Introduction to Topology. Exercise sheet 1: Topological spaces

Exercise 1. Let $X = \{a, b, c\}$. Construct four different topologies on X.

Exercise 2. Let X be a set and $A \subseteq X$. Define the coarsest topology on X such that A is open.

Exercise 3. Let X be a topological space and suppose that we are given $A, B \subseteq X$. Prove that:

- i) If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.
- *ii)* We have $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Exercise 4. Let X be a topological space and let $A \subseteq X$. Show that $x \in A$ if and only if every neighbourhood of x intersects A.

Exercise 5. Show that the rational numbers $\mathbb{Q} \subset \mathbb{R}$ are dense, i.e. $\mathbb{Q} = \mathbb{R}$.

Exercise 6. Let X be a set and consider the cofinite topology on X. Given $A \subseteq X$ describe \mathring{A} (the interior of A), Ex(A) (the exterior of A) and ∂A (the boundary of A).

Exercise 7. Let X be a metric space and $A \subseteq X$. Prove the following:

- i) We have $x \in \overline{A}$ if and only if there exists a sequence $\{a_i\}_{i \in \mathbb{N}}$ with each $a_i \in A$ which converges to x.
- ii) Conclude that a map between metric spaces $f : X \to Y$ is continuous if and only if the image of any convergent sequence is again convergent.

Exercise 8 (\star). Given an infinite set X show that if we equipp X with the cofinite topology it cannot be homeomorphic to a metric space. What happens if X is finite?

Exercise 9 (**). Let $\hat{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ as defined¹ in the lecture. Prove the following:

i) Given a metric space X then there exists a bijection between the sets

 $\{Convergent \ sequences \ in \ X\} \xleftarrow{\cong} \{Continuous \ maps \ f : \hat{\mathbb{N}} \to X\}.$

ii) Let $L(\mathbb{N})$ be the set of maps

$$\varphi: \mathbb{N} \longrightarrow \{0, 1\}$$

such that $\varphi(m) \leq \varphi(n)$ if $m \leq n$. Show that there is a bijection $\hat{\mathbb{N}} \cong L(\mathbb{N})$.

iii) Let $\mathbb{N}^{\leq a} = \{n \in \mathbb{N} | n \leq a\}$ and consider $L(\mathbb{N}^{\leq a})$ defined in a totally analogous way as $L(\mathbb{N})$. Show that $L(\mathbb{N}^{\leq a})$ consists precisely in a + 1 elements and that we have continuous maps

$$r_a: \hat{\mathbb{N}} = \mathcal{L}(\mathbb{N}) \longrightarrow \mathcal{L}(\mathbb{N}^{\leq a})$$

where $L(\mathbb{N}^{\leq a})$ is equipped with the discrete topology.

- iv) Show that for a < b we maps $\alpha_{b,a} : L(\mathbb{N}^{\leq b}) \to L(\mathbb{N}^{\leq a})$ such that $r_a = \alpha_{b,a} \circ r_b$.
- vi) Show that given a topological space X and a family of continuous maps $f_a : X \to L(\mathbb{N}^{\leq a})$ such that $f_a = \alpha_{b,a} \circ f_b$ for every a < b then there exists a unique continuous map $f : X \to \mathbb{N}$ such that for every $a \in \mathbb{N}$ we have $f_a = r_a \circ f$.

¹For ease of notation we will use the convention that $0 \notin \mathbb{N}$