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Contact during the exam:
Elena Celledoni, tlf. 735 93541

EXAM in TMA4212

Monday 23rd May 2011
Time: 9:00–13:00

Allowed aids: Approved simple pocket calculator. All written and handwritten
material form the course.

Problem 1 We approximate the solution of the Poisson equation

∆u = uxx + uyy = f i R, u = 0 på ∂R

using the finite element method. We use trapezoidal elements with a node in each
corner and bilinear element basis functions. The trapezium we consider here has
the following corners

(h, 0) ,

(
h

2
,

1

2

√
3h

)
,

(
−h

2
,

1

2

√
3h

)
, (−h, 0)

for a suitable choice of the origin such that h > 0 is a discretization parameter.
Three basis functions are known
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a) Find the fourth basis function.
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b) This element E has an element stiffness matrix AE = [αE
pq]p,q=1:4. Compute

one entry in AE (you choose which one).

Suggestion. With x = ξh, y = ηh the following integration formula holds
true∫
E

(
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for any abitrary choice of the constants a, b, c, d, e, f where dA = d(hξ)d(hη).

Problem 2 We solve the initial value problem

ut = uxx, −∞ < x <∞, t > 0

u(x, 0) = f(x), −∞ < x <∞.

We let unm = u(xm, tn) med xm = mh og tn = nk. The discretization error is
enm = unm−Un

m. We want to obtain an expilicit formula so that the discretization
error is O(h2 + k2).

a) Using Taylor series for un+1
m around (xm, tn), explain how one can obtain

the formula
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and find the order (in h and k) for the local truncation error τnm1.

b) Find the conditions on r = k/h2 guaranteeing that the method in (a)
satisfies the criterion for von Neumann (require |ξ| ≤ 1).

c) Let us now assume that there is a constant C such that the local truncation
error for the method in (a) satisfies

|τnm| ≤ µ, µ = C(h2 + k2)

Assume also that r ≤ 1/2 and show that the discretization error

enm = unm − Un
m

satisfies
max
m
|en+1

m | ≤ max
m
|enm|+ kµ, n ≥ 0

Find an upperbound for |enm|, with nk ≤ T for a given T .
1The definition for the local truncation error used here is the one given in the English

translation of the note for the course TMA4212.
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Problem 3 Analize dissipation and dispersion for the Lax-Friedrichs method
for ut + aux = 0:
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