Contact during the exam:
Elena Celledoni, tlf. 73593541

EXAM in TMA4212

13th August 2011
Time: 9:00-13:00
Allowed aids: Approved simple pocket calculator. All written and handwritten material form the course.

Problem 1

a) Explain briefly the CFL stability condition. Use the equation $u_{t}+a u_{x}=0$, and the scheme

$$
u_{m}^{n+1}=\alpha_{-1} u_{m-1}^{n}+\alpha_{0} u_{m}^{n}+\alpha_{1} u_{m+1}^{n}
$$

to explain the theory. What happens when $\alpha_{-1}=0$ and $a>0$?
Solution. The CFL condition is a necessary condition for convergence and it says that to get convergence of the numerical approximation to the solution at the point $\left(x^{*}, t^{*}\right)$ in the x-t plane, the characteristic of $u_{t}+a u_{x}=0$ through $\left(x^{*}, t^{*}\right)$ must not leave the domain of dependence of the numerical scheme and in particular must intersect the x-axis within the domain of dependence of the numerical scheme.

For the presented scheme, provided α_{-1} and α_{1} are both non zero for all time levels, the domain of dependence is $\left[x^{*}-t^{*} / p, x^{*}+t^{*} / p\right]$, and the CFL conditions amounts at requiring that

$$
|a p| \leq 1
$$

Conversely, if $\alpha_{-1}=0$ for all time levels, the domain of dependence of the numerical scheme is $\left[x^{*}, x^{*}+t^{*} / p\right]$ while the characteristic of $u_{t}+a u_{x}=0$ through $\left(x^{*}, t^{*}\right)$ intersects the x-axis in $x_{0}=x^{*}-a t^{*}$ which is not in the domain of dependence. This implies that the CFL condition is violated.
b) Consider now $u_{t}+a u_{x}=0$ and show that the scheme

$$
\frac{\frac{1}{2}\left(u_{m+1}^{n+1}+u_{m-1}^{n+1}\right)-u_{m}^{n}}{k}+a \frac{u_{m+1}^{n+1}-u_{m-1}^{n+1}}{2 h}=0
$$

is von Neumann stable if $|a p|$ is greater than or equal to $1, p=k / h$.
Solution. We set as usual $u_{m}^{n}=\xi^{n} e^{m \beta h}$ and substitute in the method and get

$$
\begin{gathered}
\xi \cos \beta h-1+a p \xi i \sin \beta h=0, \\
\xi(\cos \beta h+a p i \sin \beta h)=1, \\
\xi=(\cos \beta h+a p i \sin \beta h)^{-1}=\frac{\cos \beta h-a p i \sin \beta h}{\cos ^{2} \beta h+a^{2} p^{2} \sin ^{2} \beta h},
\end{gathered}
$$

and

$$
|\xi|^{2}=\left(\cos ^{2} \beta h+a^{2} p^{2} \sin ^{2} \beta h\right)^{-1}
$$

Then

$$
\begin{gathered}
\cos ^{2} \beta h+a^{2} p^{2} \sin ^{2} \beta h \geq 1 \\
a^{2} p^{2}+\left(1-a^{2} p^{2}\right) \cos ^{2} \beta h \geq 1 \\
\left(a^{2} p^{2}-1\right)\left(1-\cos ^{2} \beta h\right) \geq 0 \\
|a p| \geq 1
\end{gathered}
$$

Problem 2 Given α a nonnegative real number, consider the differential equation

$$
-u^{\prime \prime}+u=f(x), \quad x \in(0,1)
$$

subject to the boundary conditions

$$
u(0)=0, \quad \alpha u(1)+u^{\prime}(1)=0, \alpha \geq 0 .
$$

a) State the weak formulation of the problem.

Solution. We multiply both sides of the equation by a test function $v \in H^{1}(0,1)$ vanishing on the left boundary of the domain, and integrate between 0 and 1 . Using integration by parts and $v(0)=0$, we obtain

$$
-\left.u^{\prime} v\right|_{0} ^{1}+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} f v d x, \quad \forall v \in H^{1}(0,1), \quad v(0)=0
$$

which is the weak formulation of the problem. By using the boundary condition we get

$$
\alpha u(1) v(1)+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x=\int_{0}^{1} f v d x, \quad \forall v \in H^{1}(0,1), \quad v(0)=0
$$

setting

$$
a(u, v):=\alpha u(1) v(1)+\int_{0}^{1} u^{\prime} v^{\prime} d x+\int_{0}^{1} u v d x, \quad\langle f, v\rangle:=\int_{0}^{1} f v d x
$$

we can write equivalently

$$
a(u, v)=\langle f, v\rangle,
$$

(Galerkin formulation).
b) Using continuous piecewise linear basis functions on a uniform subdivision of $[0,1]$ into elements of size $h=1 / n, n \geq 2$, write down the finite element approximation to this problem and show that this has a unique solution u^{h}. Expand u^{h} in terms of the standard piecewise linear finite element basis functions (hat functions) φ_{i}, $i=1,2, \ldots, n$, by writing

$$
u^{h}(x)=\sum_{i=1}^{n} U_{i} \varphi_{i}(x)
$$

to obtain a system of linear equations for the vector of unknowns $\left(U_{1}, \ldots, U_{n}\right)^{T}$.
Solution. We follow the suggested ansatz for u^{h}

$$
u^{h}(x)=\sum_{i=1}^{n} U_{i} \varphi_{i}(x)
$$

and the boundary conditions

$$
u^{h}(0)=0, \quad \alpha u^{h}(1)+u^{h^{\prime}}(1)=0 .
$$

Here the piecewise linear basis functions are

$$
\begin{gathered}
\varphi_{j}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{j-1}\right)}{h} & x_{j-1} \leq x<x_{j}, \\
\frac{\left(x_{j+1}-x\right)}{h} & x_{j} \leq x \leq x_{j+1}, \quad j=1, \ldots, n-1, \\
0 & \text { otherwise },
\end{array}\right. \\
\varphi_{n}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{n-1}\right)}{h} & x_{n-1} \leq x \leq x_{n}, \\
0 & \text { otherwise },
\end{array}\right.
\end{gathered}
$$

so each of these basis functions vanishes in 0 and so does u^{h} (the first boundary condition is automatically satisfied). The derivatives of these basis functions are

$$
\varphi_{j}^{\prime}(x)=\left\{\begin{array}{cc}
\frac{1}{h} & x_{j-1} \leq x<x_{j}, \\
-\frac{1}{h} & x_{j} \leq x \leq x_{j+1}, \quad j=1, \ldots, n-1, \\
0 & \text { otherwise },
\end{array}\right.
$$

$$
\varphi_{n}^{\prime}(x)=\left\{\begin{array}{cc}
\frac{1}{h} & x_{n-1} \leq x<x_{n} \\
0 & x=x_{n} \\
0 & \text { otherwise }
\end{array}\right.
$$

We now write the linear system for the unknowns $\left(U_{1}, \ldots, U_{n}\right)^{T}$ which we determine by stating the Galerkin method:

$$
a\left(u^{h}, \varphi_{i}\right)=\left\langle f, \varphi_{i}\right\rangle, \quad i=1, \ldots, n,
$$

and

$$
\sum_{j=1}^{n} a\left(\varphi_{j}, \varphi_{i}\right) U_{j}=\left\langle f, \varphi_{i}\right\rangle, \quad i=1, \ldots, n
$$

giving us the linear system

$$
M \mathbf{u}=\mathbf{b}, \quad \mathbf{u}:=\left(U_{1}, \ldots, U_{n}\right)^{T}
$$

and $\mathbf{b}:=\left(\left\langle f, \varphi_{1}\right\rangle, \ldots,\left\langle f, \varphi_{n}\right\rangle\right)$. The matrix M has entries

$$
M_{i, j}=a\left(\varphi_{j}, \varphi_{i}\right), \quad i, j=1, \ldots, n-1,
$$

is symmetric and positive definite because $a(\cdot, \cdot)$ is symmetric and $a(v, v)=\int_{0}^{1}\left(v^{\prime 2}+\right.$ $\left.v^{2}\right) d x+\alpha v(1)^{2}>0$ for $v \neq 0$, implying that for a vector $\mathbf{v} \neq 0 \mathbf{v} \in \mathbf{R}^{\mathbf{n}}$ one has $\mathbf{v}^{T} M \mathbf{v}=a(v, v)>0$, where $v=\sum_{i=1}^{n} v_{i} \varphi_{i}$ and v_{i} the i-th component of \mathbf{v}. Therefore since M is positive definite (it has also all eigenvalues different from zero) it is invertible and the linear system $M \mathbf{u}=\mathbf{b}$ has a unique solution.

To find the entries of M and \mathbf{b} we need to compute the integrals

$$
a\left(\varphi_{j}, \varphi_{i}\right)=\alpha \varphi_{j}(1) \varphi_{i}(1)+\int_{0}^{1} \varphi_{j}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{1} \varphi_{i} \varphi_{j} d x, \quad\left\langle f, \varphi_{i}\right\rangle=\int_{0}^{1} f \varphi_{i} d x .
$$

c) Suppose that $\alpha=0, f(x) \equiv 1$ and $h=1 / 3$. Solve the resulting system of linear equations and give an expression for u^{h}.

Solution.

The matrix M is in this case a 3×3 tridiagonal and symmetric matrix (as observed previously). It can be easily checked that $M_{1,3}=a\left(\varphi_{3}, \varphi_{1}\right)=0$ and by symmetry we get $M_{3,1}=0$. To find M we need to compute the three diagonal entries

$$
M_{i, i}=\int_{0}^{1} \varphi_{i}^{\prime} \varphi_{i}^{\prime} d x+\int_{0}^{1} \varphi_{i} \varphi_{i} d x, \quad i=1,2,3
$$

and the two entries

$$
M_{1,2}=\int_{0}^{1} \varphi_{2}^{\prime} \varphi_{1}^{\prime} d x+\int_{0}^{1} \varphi_{2} \varphi_{1} d x=M_{2,1},
$$

$$
M_{2,3}=\int_{0}^{1} \varphi_{3}^{\prime} \varphi_{2}^{\prime} d x+\int_{0}^{1} \varphi_{3} \varphi_{2} d x=M_{3,1}
$$

We get

$$
\begin{gathered}
M_{1,1}=M_{2,2}=\frac{2}{h}+\frac{2}{3} h, \quad M_{3,3}=\frac{1}{h}+\frac{1}{3} h, \\
M_{1,2}=M_{2,3}=-\frac{1}{h}+\frac{1}{6} h .
\end{gathered}
$$

Further we need to find

$$
b_{1}=\int_{0}^{1} \varphi_{1} d x=b_{2}=\int_{0}^{1} \varphi_{2} d x=h, \quad b_{3}=\int_{0}^{1} \varphi_{3} d x=\frac{1}{2} h
$$

We get

$$
U_{1}=\frac{1}{2} \frac{h\left(4 a^{2}-d^{2}-2 a d\right)}{a\left(-3 d^{2}+4 a^{2}\right)}, U_{2}=\frac{2 h(-d+a)}{-3 d^{2}+4 a^{2}}, U_{3}=\frac{1}{2} \frac{h\left(d^{2}-4 a d+4 a^{2}\right)}{a\left(-3 d^{2}+4 a^{2}\right)}
$$

with $a=\frac{1}{h}+\frac{h}{3}, \quad d=-\frac{1}{h}+\frac{1}{6} h$.

Problem 3 Consider the partial differential equation

$$
u_{t}=i u_{x x}, \quad x \in(0,1)
$$

with $i=\sqrt{-1}$, and periodic boundary conditions. Consider the finite difference scheme

$$
u_{m}^{n+1}=u_{m}^{n}+i \frac{k}{2 h^{2}}\left(\delta_{x}^{2} u_{m}^{n}+\delta_{x}^{2} u_{m}^{n+1}\right),
$$

and $\frac{1}{h^{2}} \delta_{x}^{2} u(x, t)$ is the central difference approximation of the second derivative of $u(x, t)$ with respect to x. Prove Lax-Richtmyer stability of the scheme. Under which circumstances is the scheme convergent?
Solution. The scheme can be written as

$$
U^{n+1}=U^{n}+i \frac{k}{2 h^{2}} A\left(U^{n}+U^{n+1}\right)
$$

with $U^{n}=\left(U_{1}^{n}, \ldots, U_{M}^{n}\right)^{T}$ and $U_{0}^{n}=U_{M}^{n}$, and A the usual central difference matrix discretization of the Laplacian. Then the scheme can be then written as

$$
U^{n+1}=C U^{n}, \quad C=(I-i r A)^{-1}(I+i r A)
$$

with $r=k / 2 h^{2}$. The matrix C is symmetric and has eigenvalues

$$
\left(1-i r \lambda_{j}\right)^{-1}\left(1+i r \lambda_{j}\right), \quad j=1, \ldots, M
$$

where λ_{j} are the eigenvalues of A. In the case C is symmetric $\rho(C) \leq 1$ is a sufficient condition for Lax-Ricthmyer stability and in this case it is obviously satisfied, because all values

$$
\left|\left(1-i r \lambda_{j}\right)^{-1}\left(1+i r \lambda_{j}\right)\right|=1, \quad j=1, \ldots, M
$$

By Lax equivalence theorem a consistent difference scheme is stable if and only if it is convergent. Since this scheme is consistent it is also convergent.

