Introduction to Topology. Exercise sheet 2: Constructing topological spaces

Exercise 1. Let \mathcal{B} be the collection of half-open intervals of the form $[a, b) = \{x \in \mathbb{R} | a \leq x < b\}$ in \mathbb{R} .

- i) Show that \mathcal{B} defines a basis for a topology on \mathbb{R} .
- ii) Find the closure of the set (0,1) in this topology.

Exercise 2. Let¹ Spec(\mathbb{Z}) = { $p \in \mathbb{Z} \mid p \text{ is a prime number}$ } \cup {0}. For every $m \in \mathbb{Z}$ such that $m \neq 0, 1$ define subsets $D(m) \subseteq$ Spec(\mathbb{Z}) as follows

 $D(m) = \{ p \in \operatorname{Spec}(\mathbb{Z}) \mid p \text{ does not divide } m \}$

Prove that:

- i) The collection D(m) defines a basis for a topology on $\text{Spec}(\mathbb{Z})$.
- ii) Show that $0 \in \operatorname{Spec}(\mathbb{Z})$ is a dense point. In other words, prove that $\overline{0} = \operatorname{Spec}(\mathbb{Z})$.
- *iii)* Is Spec(\mathbb{Z}) a Hausdorff space?

Exercise 3. Let X be a topological space and let Y be a subspace of X. If A is a subset of Y, show that the subspace topology on A inherited from Y is equal to the subspace topology on A inherited from X.

Exercise 4. Let X and Y be topological spaces, and let A and B be subsets of X and Y, respectively. Show that the topology on $A \times B$ as a subspace of the product $X \times Y$ is equal to the product topology on $A \times B$ where A and B are given the subspace topology inherited from X and Y, respectively.

¹We will not view 1 as a prime number

Exercise 5. Let \mathbb{Q} be the set of rational numbers equipped with the subspace topology inherited from \mathbb{R} show that the set

$$A = \left\{ x \in \mathbb{Q} \mid -\sqrt{5} < x < \sqrt{5} \right\}$$

is both open and closed in \mathbb{Q} . Is \mathbb{Q} connected?

Exercise 6. Let X and Y be two topological spaces, and let $X \times Y$ be given the product topology. Show that if $f : X \to Y$ is a continuous map, the subspace

$$G = \{(x, y) \in X \times Y \mid y = f(x)\}$$

of $X \times Y$ is homeomorphic to X.

Exercise 7. A T_1 space is one in which for every pair of points $x \neq y$ there is an open set containing x but not y. Prove that a space is T_1 if and only if every singleton set $\{x\}$ is closed. Prove that the only T_1 topology on a finite set is the discrete topology.

Exercise 8. Let X be a topological space and $A \subseteq X$ a dense (proper) subset of X. Show that given a quotient map $\pi : X \to Y$ the image of A under π , $\pi(A)$ is also dense in Y. Conclude that the quotient space \mathbb{R}/\mathbb{Q} obtained by collapsing all rational numbers to a point cannot be Hausdorff.