Introduction to Topology. Exercise sheet 3: Connected and compact topological spaces

Exercise 1. Let X be an a compact space, Y a Hausdorff space and $f : X \rightarrow Y$ a continuous map.

- i) Show that f is a closed map.
- *ii)* Show that if f is surjective, then f is a quotient map.
- *iii)* Show that if f is bijective, then f is a homeomorphism.
- iv) Show that f is proper, i.e., for each compact subset $K \subseteq Y$ then its preimage $f^{-1}(K)$ is compact.

Exercise 2. Let X be a topological space and let $K_1, K_2 \subseteq X$ be compact subsets. Show that if X is Hausdorff then $K_1 \cap K_2$ is compact.

Exercise 3. Let X be any topological space. We wish to construct a topological space \hat{X} which we call the one point compactification of X. As a set we define $\hat{X} = X \cup \{\infty\}$. A subset $U \subseteq \hat{X}$ is said to be open if:

- We have that $\infty \notin U$ and U is open in X.
- We have that $\infty \in U$ and $U = X \setminus (CK) \cup \{\infty\}$ where $CK \subseteq X$ is compact and closed.

Prove the following:

- i) The collection of open sets above define a topology on \hat{X} .
- ii) The space \hat{X} is compact.

- iii) The space \hat{X} is Hausdorff if and only if X is.
- iv) Show that we have a continuous open map $\iota : X \to \hat{X}$. In particular, $\hat{X} \setminus \{\infty\} \simeq X$.
- v) Suppose that X is Hausdorf and let $x_0 \in X$, then it follows that $\hat{X} \setminus \{x_0\} \simeq X$.
- vi) What happens if we one point compactify the natural numbers?

Exercise 4 (*). Let $n \geq 1$, prove that $\hat{\mathbb{R}}^n \simeq \mathbb{S}^n$. (Hint: Use the stereographic projection).

Exercise 5. Let $K_1 \supseteq K_2 \supseteq K_3 \cdots$ be a descending chain of nonempty, closed, compact sets. Then it follows that $\bigcap_{n \in \mathbb{N}} K_n \neq \emptyset$.