Contact during the exam:
Elena Celledoni, tlf. 73593541

EXAM in TMA4212

Thursday 23rd May 2013
Allowed aids: Approved simple pocket calculator. All written and handwritten material from the course. Learning outcome $\mathbf{L} 6$ and $\mathbf{L} 3$ have been tested through the project work ${ }^{1}$.

Problem 1 Learning outcome L2, L7

Consider the differential equation

$$
-\left(p(x) u^{\prime}\right)^{\prime}+r(x) u=f(x), \quad \text { for } x \in(a, b),
$$

with $p \in C^{1}[a, b], p(x) \geq c_{0}>0$ for all $x \in[a, b], r \in C^{0}[a, b], r(x) \geq 0$ for all $x \in[a, b]$ and $f \in L_{2}[a, b]$, subject to the boundary conditions

$$
-p(a) u^{\prime}(a)+\alpha u(a)=A, \quad p(b) u^{\prime}(b)+\beta u(b)=B
$$

where α and β are positive real numbers and A and B are real numbers.
a) Show that the weak formulation of the boundary value problem is

$$
\text { find } \quad u \in H^{1}(a, b) \text {, such that } \mathcal{A}(u, v)=\ell(v) \text { for all } v \in H^{1}(a, b) \text {, }
$$

where

$$
\mathcal{A}(u, v)=\int_{a}^{b}\left[p(x) u^{\prime}(x) v^{\prime}(x)+r(x) u(x) v(x)\right] \mathrm{d} x+\alpha u(a) v(a)+\beta u(b) v(b),
$$

and

$$
\ell(v)=\langle f, v\rangle+A v(a)+B v(b) .
$$

[^0]b) We will now consider a finite element approximation of the boundary value problem based on this weak formulation using piecewise linear finite element basis functions on the subdivision
$$
a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b
$$
on the interval $[a, b]$ and with constant step size. Show that the finite element method gives rise to a set of $n+1$ simultaneous linear equations with $n+1$ unknowns $u_{i}=$ $u^{h}\left(x_{i}\right), i=0,1, \ldots, n$. Show that this linear system has a unique solution. Comment on the structure of the matrix $M \in \mathbf{R}^{(n+1) \times(n+1)}$ of the linear system: Is M symmetric? Is M positive definite? Is M tridiagonal? Explain your answers.

Problem 2 Learning outcome L5, L7

Consider Laplace equation in 2 D on a square domain $\Omega=[0,1] \times[0,1]$,

$$
u_{x x}+u_{y y}=0,
$$

with Dirichlet boundary conditions,

$$
u=g, \quad \text { on } \partial \Omega .
$$

Use the 5 -points formula to discretize the equation on the grid $h=\frac{1}{M+1}, x_{i}=i h, i=$ $1, \ldots, M$, and $y_{j}=j h, j=1, \ldots, M$ and obtain a linear system of algebraic equations

$$
A \mathbf{u}=\mathbf{b}
$$

where \mathbf{u} is a vector whose components are the numerical approximations of u on the grid of the discretization $u_{i, j} \approx u\left(x_{i}, y_{j}\right)$, ordered as follows:

$$
\mathbf{u}:=\left[u_{1,1}, u_{2,1}, \ldots, u_{M, 1}, u_{1,2}, \ldots, u_{M, 2}, \ldots, u_{1, M}, \ldots, u_{M, M}\right]^{T} .
$$

Consider the use of the conjugate gradient method to solve this linear system.
a) Write out A explicitly.

Recall then the following formula for the eigenvalues of A :

$$
\mu_{j, l}=\frac{2}{h^{2}}(\cos (\pi j h)-1)+\frac{2}{h^{2}}(\cos (\pi l h)-1), \quad j=1, \ldots, M, l=1, \ldots, M .
$$

Show that $-A$ is a positive definite matrix whose eigenvalues lie in an interval $[a, b]$ with $\sqrt{\frac{a}{b}}$ approximately $\frac{\pi h}{2}$.
b) Assume you are given an arbitrary initial guess \mathbf{u}_{0}. Use the theorem for the convergence of the conjugate gradient method to estimate the number of iterations K necessary to obtain a relative error below the tolerance ε, that is

$$
\frac{\left\|e_{K}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq \varepsilon
$$

Recall that for a vector \mathbf{v},

$$
\|\mathbf{v}\|_{A}:=\sqrt{\mathbf{v}^{T} A \mathbf{v}}
$$

Find an estimate for K assuming $M+1=100$ and $\varepsilon=10^{-7}$.

Problem 3 Learning outcome L1, L4, L7

Consider the linear PDE

$$
u_{t}+u_{x x x}=0, \quad u(-\infty, t)=u(\infty, t)=0, \quad x \in \mathbf{R}, \quad t \geq 0
$$

Consider the interval $[-L, L]$ with $L>0$ sufficiently large, consider the grid $x_{m}=-L+h m$, $h=2 L / M, m=0, \ldots, M$. Discretise with central finite differences in space and the Backward Euler method in time (backward differences in time), let $u\left(x_{0}, t\right)=u\left(x_{M}, t\right)=0$.

Use the following central differences approximation of the third derivative

$$
\left.u_{x x x}\right|_{\left(x_{m}, t\right)}=\frac{u\left(x_{m+3}, t\right)-3 u\left(x_{m+1}, t\right)+3 u\left(x_{m-1}, t\right)-u\left(x_{m-3}, t\right)}{8 h^{3}}+\mathcal{O}\left(h^{2}\right) .
$$

Show that the obtained method is Von Neumann stable.

Problem 4 Learning outcome L1, L4, L7

Let r and α be positive real numbers. Show that if $\left[w_{1}, \ldots, w_{M}\right]^{T}$ satisfies

$$
-r w_{m-1}+(1+2 r+\alpha) w_{m}-r w_{m+1}=v_{m}, \quad 1 \leq m \leq M-1, \quad w_{0}=w_{M}=0,
$$

then

$$
\max _{0 \leq m \leq M}\left|w_{m}\right| \leq \max _{1 \leq m \leq M-1}\left|v_{m}\right| .
$$

Use this to show that Backward Euler converges for arbitrary $r=k / h^{2}$ on the problem

$$
u_{t}=u_{x x}-u, \quad u(x, 0)=f(x), \quad u(0, t)=g_{0}(t), \quad u(1, t)=g_{1}(t) .
$$

Hint: You will have to take $w_{m}=e_{m}^{n+1}$ where $e_{m}^{n}:=U_{m}^{n}-u\left(x_{m}, t_{m}\right)$ is the error, and U_{m}^{n} is the numerical approximation given by the Backward Euler method.

[^0]: ${ }^{1}$ The learning outcome is published on the course webpage and on the official description of the course.

