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1 Optical Flow

When a three-dimensional scene is observed through a camera lense (or an eye), the
movements in the scene together with the relative movement of the lense give rise to an
apparent motion within the image plane. This apparent motion is called the optical flow
and can be used for example for object segmentation or collision detection. The goal of
this project is the efficient implementation of a particular method for the estimation of this
optical flow.

Denote in the following by Ω := [0, Lx]× [0, Ly] ⊂ R2 the image plane, and assume that we
are given an image sequence (or movie) on Ω, modelled as a function I : Ω× R→ R. We
are interested in estimating the optical flow at some fixed time t0 ∈ R, which we write as
vector field w : Ω→ R2 with components u and v, that is,

w(x, y) =

(
u(x, y)
v(x, y)

)
.

Here u denotes the horizontal and v the vertical apparent movement in the image sequence.
The basis for the estimation of this apparent movement is now the assumption that intensity
values of the scene remain approximately constant along the flow. That is, for sufficiently
small time steps ∆t we have

I(x, y, t0) = I(x+ ∆t u(x, y), y + ∆t v(x, y), t0 + ∆t) + o(∆t).

Dividing by ∆t and taking a limit ∆t→ 0, this implies that

0 = lim
∆t→0

1

∆t

(
I(x+ ∆t u, y + ∆t v, t0 + ∆t)− I(x, y, t0)

)
= u∂xI + v∂yI + ∂tI.

That is, the functions u and v solve the optical flow equation

u∂xI + v∂yI = −∂tI. (1)

Because this is a single equation for the two functions u and v, we cannot expect a unique
solution. Roughly spoken, the equation (1) only provides a description of the optical flow
across edges in the image, but not along edges. This non-uniqueness of the solution of the
optical flow equation is called the aperture problem in optical flow. In order to tackle this
problem and at the same time deal with approximation errors, it is necessary to include
additional assumptions concerning the behaviour of the optical flow. One of the simplest
assumption is smoothness: the values of u and v should change only slowly in space. One
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possibility to realise this assumption is to require that the functions u and v solve the
optimisation problem

1

2
‖u∂xI + v∂yI + ∂tI‖2 +

λ

2

(
‖∇u‖2 + ‖∇v‖2

)
→ min,

where λ > 0 is some regularisation parameter trading off smoothness of u and v against
accuracy of the solution of the optical flow equation.

The Euler–Lagrange equations for this variational problem (that is, the optimality conditions
for this optimisation problem) are the coupled PDEs

(u∂xI + v∂yI)∂xI − λ∆u = −∂xI ∂tI,
(u∂xI + v∂yI)∂yI − λ∆v = −∂yI ∂tI,

in (0, Lx)× (0, Ly), (2)

with either homogeneous Neumann boundary conditions both for u and v, that is,

∂xu = ∂xv = 0 on {0, Lx} × [0, Ly],

∂yu = ∂yv = 0 on [0, Lx]× {0, Ly},

or homogeneous Dirichlet boundary conditions

u = v = 0 on {0, Lx} × [0, Ly] ∪ [0, Lx]× {0, Ly} (3)

if one wants to include the assumption that the flow at the boundary of the image plane
is zero. This equation has been first proposed by Horn and Schunck [HS81] for a stable
solution of the optical flow problem. More information and more general models can for
instance be found in [BPS15].

See Figure 1 for an example of the resulting optical flow computed from two consecutive
images in an image sequence.

2 Discretisation

For the discretisation, we assume that we are given two consecutive frames I0 and I1 of an
image sequence at times t = 0 and t = ∆t. The images I0 and I1 themselves are greyscale
images given on a rectangular (pixel) grid of size m× n. For simplicity, we assume that
∆t = 1 and the grid size of the pixel grid is ∆x = ∆y = h0 := 1.

In this case, the time derivative of I at t = 0 can be roughly approximated by

∂tI(xi, yj) := I1(xi, yj)− I0(xi, yj),

and the space derivatives by first approximating

∂xI0(xi, yj) :=

{
I0(xi+1, yj)− I0(xi, yj) if i < m,

I0(xm, yj)− I0(xm−1, yj) if i = m,

and

∂xI1(xi, yj) :=

{
I1(xi+1, yj)− I1(xi, yj) if i < m,

I1(xm, yj)− I1(xm−1, yj) if i = m,
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Figure 1: Result of an optical flow computation. First row: Two consecutive frames
in an image sequence. Second row: The resulting flow (right) and the first frame of the
sequence overlaid with the flow (left). The colourwheel on the bottom right indicates the
direction and intensity of the flow field at each pixel. The test images have been taken
from http://vision.middlebury.edu/flow/. The optical flow has been computed with a
regularisation parameter of λ = 1000, and the images were pre-smoothed using a Gaussian
kernel with standard deviation σ = 5.
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and then setting

∂xI(xi, yj) :=
1

2
(∂xI0(xi, yj) + ∂xI1(xi, yj)).

The y-derivative can be obtained similarly, by first setting

∂yI0(xi, yj) :=

{
I0(xi, yj+1)− I0(xi, yj) if j < n,

I0(xi, yn)− I0(xi, yn−1) if j = n,

and

∂yI1(xi, yj) :=

{
I1(xi, yj+1)− I1(xi, yj) if j < n,

I1(xi, yn)− I1(xi, yn−1) if j = n,

and then
∂yI(xi, yj) :=

1

2
(∂yI0(xi, yj) + ∂yI1(xi, yj)).

The flow field w = (u, v) is discretised on the same pixel grid as the given image sequence,
and for the discretisation of the Laplacian of u and v, we use the usual 5-point stencil, that
is,

(∆u)ij ≈ (Ahu)ij :=
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij

h2
. (4)

Moreover, we consider in the following the problem with Dirichlet boundary conditions (3).

In total, we obtain the coupled systems

(∂xI)2
ijuij + (∂yI)ij(∂xI)ijvij − λ(Ah0u)ij = (∂tI)ij(∂xI)ij ,

(∂yI)2
ijvij + (∂yI)ij(∂xI)ijuij − λ(Ah0v)ij = (∂tI)ij(∂yI)ij ,

(5)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

3 Dealing with images and preprocessing

In Matlab, images can be imported and exported using the functions imread and imwrite.
Note that imread will load standard greyscale images as unsigned integers; in order to
perform most numerical computations, it is therefore often necessary to convert the imported
images to double precision numbers. In order to load the image image.png, it is thus possible
to use the command I0 = double(imread(’image.png’));. In order to display images,
one can use the function imagesc or imshow (note that they scale the greyscale of the
output differently). At the webpage of the course, a Matlab program can be found for
converting two-dimensional flow fields into RGB-images (mycomputeColor.m).

In case of fast movements in the images (or a low frame rate), the results of the optical
flow computations improve, if one applies some smoothing to the input images I0 and I1.
This can, for instance, be done by calling the function imgaussfilt(I0,sigma), which
convolves the image I0 with a Gaussian kernel with standard deviation σ. As an example,
the results in Figure 1 were obtained with σ = 5. I strongly recommend to apply this type
of smoothing for all tests with natural (i.e., non-synthetic) images.
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4 Problem Setting

4.1 Theoretical questions

1 Discuss the properties of the linear system (5). In particular, decide whether this
system is symmetric, positive (semi-)definite, diagonally dominant, or irreducibly row
diagonally dominant. What do your results imply for the convergence of the Jacobi
method, the Gauß–Seidel method, and the CG method applied to this equation?

Hint: In order to show the positive definiteness, it makes sense to split up the operator
on the left hand side of (5) into two parts, the first containing only the (negative)
Laplace parts, and the other part the multiplications with the derivatives of I. Both
parts can be shown to be positive semi-definite, and the Laplacian part (with Dirichlet
boundary conditions) is positive definite. Thus the whole operator is positive definite
as well.
Note that the situation is more complicated in the case of Neumann boundary con-
ditions. Here, the negative Laplacian is only positive semi-definite, but no longer
positive definite. Indeed, one can show that its kernel consists precisely of constant
functions. In certain settings, it can then happen that specific constant functions are
contained in the kernel of the other part of the operator (the part depending on the
image sequence) as well, in which case the PDE either has no solution at all, or the
solution is non-unique. 1

4.2 Numerical methods

2 Implement a version of the conjugate gradient (CG) method for the solution of the
optical flow problem (2) with Dirichlet boundary conditions (3). The method should
contain a convergence test so that it terminates when

‖rk‖2
‖r0‖2

< tol,

where rk denotes the residual at step k.

The implementation should consist of two functions, first a main function where the
images are imported, preprocessed, and their derivatives are computed, and then a
function where the actual CG method is implemented. The function header for the
CG method could for instance look like this:

function [u,v] = OF_cg(u0, v0, Ix, Iy, lambda, rhsu, rhsv, tol, maxit)
%
% [u,v] = OF_cg(u0, v0, Ix, Iy, rhsu, rhsv, tol, maxit) performs
% the CG method for solving the optical flow problem.
%
% input:
% u0 - initial guess for u
% v0 - initial guess for v
% Ix - x-derivative of the first frame

1 This non-uniqueness is strongly related to the so called aperture problem of motion perception, see e.g.
https://en.wikipedia.org/wiki/Motion_perception#The_aperture_problem.
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% Iy - y-derivative of the first frame
% lambda - regularisation parameter
% rhsu - right-hand side in the equation for u
% rhsv - right-hand side in the equation for v
% tol - relative residual tolerance
% maxit - maximum number of iterations
%
% output:
% u - numerical solution for u
% v - numerical solution for v

3 Implement a multigrid V-cycle for the solution of the optical flow problem (2) with
Dirichlet boundary conditions (3). Again, implement a main function from which
the V-cycle is called, and another function containing the actual implementation of
the V-cycle. This function should take as input the initial guess, the right-hand side,
the current level and maximal level of the grid, the number of pre-smoothings, and
the number of post-smoothings. Use the CG algorithm from 2) to solve the problem
on the coarsest level. For the smoother, a red-black Gauss–Seidel method should be
implemented.

It is advantageous to further break down the function where the V-cycle is performed
into several parts. The main routine for the multigrid cycle could for instance look
like this (different setups are possible, though):

function [u,v] = V_cycle(u0,v0, Ix, Iy, lambda, rhsu, rhsv, s1, s2, ...
level, max_level)

%
% [u,v] = V_cycle(u0,v0, Ix, Iy, lambda, rhsu, rhsv, s1, s2,...
% ..., level, max_level) performs one multigrid
% V-cycle for the optical flow problem.
%
% input:
% u0 - initial guess for u
% v0 - initial guess for v
% Ix - x-derivative of the first frame
% Iy - y-derivative of the first frame
% lambda - regularisation parameter
% rhsu - right-hand side in the equation for u
% rhsv - right-hand side in the equation for v
% s1 - number of pre-smoothings
% s2 - number of post-smoothings
% level - current level
% max_level - total number of levels
%
% output:
% u - numerical solution for u
% v - numerical solution for v

[u,v] = rbGS(u0, v0, Ix, Iy, lambda, rhsu, rhsv, level,s1);
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[rhu,rhv] = residual(u, v, Ix, Iy, lambda, rhsu, rhsv);
[r2hu,r2hv,Ix2h,Iy2h] = restriction(rhu, rhv, Ix, Iy);
if level+1 == max_level

[e2hu,e2hv] = OF_cg(zeros(size(r2hu)), zeros(size(r2hv)), ...
v0, Ix2h, Iy2h, lambda, rhsu, rhsv, 1e-8, 1000, level+1);

else
[e2hu,e2hv] = V_cycle(zeros(size(r2hu)), zeros(size(r2hv)), ...

Ix2h, Iy2h, lambda, r2hu, r2hv, s1, s2, level+1, max_level);
[ehu,ehv] = prolongation(e2hu, e2hv);
u = u + ehu;
v = v + ehv;
[u,v] = rbGS(u, v, Ix, Iy, lambda, rhsu, rhsv, level, s2);
end

Notice that the routine is defined recursively. What is left then is to implement the
routines rbGS.m, residual.m, restriction.m and prolongation.m. Also, note that
the CG method also requires some information of the level (or, alternatively, the
current grid size), as this influences the discretisation of the Laplace term.

Since typical images have sizes that are highly divisible by powers of two, (e.g., images
of size 512×768) it makes sense to define the restriction operator in such a way that
that the size of the images is exactly halved in each restriction step. This can be
achieved by defining the restriction operator using the stencil

1

4

[
1 1
1 1

]
.

This corresponds to using a staggered grid in the multi-level approach, that is, the
grid points in the coarsened grid lie between (and not on) grid points in the fine grid.

4 Modify the routine in 2) to solve the optical flow problem with a PCG method using
a multigrid V-cycle as in 3) as preconditioner. That is, instead of solving the linear
system Mz = r that is usually required in each PCG iteration, we compute z by
applying the multigrid solver (with a reasonably small number of smoothing steps
s1 and s2) with right hand side r. This preconditioner, however, has to be applied
with some care. What properties must a preconditioner for the CG method have, and
what does this mean for the multigrid V-cycle? Is it necessary to modify the setup of
the red-black Gauß–Seidel method, and if yes, how?

5 Numerical tests

The different methods should first be tested on the synthetic test “images” that can be
generated with the functions generate_test_images.m downloadable on the webpage of
the course. The first testcase implemented there produces the (N ×N) image of a Gaussian
that moves to the lower right. This can be used for testing the code, as the method should
be able to almost reproduce this movement in the center of the image. Because of the
Dirichlet boundary conditions, the movement tends to zero on the boundary of the image,
though.
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The second testcase implemented in generate_test_images.m produces images of two
Gaussians circling each other. Test all the different methods that were implemented on this
synthetic example with image size 2k × 2k for k = 6, . . . , 9, and discuss the convergence
behaviour of the different methods for each of these cases, and also how the different methods
scale with the image size (feel free to test even larger images). Use a regularisation parameter
λk = 4k−4 (depending on the image size) for these tests. How do the parameters within
the multigrid method (that is, number of levels and number of pre- and post-smoothing
iterations) influence your results?

Additionally, test the different methods using the images frame10.png and frame11.png
from the webpage of the course. Reasonable estimates of the optical flow should be attainable
with regularisation parameters λ ranging from 500 to 10000 (or even larger). Additional
test sequences can also be downloaded from http://vision.middlebury.edu/flow/. How
do the computation times change with λ? Also, discuss how the parameters of the methods
influence the number of iterations and the computation time. For which method and
parameter setting can one obtain the best possible computation times?

Use the condition ‖rk‖2/‖r0‖2 < 10−8 as convergence criterion in all the computations.

A Matrix Operations

Use matrix- or vector-operations and avoid costly loops whenever possible. As an example,
do not evaluate the central part of the negative Laplacian operator using the double loop

Laplace_u = zeros(M,N);
for i = 2 : M-1

for j = 2 : N-1
Laplace_u(i, j) = (4*u(i, j) - u(i - 1, j) - u(i, j - 1) ...

- u(i + 1, j) - u(i, j + 1));
end

end

but rather with

Laplace_u = zeros(M,N);
ind_1 = 2:M-1;
ind_2 = 2:N-1;
Laplace_u(ind_1,ind_2) = 4*u(ind_1, ind_2) - u(ind_1 - 1, ind_2) ...

- u(ind_1, ind_2 - 1) - u(ind_1 + 1, ind_2) ...
- u(ind_1, ind_2 + 1);

An implementation with a (sparse!) matrix vector multiplication is of course also possible,
and there exist many other (also more efficient) implementations than that one. The
important point is, not to use double loops here.
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