Contact during the exam:
Elena Celledoni, tlf. 73593541

EXAM in TMA4212

13th August 2011
Time: 9:00-13:00
Allowed aids: Approved simple pocket calculator. All written and handwritten material form the course.

Problem 1

a) Explain briefly the CFL condition. Use the equation $u_{t}+a u_{x}=0$, and the scheme

$$
u_{m}^{n+1}=\alpha_{-1} u_{m-1}^{n}+\alpha_{0} u_{m}^{n}+\alpha_{1} u_{m+1}^{n}
$$

with $\alpha_{-1} \neq 0, \alpha_{0} \neq 0$ and $\alpha_{1} \neq 0$ constant values for all time levels, to explain the theory. What happens when $\alpha_{-1}=0$ and $a>0$?
b) Consider now $u_{t}+a u_{x}=0$ and show that the scheme

$$
\frac{\frac{1}{2}\left(u_{m+1}^{n+1}+u_{m-1}^{n+1}\right)-u_{m}^{n}}{k}+a \frac{u_{m+1}^{n+1}-u_{m-1}^{n+1}}{2 h}=0
$$

is von Neumann stable if $|a p|$ is greater than or equal to 1 , here $p=k / h$.

Problem 2 Given α a nonnegative real number, consider the differential equation

$$
-u^{\prime \prime}+u=f(x), \quad x \in(0,1)
$$

subject to the boundary conditions

$$
u(0)=0, \quad \alpha u(1)+u^{\prime}(1)=0, \alpha \geq 0 .
$$

a) State the weak formulation of the problem.
b) Using continuous piecewise linear basis functions on a uniform subdivision of $[0,1]$ into elements of size $h=1 / n, n \geq 2$, write down the finite element approximation to this problem and show that this has a unique solution u^{h}. Expand u^{h} in terms of the standard piecewise linear finite element basis functions (hat functions) φ_{i}, $i=1,2, \ldots, n$, by writing

$$
u^{h}(x)=\sum_{i=1}^{n} U_{i} \varphi_{i}(x)
$$

to obtain a system of linear equations for the vector of unknowns $\left(U_{1}, \ldots, U_{n}\right)^{T}$.
c) Suppose that $\alpha=0, f(x) \equiv 1$ and $h=1 / 3$. Solve the resulting system of linear equations and give an expression for u^{h}.

Problem 3 Consider the partial differential equation

$$
u_{t}=i u_{x x}, \quad x \in(0,1)
$$

with $i=\sqrt{-1}$, and periodic boundary conditions. Consider the finite difference scheme

$$
u_{m}^{n+1}=u_{m}^{n}+i \frac{k}{2 h^{2}}\left(\delta_{x}^{2} u_{m}^{n}+\delta_{x}^{2} u_{m}^{n+1}\right),
$$

where $\frac{1}{h^{2}} \delta_{x}^{2} u(x, t)$ is the central difference approximation of the second derivative of $u(x, t)$ with respect to x. Prove stability of the scheme ${ }^{1}$. Under which circumstances is the scheme convergent?

[^0]Appendix. The piecewise linear basis functions are

$$
\begin{gathered}
\varphi_{j}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{j-1}\right)}{h} & x_{j-1} \leq x \leq x_{j}, \\
\frac{\left(x_{j+1}-x\right)}{h} & x_{j} \leq x \leq x_{j+1}, \quad j=1, \ldots, n-1, \\
0 & \text { otherwise },
\end{array}\right. \\
\varphi_{n}(x)=\left\{\begin{array}{cc}
\frac{\left(x-x_{n-1}\right)}{h} & x_{n-1} \leq x \leq x_{n}, \\
0 & \text { otherwise },
\end{array}\right.
\end{gathered}
$$

and $x_{j}=j h, j=0, \ldots, n, x_{0}=0, x_{n}=1$.

[^0]: ${ }^{1}$ Use the definition of stability given in chapter 5 (Stability, consistency and convergence) of the English version of the note of the course TMA4212.

