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Department of Mathematical Sciences

Contact during the exam:
Elena Celledoni, tlf. 735 93541

EXAM in TMA4212

13th August 2011
Time: 9:00-13:00

Allowed aids: Approved simple pocket calculator. All written and handwritten material
form the course.

Problem 1

a) Explain briefly the CFL stability condition. Use the equation u; 4+ au, = 0, and the
scheme

n+1l __ n n n
Upy ™ = O Uy g+ QO Uy + O Uy g

to explain the theory. What happens when oy =0 and a >0 7

Solution. The CFL condition is a necessary condition for convergence and it says
that to get convergence of the numerical approximation to the solution at the point
(x*,t*) in the a-t plane, the characteristic of u; + au, = 0 through (z*,¢*) must
not leave the domain of dependence of the numerical scheme and in particular must
intersect the x-axis within the domain of dependence of the numerical scheme.

For the presented scheme, provided a_; and «y are both non zero for all time levels,
the domain of dependence is [z* — t*/p, x* + t*/p], and the CFL conditions amounts
at requiring that

lap| < 1.

Conversely, if a1 = 0 for all time levels, the domain of dependence of the numerical
scheme is [z*, 2* + t*/p] while the characteristic of u; + au, = 0 through (z*t*)
intersects the x-axis in £y = x* — at* which is not in the domain of dependence. This
implies that the CFL condition is violated.
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b) Consider now u; + au, = 0 and show that the scheme

1 n+1 n+ly . n n+1 n+1
2 (um+1 + umfl) U, + aum—i-l — Up—1 0
k 2h

is von Neumann stable if |ap| is greater than or equal to 1, p = k/h.
Solution. We set as usual u”, = £" ™" and substitute in the method and get

& cosBh —1+ap&e sin fh =0,

§(Cosﬁh+apz' sinﬂh) =1,
cos Bh — api sin Sh
cos? Bh + a2p? sin? SR’

¢ = (cos Bh+ api sin fh) " =

and )
€]? = (cos® Bh + a®p” sin® Bh) .
Then
cos® Bh + a?p? sin? fh > 1,
a’p* + (1 — a*p?) cos® Bh > 1,
(a®p* — 1)(1 — cos® Bh) > 0,
lap| > 1.
Problem 2 Given « a nonnegative real number, consider the differential equation

—u"+u=f(x), z€(0,1)
subject to the boundary conditions
u(0) =0, au(l)+d'(1)=0,a>0.

a) State the weak formulation of the problem.
Solution. We multiply both sides of the equation by a test function v € H'(0,1)
vanishing on the left boundary of the domain, and integrate between 0 and 1. Using
integration by parts and v(0) = 0, we obtain

1 1 1
—u’v\é—i—/ u’v’da:—i—/ uvdx:/ fvdr, Yve HY(0,1), v(0)=0
0 0 0

which is the weak formulation of the problem. By using the boundary condition we
get

1 1 1
au(1)v(1) +/ u'v' dx +/ uvde = / fvdr, Yve HY(0,1), v(0)=0
0 0 0
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setting

a(u,v) := au(l)v(l) +/1u’v’ dx + /1 wodz, (f,v):= /1fvda:
0 0 0

we can write equivalently
CL(U, U) = <f7 U>7

(Galerkin formulation).

b) Using continuous piecewise linear basis functions on a uniform subdivision of [0, 1]
into elements of size h = 1/n, n > 2, write down the finite element approximation
to this problem and show that this has a unique solution v". Expand u” in terms
of the standard piecewise linear finite element basis functions (hat functions) ¢;,
1=1,2,...,n, by writing

uh(ﬂf) = Z Uipi(x)

to obtain a system of linear equations for the vector of unknowns (U, ..., U,).
Solution. We follow the suggested ansatz for u”

uM(z) =) Uipil)
i=1
and the boundary conditions
u"(0) =0, au(1)+u"(1)=0.

Here the piecewise linear basis functions are

(x—zj-1)

7 T < x < xy,
pilw) = L) pocp<py =11,
0 otherwise,

(z—zn—_1)
= Tpo1 ST <@y,
%On(x) = { "

0 otherwise,
so each of these basis functions vanishes in 0 and so does u” (the first boundary
condition is automatically satisfied). The derivatives of these basis functions are
i_ll Tj—1 <z < Zzj,
<p;(x): —% .CEjS.’L’SiL‘jJrl, j:].,...,n—l,

0 otherwise,
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% Tn—1 S T < Tn,
o (r)y=<¢ 0 T = Tp,
0 otherwise.
We now write the linear system for the unknowns (Ui, ..., U,)T which we determine

by stating the Galerkin method:

a(uh,goi) =(f,pi), i=1,...,n,

and

3

a(SOj’SOi)Uj:UaSOi% izl;-"ana

Jj=1

giving us the linear system
Mu=b, u:=(U,...,U,)",
and b := ((f, 1), ..., (f,¢n)). The matrix M has entries
M;; =alpj, @), 4,j=1,...,n—1,

is symmetric and positive definite because a(-, ) is symmetric and a(v,v) = fol (v?+
v} dr + av(1)? > 0 for v # 0, implying that for a vector v.# 0 v € R™ one
has viMv = a(v,v) > 0, where v = "', v;¢; and v; the i-th component of v.
Therefore since M is positive definite (it has also all eigenvalues different from zero)
it is invertible and the linear system Mu = b has a unique solution.

To find the entries of M and b we need to compute the integrals
1 1 1
a(pj, pi) = ap;(1)pi(1) +/ 90;90; dx +/ pipjdr, (f, i) = / Jpidz.
0 0 0

Suppose that @« = 0, f(z) = 1 and h = 1/3. Solve the resulting system of linear
equations and give an expression for u".
Solution.

The matrix M is in this case a 3 x 3 tridiagonal and symmetric matrix (as observed
previously). It can be easily checked that M; 3 = a(ps, p1) = 0 and by symmetry we
get M3, = 0. To find M we need to compute the three diagonal entries

1 1
0 0

and the two entries

1 1
Mo = / ©hpy dx +/ paprdr = My;,
0 0
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1 1
My s = / Py da +/ p3pa dr = Ms ;.
0 0

We get
2 2 1 1

Mii=Myy=++=-h, Mss=—+-h

1,1 22 = 7+ 3l 33 = + N,

w

1 1
A4L2:: A4é£ ::__E +’6}L

Further we need to find

1 1 1
1
blz/ 901d$:b2:/ <p2dx:h, b3:/ (p3dq;:_h.
0 0 0 2

_ 1h(4a* — d* — 2ad) _ 2h(—d+a) 1 h(d® — 4ad + 4a?)
T2 a(-32+4a®) P =3d2+4a2 7T 2 a(=3d + 4a?)

We get

Ui

Witha:%+%, dz—%%—%h.

Problem 3 Consider the partial differential equation
U = i Ugg, € (0,1)

with ¢ = v/—1, and periodic boundary conditions. Consider the finite difference scheme

]{3
n+1 n . 2. n 2. n+l1
Uy, = Uy, +1 _2h2 (5rum + 5wum ) s

and 502u(z,t) is the central difference approximation of the second derivative of u(z, )
with respect to x. Prove Lax-Richtmyer stability of the scheme. Under which circumstances
is the scheme convergent?

Solution. The scheme can be written as

k
n+l __ 7 - v n n+1
U = U i S AU+ U

with U™ = (U7, ..., U%)" and U} = U¥;, and A the usual central difference matrix dis-
cretization of the Laplacian. Then the scheme can be then written as

Urtt=coun, C=(I—irA)"YI+irA),
with r = k/2h?. The matrix C' is symmetric and has eigenvalues

(1 —irX) M1 +4arN), j=1,....,M
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where ); are the eigenvalues of A. In the case C' is symmetric p(C) < 1 is a sufficient
condition for Lax-Ricthmyer stability and in this case it is obviously satisfied, because all

values
(L —arX) ' (L+irX\)| =1, j=1,...,M.

By Lax equivalence theorem a consistent difference scheme is stable if and only if it is
convergent. Since this scheme is consistent it is also convergent.



