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Contact during the exam:
Elena Celledoni, tlf. 735 93541

EXAM in TMA4212

13th August 2011
Time: 9:00–13:00

Allowed aids: Approved simple pocket calculator. All written and handwritten material
form the course.

Problem 1

a) Explain briefly the CFL stability condition. Use the equation ut + aux = 0, and the
scheme

un+1
m = α−1 u

n
m−1 + α0 u

n
m + α1 u

n
m+1

to explain the theory. What happens when α−1 = 0 and a > 0 ?
Solution. The CFL condition is a necessary condition for convergence and it says
that to get convergence of the numerical approximation to the solution at the point
(x∗, t∗) in the x-t plane, the characteristic of ut + aux = 0 through (x∗, t∗) must
not leave the domain of dependence of the numerical scheme and in particular must
intersect the x-axis within the domain of dependence of the numerical scheme.

For the presented scheme, provided α−1 and α1 are both non zero for all time levels,
the domain of dependence is [x∗ − t∗/p, x∗ + t∗/p], and the CFL conditions amounts
at requiring that

|a p| ≤ 1.

Conversely, if α−1 = 0 for all time levels, the domain of dependence of the numerical
scheme is [x∗, x∗ + t∗/p] while the characteristic of ut + aux = 0 through (x∗, t∗)
intersects the x-axis in x0 = x∗−at∗ which is not in the domain of dependence. This
implies that the CFL condition is violated.
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b) Consider now ut + aux = 0 and show that the scheme

1
2

(
un+1
m+1 + un+1

m−1
)
− unm

k
+ a

un+1
m+1 − un+1

m−1

2h
= 0

is von Neumann stable if |a p| is greater than or equal to 1, p = k/h.
Solution. We set as usual unm = ξn emβh and substitute in the method and get

ξ cos βh− 1 + apξ i sin βh = 0,

ξ
(
cos βh+ ap i sin βh

)
= 1,

ξ =
(
cos βh+ ap i sin βh

)−1
=

cos βh− ap i sin βh
cos2 βh+ a2p2 sin2 βh

,

and
|ξ|2 =

(
cos2 βh+ a2p2 sin2 βh

)−1
.

Then
cos2 βh+ a2p2 sin2 βh ≥ 1,

a2p2 + (1− a2p2) cos2 βh ≥ 1,

(a2p2 − 1)(1− cos2 βh) ≥ 0,

|ap| ≥ 1.

Problem 2 Given α a nonnegative real number, consider the differential equation

−u′′ + u = f(x), x ∈ (0, 1)

subject to the boundary conditions

u(0) = 0, α u(1) + u′(1) = 0, α ≥ 0.

a) State the weak formulation of the problem.
Solution. We multiply both sides of the equation by a test function v ∈ H1(0, 1)
vanishing on the left boundary of the domain, and integrate between 0 and 1. Using
integration by parts and v(0) = 0, we obtain

− u′v|10 +
∫ 1

0

u′v′ dx+

∫ 1

0

uv dx =

∫ 1

0

fv dx, ∀v ∈ H1(0, 1), v(0) = 0

which is the weak formulation of the problem. By using the boundary condition we
get

αu(1)v(1) +

∫ 1

0

u′v′ dx+

∫ 1

0

uv dx =

∫ 1

0

fv dx, ∀v ∈ H1(0, 1), v(0) = 0
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setting

a(u, v) := αu(1)v(1) +

∫ 1

0

u′v′ dx+

∫ 1

0

uv dx, 〈f, v〉 :=
∫ 1

0

f v dx

we can write equivalently
a(u, v) = 〈f, v〉,

(Galerkin formulation).

b) Using continuous piecewise linear basis functions on a uniform subdivision of [0, 1]
into elements of size h = 1/n, n ≥ 2, write down the finite element approximation
to this problem and show that this has a unique solution uh. Expand uh in terms
of the standard piecewise linear finite element basis functions (hat functions) ϕi,
i = 1, 2, . . . , n, by writing

uh(x) =
n∑
i=1

Uiϕi(x)

to obtain a system of linear equations for the vector of unknowns (U1, . . . , Un)
T .

Solution. We follow the suggested ansatz for uh

uh(x) =
n∑
i=1

Uiϕi(x)

and the boundary conditions

uh(0) = 0, α uh(1) + uh
′
(1) = 0.

Here the piecewise linear basis functions are

ϕj(x) =


(x−xj−1)

h
xj−1 ≤ x < xj,

(xj+1−x)
h

xj ≤ x ≤ xj+1,

0 otherwise,

j = 1, . . . , n− 1,

ϕn(x) =

{
(x−xn−1)

h
xn−1 ≤ x ≤ xn,

0 otherwise,

so each of these basis functions vanishes in 0 and so does uh (the first boundary
condition is automatically satisfied). The derivatives of these basis functions are

ϕ′j(x) =


1
h

xj−1 ≤ x < xj,

− 1
h

xj ≤ x ≤ xj+1,

0 otherwise,

j = 1, . . . , n− 1,
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ϕ′n(x) =


1
h

xn−1 ≤ x < xn,

0 x = xn,

0 otherwise.

We now write the linear system for the unknowns (U1, . . . , Un)
T which we determine

by stating the Galerkin method:

a(uh, ϕi) = 〈f, ϕi〉, i = 1, . . . , n,

and
n∑
j=1

a(ϕj, ϕi)Uj = 〈f, ϕi〉, i = 1, . . . , n,

giving us the linear system

Mu = b, u := (U1, . . . , Un)
T ,

and b := (〈f, ϕ1〉, . . . , 〈f, ϕn〉). The matrix M has entries

Mi,j = a(ϕj, ϕi), i, j = 1, . . . , n− 1,

is symmetric and positive definite because a(·, ·) is symmetric and a(v, v) =
∫ 1

0
(v′2 +

v2) dx + αv(1)2 > 0 for v 6= 0, implying that for a vector v 6= 0 v ∈ Rn one
has vTMv = a(v, v) > 0, where v =

∑n
i=1 viϕi and vi the i-th component of v.

Therefore since M is positive definite (it has also all eigenvalues different from zero)
it is invertible and the linear system Mu = b has a unique solution.

To find the entries of M and b we need to compute the integrals

a(ϕj, ϕi) = αϕj(1)ϕi(1) +

∫ 1

0

ϕ′jϕ
′
i dx+

∫ 1

0

ϕiϕj dx, 〈f, ϕi〉 =
∫ 1

0

f ϕi dx.

c) Suppose that α = 0, f(x) ≡ 1 and h = 1/3. Solve the resulting system of linear
equations and give an expression for uh.
Solution.

The matrix M is in this case a 3× 3 tridiagonal and symmetric matrix (as observed
previously). It can be easily checked that M1,3 = a(ϕ3, ϕ1) = 0 and by symmetry we
get M3,1 = 0. To find M we need to compute the three diagonal entries

Mi,i =

∫ 1

0

ϕ′iϕ
′
i dx+

∫ 1

0

ϕiϕi dx, i = 1, 2, 3,

and the two entries

M1,2 =

∫ 1

0

ϕ′2ϕ
′
1 dx+

∫ 1

0

ϕ2ϕ1 dx =M2,1,
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M2,3 =

∫ 1

0

ϕ′3ϕ
′
2 dx+

∫ 1

0

ϕ3ϕ2 dx =M3,1.

We get

M1,1 =M2,2 =
2

h
+

2

3
h, M3,3 =

1

h
+

1

3
h,

M1,2 =M2,3 = −
1

h
+

1

6
h.

Further we need to find

b1 =

∫ 1

0

ϕ1 dx = b2 =

∫ 1

0

ϕ2 dx = h, b3 =

∫ 1

0

ϕ3 dx =
1

2
h.

We get

U1 =
1

2

h(4a2 − d2 − 2ad)

a(−3d2 + 4a2)
, U2 =

2h(−d+ a)

−3d2 + 4a2
, U3 =

1

2

h(d2 − 4ad+ 4a2)

a(−3d2 + 4a2)

with a = 1
h
+ h

3
, d = − 1

h
+ 1

6
h.

Problem 3 Consider the partial differential equation

ut = i uxx, x ∈ (0, 1)

with i =
√
−1, and periodic boundary conditions. Consider the finite difference scheme

un+1
m = unm + i

k

2h2
(
δ2xu

n
m + δ2xu

n+1
m

)
,

and 1
h2
δ2xu(x, t) is the central difference approximation of the second derivative of u(x, t)

with respect to x. Prove Lax-Richtmyer stability of the scheme. Under which circumstances
is the scheme convergent?
Solution. The scheme can be written as

Un+1 = Un + i
k

2h2
A(Un + Un+1)

with Un = (Un
1 , . . . , U

n
M)T and Un

0 = Un
M , and A the usual central difference matrix dis-

cretization of the Laplacian. Then the scheme can be then written as

Un+1 = CUn, C = (I − i rA)−1(I + i rA),

with r = k/2h2. The matrix C is symmetric and has eigenvalues

(1− irλj)−1(1 + irλj), j = 1, . . . ,M
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where λj are the eigenvalues of A. In the case C is symmetric ρ(C) ≤ 1 is a sufficient
condition for Lax-Ricthmyer stability and in this case it is obviously satisfied, because all
values ∣∣(1− irλj)−1(1 + irλj)

∣∣ = 1, j = 1, . . . ,M.

By Lax equivalence theorem a consistent difference scheme is stable if and only if it is
convergent. Since this scheme is consistent it is also convergent.


