗, t∗) in the (x, t)-plane
satisfies

x∗ = x(t∗), x0 = x∗ − (t∗)2, x(t) = x∗ − (t∗)2 + t2.

Writing the characteristic as a function of x, x∗ and t∗ we get

t =
√
x− x∗ + (t∗)2,

and are monotone increasing functions of x. Differentiating t(x) with respect to x
we get

dt

dx
= 1

2
1√

x− x∗ + (t∗)2
,

a monotone decreasing function of x. So the tangent in x∗ to this function remains
above the function for all x ≤ x∗. In x = x∗ we have

1
2

1√
x∗ − x∗ + (t∗)2

= 1
2 t∗ .

We rewrite the method in the form

Un+1
i = Un

i −
2nk2

h
(Un

i − Un
i−1)

and find that for a point (x∗, t∗) in the (x, t)-plane, its domain of dependence is

(x∗ − t∗/p, x∗), p = k

h
.

So on the right side the domain of dependence is delimited by the vertical line
x = x∗, while on the left side by the line through (x∗, t∗) with slope p = k

h
. In

order for the characteristics to be contained in the domain of dependence of the
method, it is sufficient that the slope of this line is smaller than or equal to the
slope of the characteristic in x∗, i.e. the CFL condition is

p ≤ 1
2 t∗ .
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Learning outcome:

Knowledge L1 Understanding of error analysis of difference methods:
consistency, stability, convergence of difference schemes.

L2 Understanding of the basics of the finite element method.
Skills L3 Ability to choose and implement a suitable discretization scheme

given a particular PDE, and to design numerical tests in order to verify
the correctness of the code and the order of the method.

L4 Ability to analyze the chosen discretization scheme, at least for simple
PDE-test problems.

L5 Ability to attack the numerical linear algebra challenges arising in the
numerical solution of PDEs.

General L6 Ability to present in oral and written form the numerical and analytical
competence results obtained in the project work.

L7 Ability to apply acquired mathematical knowledge in linear algebra and
calculus to achieve the other goals of the course.


