
TMA4190: Introduction to Topology.

Mock exam

Problem 1. Let X be a topological space and let K ⊂ X be a compact
subspace such that K ̸= X. Assume that for every pair of points x, y ∈ X
there exists a continuous map f : X → [0, 1] such that f(x) = 0 and f(y) = 1.

i) Show that X is Hausdorff.

ii) Let x /∈ K show that there exists a continuous map f : X → [0, 1] such
that f(x) = 1 and f(K) ⊆ [0, 1/2).

Solution. i) Given two different points x, y ∈ X we pick a continuous
map f : X → [0, 1] such that f(x) = 0 and f(y) = 1. We define
Ux = f−1([0, 1/2)) and Uy = f−1((1/2, 1]) which are preimages of open
sets under a continuous maps and are therefore open. It follows that
Ux ∩ Uy = ∅ and thus X is Hausdorff.

ii) Let x /∈ K. For every y ∈ K we define fy : X → [0, 1] to be a
continuous function such that fy(y) = 0 and fy(x) = 1. We further
define Wy = f−1

y ([0, 1/2)) which is an open set such that y ∈ Wy. We
repeat this process for each y ∈ K which provides us with an open
cover

K ⊆
⋃
y∈K

Wy.

Since K is compact there exists finitely many points {y0, . . . , yn} such

that K ⊆
n⋃

i=0

Wyi . We define a continuous function f : X → [0, 1] given

by the pointwise product

f =
n∏

i=0

fyi
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which is well defined and continuous since we are only considering
finitely many continuous functions in the definition. To finish the proof
let z ∈ K. Then z ∈ Wyj for some index 0 ≤ j ≤ n. Then it follows
that

f(z) = fj(z)
∏
i ̸=j

fyi(z) <
1

2

∏
i ̸=j

fyi(z) ≤
1

2
.

■

Problem 2. Let define RP n = Rn+1 \ {0}
/
∼ where the equivalence relation

identifies vectors λx⃗ ∼ x⃗ where λ ∈ R and λ ̸= 0.

i) Show that RP n is path connected.

ii) Show that RP n is Hausdorff.

iii) We observe that we have a map π : Sn → RP n which identifies a pair
of points x, y ∈ Sn if x = −y. Show that p is a covering map.

iv) Show that RP n is compact.

v) Assume that we know that for n ≥ 2 and a point x ∈ Sn we have
π1(Sn, x) = 0. Compute π1(RP n, p(x)).

Solution. Let p : Rn+1 \ {0} → RP n be the quotient map.

i) Let x, y ∈ RP n and pick a pair of points in a, b ∈ Rn+1 \ {0} such that
p(a) = x and p(b) = y. Then since Rn+1 \ {0} is path connected we
can pick a path γ : I → Rn+1 \ {0} joining a and b. Then p ◦ γ is the
desired path between x and y.

ii) Observe that two points x, y ∈ Rn+1 \ {0} are identified in RP n if and
only if there exists a straight line L ⊂ Rn+1 passing through the origing
such that x, y ∈ L.

Let us consider a pair of different points p(x) ̸= p(y) in RP n. Then
by the previous discussion it follows that x, y do not belong to the
same straight line passing through the origin. Let Lx be the straight
line connecting the origin and x and similarly let us defined Ly. It
then follow that we can find ϵx > 0 and ϵy > 0 such that for every
z ∈ B(x, ϵx) we have that B(y, ϵy) ∩ Lz = ∅. This follows that after
applying p we have

Vp(x) ∩ Vp(y) = ∅
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where Vp(x) = p(B(x, ϵx)) and Vp(y) = p(B(y, ϵy)). To finish the proof
we need to show that Vp(x) (resp. Vp(y)) is open. To see this we simply
compute p−1(Vp(x)) and check that it is open which is precisely the
definition of open set in the quotient topology.

iii) We consider the obvious inclusion i : Sn → Rn+1 \{0} and observe that
π = p ◦ i. In particular, we learn that π is surjective and continuous.
Let x ∈ RP n and pick a preimage a ∈ Sn such that π(a) = x. Then it
is clear that we can find a small open set Ua such that for every z ∈ Ua

it follows that −z /∈ Ua. Then defining U−a = {z ∈ Sn| − z ∈ Ua} one
observes that

Ua

∐
U−a = π−1(π(Ua)).

To finish the proof one simply checks that p−1(π(Ua)) is open in Rn+1 \
{0}.

iv) The map π is continuous and surjective. Since Sn is compact it follows
that RP n must also be compact.

v) We know that Sn is simply connected for n ≥ 2. Then the theory shows
that π−1(x) ≃ π1(RP n, x). However π−1(x) has precisely 2 elements
and there is only one group of order 2 so we conclude π1(RP n, x) = Z2.

■

Problem 3. Let p : E → B be a covering map and assume that B is Haus-
dorff. Show that E must also be Hausdorff.

Proof. Let x, y ∈ E such that x ̸= y. We consider two cases given by
p(x) ̸= p(y) or p(x) = p(y). The first case follows immediately from the fact
that B is Hausdorff. Let us suppose that p(x) = p(y) = z and let z ∈ U ⊂ B
such that

p−1(U) ≃
∐
λ∈Λ

Vλ.

Let λx and λy be the indices such that x ∈ Vλx and y ∈ Vλy . If λx ̸= λy then
the claim follows from the fact that Vλx ∩ Vλy = ∅. Suppose that λx = λy

then since the restricted mpa

p|Uλx
: Vλx → U

is an homeomorphism it follows that p(x) ̸= p(y) which is a contradiction.
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Problem 4. Let p : E → B be a covering map and let e0 ∈ E such that
p(e0) = b0.

i) Show that π1(E, e0) → π1(B, b0) is a monomorphism whose image con-
sists in those loops in B (with basepoint b0) that admit a lift to a loop
in E (with basepoint e0).

Solution. Let us show that the map π1(E, e0) → π1(B, b0) is a monomor-
phism. Suppose that we are given two loops γ1, γ2 : I → E such that
p ◦ γ1 ∼ p ◦ γ2 in B via a homotopy H : I × I → B. Using the homotopy
lifting property we obtain a homotopy Ĥ : I × I → E such that p ◦ Ĥ = H.
We saw in the theory lecture that uniqueness of our lifts imply that since H
is a path homotopy then so is Ĥ. We observe the following:

*) Ĥ(−, 0) is a lift of p ◦ γ1 and Ĥ(−, 1) is a lift of p ◦ γ2. We can now use
the uniqueness of the path lifting property to see that Ĥ(−, 0) = γ1
and Ĥ(−, 1) = γ2.

We conclude that γ1 and γ2 are path homotopic and thus the map π1(E, e0) →
π1(B, b0) is injective.

To finish the proof let us characterize the image of the map. Let τ : I → E
and γ : I → B be loops such that p ◦ τ is path homotopic to γ. We consider
a lift of this path homotopy to Ĥ : I × I → E. A similar argument as before
shows that Ĥ(−, 0) = τ and that Ĥ(−, 1) = γ̂ is a lift of γ. It is only left to
show that γ̂ is a loop. This follows from the fact that τ is a loop and that
Ĥ is a path homotopy. ■
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