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Contact during the exam:
Elena Celledoni, tlf. 735 93541 mobile 48238584

EXAM in TMA4212

Monday 12th August 2013
Time: 9:00–13:00

Allowed aids: Approved simple pocket calculator. All written and handwritten material
from the course.

Learning outcome L6 and L3 have been tested through the project work1.

Problem 1 Learning outcome L2, L7
Given that α is a nonnegative real number, consider the differential equation

−u′′ + u = f(x), for x ∈ (0, 1),

subject to the boundary conditions

u(0) = 0, αu(1) + u′(1) = 0.

a) State the weak formulation of the problem.

b) Using continuous piecewise linear basis functions on a uniform subdivision of [0, 1]
into elements of size h = 1

n
, n ≥ 2, write down the finite element approximation

to this problem and show that this has a unique solution. Expand uh in terms
of the standard piecewise linear finite element basis functions (hat functions) ϕi,
i = 1, 2, . . . , n, by writing

uh(x) =
n∑
i=1

Uiϕi(x)

to obtain a system of linear equations for the vector of unknowns (U1, . . . , Un)T .
1The learning outcome is published on the course webpage and on the official description of the course.



TMA4212 Numerical solution of PDEs with difference methods Page 2 of 9

c) Suppose α = 0, f(x) ≡ 1 and h = 1
3
. Solve the resulting system of linear equations

and compute the corresponding numerical solution.

d) Compare the numerical solution with the exact solution u by finding the values of
the error function uh − u in the nodes of the finite element discretization. You can
find u assuming u(x) = c1e

−x + c2e
x + 1, and determining c1 and c2 imposing the

boundary conditions.

Solution (a)

We multiply the equation by a test function v ∈ H1(0, 1) such that v(0) = 0, and integrate
between 0 and 1:

−
∫ 1

0

u′′v dx+

∫ 1

0

uv dx =

∫ 1

0

fv dx.

Integrating by parts and using the boundary conditions (using v(0) = 0 and u(0) = 0,
αu(1) + u′(1) = 0) we obtain

αu(1)v(1) +

∫ 1

0

(u′v′ + uv) dx = 〈f, v〉,

where 〈·, ·〉 denotes the L2(0, 1) inner product. We then define the bilinear map

A(u, v) := αu(1)v(1) +

∫ 1

0

(u′v′ + uv) dx,

which is symmetric and positive definite2. So the weak formulation is:

Find u ∈ H1(0, 1) satisfying u(0) = 0 and αu(1) + u′(1) = 0, such that

A(u, v) = 〈f, v〉, v ∈ H1(0, 1) v(0) = 0.

Solution (b)

We consider the basis functions n piecewise linear basis functions ϕ1, . . . , ϕn such that
ϕj(xj) = 1, j = 1, . . . , n:

ϕj(x) =


x−xj−1

h
, x ∈ [xj−1, xj),

xj+1−x
h

, x ∈ [xj, xj+1],
0 otherwise,

j = 1, . . . , n− 1

2

• A(u, v) = A(v, u)

• A(v, v) = v(1)2 +
∫ 1

0
(v′)2 + v2 dx > 0 if v is not equal to zero almost everywhere, because v is

absolutely continuous.
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and
ϕn =

{
x−xn−1

h
, x ∈ [xn−1, xn],

0 otherwise.

The finite element space is defined by

Sh := {wh ∈ H1 |wh =
n∑
j=1

wjϕj, },

and the Galerkin method is

Finduh ∈ Sh s.t. A(uh, vh) = 〈f, vh〉, ∀vh ∈ Sh.

This is equivalent to

Finduh ∈ Sh s.t. A(uh, ϕi) = 〈f, ϕi〉, i = 1, . . . , n.

Expanding uh by means of the basis functions

uh(x) =
n∑
j=1

Ujϕj(x)

and substituting in the Galerkin method we get

Finduh =
n∑
j=1

Ujϕj(x) s.t.
n∑
j=1

Mi,jUj = 〈f, ϕi〉, j = 1, . . . , n,

where the entries
Mi,j := A(ϕj, ϕi), i, j = 1, . . . , n

form the matrix M of a linear system with unknowns x := (U1, . . . , Un)T :

Mx = b,

where b := (〈f, ϕ1〉, . . . , 〈f, ϕn〉)T . The matrix M is symmetric (because of the symmetry
of the bilinear map A) and positive definite. Infact for any v ∈ Rn, v 6= 0,

vTMv = A
( n∑
i=1

viϕi,
n∑
j=1

vjϕj
)

and since v(x) =
∑n

j=1 vjϕj ∈ H1 is non-zero almost everywhere then

vTMv = A(v, v) > 0,
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Figure 1: Basis functions

and M is positive definite (implying that it is also non-singular). This means that the
system has a unique solution (U1, . . . , Un)T and therefore the solution of the Galerkin
method

uh(x) =
n∑
j=1

Ujϕj(x)

exists and is unique.

Solution (c)

In Figure 1 the three basis functions ϕ1 (red), ϕ2 (green) and ϕ3 (black) are depicted and

uh =
3∑
j=1

Ujϕj.

The linear system consists of a 3 × 3 matrix with entries Mi,j := A(ϕj, ϕi). To compute
these entries we will use

ϕ′j(x) =


1
h
, x ∈ [xj−1, xj),

− 1
h
, x ∈ [xj, xj+1],

0 otherwise,

j = 1, 2

and
ϕ′3 =

{
1
h
, x ∈ [x2, x3],

0 otherwise.
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We assume f ≡ 1, α = 0. We get

A(ϕ1, ϕ1) =

∫ 1

0

(ϕ′)2 dx+

∫ 1

0

(ϕ)2 dx =
2

h
+

2

3
h =

56

9
.

A(ϕ2, ϕ2) = A(ϕ1, ϕ1) and

A(ϕ3, ϕ3) =
1

h
+ h

1

3
.

Similarly

A(ϕ1, ϕ2) =
1

6
h− 1

h
= A(ϕ2, ϕ3).

So

M :=


2
3
h+ 2

h
1
6
h− 1

h
0

1
6
h− 1

h
2
3
h+ 2

h
1
6
h− 1

h

0 1
6
h− 1

h
1
3
h+ 1

h

 , b := h

 1
1
1
2


Solving the linear system we get U1 = 0.2039, U2 = 0.3177, U3 = 0.3543. Figure 2 reports
a comparison of the exact (red curve) and the numerical solution obtained with the finite
element method (blue line). The exact solution is

u(x) = c1e
−x + c2e

x + 1,

with c1 = − e2

1+e2
, c2 = − 1

1+e2
.

Solution (d) The error in the nodes of the finite element discretization is |U1 − u(h)| =
0.2039 − 0.2025 = 0.0014, |U2 − u(2h)| = 0.3177 − 0.3156 = 0.0021, and |U3 − u(3h)| =
0.3543− 0.3519 = 0.0023.

Problem 2 Learning outcome L1, L4, L5, L7
Consider the linear PDE

ut + uxxx = 0, x ∈ [0, 1], t ≥ 0,

with periodic boundary conditions. Consider the grid xm = hm, h = 1/M , m = 1, . . . ,M .
Discretize with central finite differences in space and the Forward Euler method in time
(forward differences in time).

Use the following central differences approximation of the third derivative

uxxx|(xm,t) =
u(xm+3, t)− 3u(xm+1, t) + 3u(xm−1, t)− u(xm−3, t)

8h3
+O(h2).

a) Perform a Von Neumann stability analysis of the method.
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Figure 2: Exact (red) and numerical (FEM) solution (blue)

b) Consider now a Crank-Nicolson method obtained applying central differences in space
(as in point (a)) and the trapezoidal rule in time. Perform a stability analysis of the
method following the techniques explained in chapter 5 of the note (see page 55
chapter 5.6 of the note). Find under which restrictions on h and k the method is
stable.

Hint: You might use the fact that the chosen discretization of the third derivative
operator is a skew-symmetric matrix (and circulant). See also exercise (c) below.

c) Consider now the method obtained applying the Backward Euler method in time
(backward differences in time). The linear system to be solved at each time-step is
of the form

(I − kA)x = b,

with A M ×M circulant and skew-symmetric. (See the appendix on circulant ma-
trices). Consider the Jacobi iterative method to solve this linear system. Assume
M and h are fixed and find under which conditions on k the Jacobi iteration is
guaranteed to converge.

Solution (a)
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Using central differences in space and backward Euler in time we obtain

Un+1
m = Un

m +
k

8h3
(
Un
m−3 − 3Un

m−1 + 3Un
m+1 − Un

m+3

)
,

by assuming Un
m = ξneiβxm , and i =

√
−1, and substituting in the method we obtain

ξ = 1− iα,

with
α =

k

8h3
(sin(3βh)− 3 sin(βh)).

Finally we obtain
ξ∗ξ = |ξ|2 = (1 + iα)(1− iα) = 1 + α2,

which cannot be is less than or equal to one for all β. This means that the method is never
Von Neumann stable.

Solution (b)

The Crank-Nicolson method is

Un+1
m = Un

m +
k

16h3
(
Un
m−3 − 3Un

m−1 + 3Un
m+1 − Un

m+3 + Un+1
m−3 − 3Un+1

m−1 + 3Un+1
m+1 − Un+1

m+3

)
.

We can write the method in the compact form

Un+1 = Un +
k

2
(AUn + AUn+1),

where A is the cyclic matrix with first row

aT =
1

8h3
[

0 3 0 −1 0 . . . 0 1 0 −3
]
∈ RM ,

with eigenvalues
√
M ΩHa. The method becomes

Un+1 = (I − k

2
A)−1(I +

k

2
A)Un.

A sufficient condition for stability for a finite difference method given in the form

Un+1 = BUn + g

is that
‖B‖ ≤ 1

for some norm ‖ · ‖ (which we choose here to be the 2-norm). In our case g = 0 and

B = (I − k

2
A)−1(I +

k

2
A)
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and can be diagonalized as follows

B = ΩH(I − k

2
Λ)−1(I +

k

2
Λ)Ω

so

‖B‖2 = ‖(I − k

2
Λ)−1(I +

k

2
Λ)‖ = max

j=1,...,M

∣∣∣∣∣1 + k
2
λj

1− k
2
λj

∣∣∣∣∣
here λj are the eigenvalues of a skew-symmetric matrix and are therefore pure imaginary
and appearing in conjugate pairs, so

‖B‖2 = 1.

In conclusion the method is always stable.

Solution (c)

The Jacobi iteration method for this problem is

x`+1 = kAx` + b, ` = 0, 1, . . .

and a necessary and sufficient condition for convergence of this iteration is

ρ(kA) < 1,

where ρ denotes the spectral radius. The eigenvalues λl, l = 1, . . . ,M of kA are the
components of the vector

k
√
M ΩHa.

Multiplying out the columns of ΩH and a and using αl := l−1
M

we obtain

λl =
k

8h3
(3 exp(2πi αl)− exp(2πi 3αl) + exp(2πi ((l − 1)− 3αl))− 3 exp(2πi ((l − 1)− αl))

=
k

8h3
2i (3 sin(ωl)− sin(3ωl)) , ωl := 2παl,

=
k

8h3
8i sin(ωl)

3

From which we deduce
ρ(kA) ≤ k

h3

and to ensure ρ(kA) < 1 it is sufficient to require k < h3.

Appendix
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A circulant matrix is a matrix of the type

C =



c0 c1 c2 . . . cM−2 cM−1

cM−1 c0 c1 c2
. . . cM−2

cM−2 cM−1 c0 c1
. . . ...

... . . . . . . . . . . . . ...

... . . . . . . . . . . . . c1
c1 . . . . . . . . . cM−1 c0


,

and the first row in the matrix is

cT = [c0, c1, c2, . . . , cM−2, cM−1],

and it is determining the whole matrix. Circulant matrices can be diagonalized using the
Fourier matrix Ω, where

Ωk,l =
1√
M

exp (2πi · (k − 1)(l − 1)/M) , i =
√
−1

and C = ΩHΛΩ with Λ a diagonal matrix, and ΩHΩ = I. The eigenvalues of C, i.e. the
diagonal elements of Λ, are given by

√
M · ΩHc.


